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DUG Member Rolf Metzger sent a very nice sequence of equivalence operations which re-
sults in a – late – wish for all of you. Many thanks Rolf. 
 

 

 

Wolfgang Alvermann sent an article for our special issue DNL#100 which is based on pic-
tures made in Madeira. So I had the idea to fill empty spaces in this DNL with some pictures 
from the flower island, Josef. 

    
                                                                                                          Echium candidans 
                                                                                                           Pride of Madeira 
                                                                                                          Stolz-von-Madeira 
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Dear DUG Members, 

this is really a very special issue and a 
very special moment for me writing the 
100th letter. Since 25 years we have 
together experienced the development 
of CAS beginning with the 1st versions 
of DERIVE (some of you even with mu-
Math) up to TI-NspireCAS 4.0. We en-
joyed the rise of DERIVE from a DOS 
program fitting on a small diskette to 
DERIVE 6.10 and were very sad and dis-
appointed about its "official" end some 
years ago. It is not surprising for the 
Old-Derivians that DERIVE is still sur-
viving in so many computer brains and so 
many human minds as well. 

Meeting DERIVE brought a new fascina-
tion of doing and teaching mathematics 
in a then unknown and unimaginable way 
into our lives. The "next generation" 
made the same experience holding a  
TI-92 or Voyage 200 first time in their 
hands and learned loving this technical 
wonder. TI-Nspire CAS is at the mo-
ment the last station of this develop-
ment and we don't know the further 
development in the future. 

During these past 25 years we could 
make many friends from all over the 
world. Our conferences (starting in 
Krems 1992) gave the occasion for per-
sonal meetings. So many of us can con-
nect DNL articles with private memo-
ries. 

Let me take this DNL as an excellent 
example: I could meet nearly all authors 
at several occasions in US, UK, Germany, 
Austria and other places. I could not 
meet R. Gough and D. Halprin until now 
but we exchanged so many emails that 
we now know much from each other. 

Please take the opportunity to meet 
again or the first time at TIME 2016 in 
Mexico. It will be great to say "Hello, 
how are you?" to you. 

We can be very proud that Albert Rich 
and David Stoutemyer – the Fathers of 
DERIVE – gave the honour to contribute 
for this issue – not a light fare, indeed. 
Albert is also "Father of RUBI" and 
David is one of the "Fathers of the  
TI-92 and its successors. I am also very 
grateful for Peter Balyta's (Texas In-
struments) kind words for our jubilee. 

In this DNL you will find the second 
part of Rob Gough's – for him very time 
consuming - investigation on prime num-
bers followed by an article submitted by 
Benno Grabinger. His paper reminded me 
on my first years as teacher, so I could 
not resist to add some comments.  

Wolfgang Alvermann sent a contribution 
for DNL#100 which was inspired by a 
stay on Madeira. My wife and I were 
there two years ago, so I felt inspired 
to include some flowers from there – 
and a DERIVE treatment of his pave-
ments. 

At last I have to thank for your friend-
ship and loyalty over so many years. The 
DNL could not have existed without 
your great and wonderful cooperation 
for such a long time. 

Let's start into the next twenty fives ! 

Best regards until #101 in 2016 

Josef 

 

Download all DNL-DERIVE- and TI-files from 
http://www.austromath.at/dug/ 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group. 
It is published at least four times a year 
with a content of 40 pages minimum. The 
goals of the DNL are to enable the ex-
change of experiences made with DERIVE, 
TI-CAS and other CAS as well to create a 
group to discuss the possibilities of new 
methodical and didactical manners in 
teaching mathematics. 
 

Editor: Mag. Josef Böhm 
D´Lust 1, A-3042 Würmla, Austria 
Phone: ++43-(0)660 3136365 
e-mail: nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & CAS-TI Newsletter will be. 
 
Next issue:                 March 2016 
 

 
Preview:  Contributions waiting to be published 
 
 Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER 
 Wonderful World of Pedal Curves, J. Böhm, AUT 
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER 
 Hill-Encryption, J. Böhm, AUT 
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT 
 An Interesting Problem with a Triangle, Steiner Point, P. Lüke-Rosendahl, GER 
 Graphics World, Currency Change, P. Charland, CAN 
 Cubics, Quartics – Interesting features, T. Koller & J. Böhm, AUT 
 Logos of Companies as an Inspiration for Math Teaching 
 Exciting Surfaces in the FAZ / Pierre Charland´s Graphics Gallery 
 BooleanPlots.mth, P. Schofield, UK 
 Old traditional examples for a CAS – what´s new? J. Böhm, AUT 
 Where oh Where is It? (GPS with CAS), C. & P. Leinbach, USA 
 Mandelbrot and Newton with DERIVE, Roman Hašek, CZK 
 Tutorials for the NSpireCAS, G. Herweyers, BEL 
 Some Projects with Students, R. Schröder, GER 
 Dirac Algebra, Clifford Algebra, D. R. Lunsford, USA 
 A New Approach to Taylor Series, D. Oertel, GER 
 Henon & Co; Find your very own Strange Attractor, J. Böhm, AUT 
 Rational Hooks, J. Lechner, AUT 
 Simulation of Dynamic Systems with various Tools, J. Böhm, AUT 
 Statistics of Shuffling Cards, Charge in a Magnetic Field, H. Ludwig, GER 
  
  
 and others 

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag. Josef Böhm 
 



 
 
 DNL 100 
 

 
Albert D. Rich: A Rule-based Revolution 

 

 
 p 3 
 

 
 

A Rule-based Revolution 
Organizing Mathematical Knowledge 

as a Rule-based Decision Tree 

Albert D. Rich, Applied Logician 
Hawaii Island, December 2015 

I am the author of 3 implementations of the muLisp artificial intelligence develop-
ment system, and coauthor of the muMath and Derive computer algebra systems. 
However, I am convinced my current research will be by far my most important and 
enduring contribution to the fields of math and computer science. 

Since the beginning of recorded history, mathematicians have been amassing 
mathematical truths at an ever greater rate and into ever more esoteric realms. How-
ever, this vast amount of knowledge has not been systematically organized so the 
precise formula required to solve a particular problem can easily be found. It's like 
leaves scattered on a lawn, rather than organized into a heavily branched tree with 
each leaf attached to the appropriate limb. 

It's Feasible 

I am convinced much of mathematical knowledge can be organized into a rule-based 
decision tree that is unique and optimal. Others have proposed similar such grandi-
ose programs, but the rule-based paradigm actually makes it possible to accomplish 
it. And this is not just armchair speculation. 

Over my almost 40 year career implementing computer algebra systems, I am driven 
to the realization that rule-based systems are the optimal way to get optimal results. 
This is not limited to my current focus: indefinite integration. muMath and Derive are 
general purpose programs able to solve a broad range of problems. Throughout their 
development these systems gained knowledge by the addition of new rules and the 
generalization of existing ones. 

David Stoutemyer and I began the design and implementation of muMath in the late 
1970s. From the earliest versions, despite being limited to a 64 kilobyte address 
space, the system provided a mechanism for assigning rules to the property lists of 
functions and operators. When an expression was being evaluated, the property list 
of its top-level function or operator was searched to see if there was a rule specifi-
cally for the expression's second-level function or operator. If so, the rule was applied 
and the process repeated recursively until no more rules applied. 
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Although crude by today's standards, this two-level pattern matching mechanism was 
used extensively in the implementation of muMath. Also its modularity and simplicity 
allowed users to add their own rules to the system. Derive was also heavily depend-
ent on rules to simplify, solve and integrate expressions; but the rules were “hard 
wired” in programming code. Although more powerful than muMath, Derive was of-
ten criticized for not allowing users to define their own rules for built-in functions and 
operators. 

Computer hardware and software are highly ephemeral, so the mathematical knowl-
edge in muMath and Derive will soon be lost. After development of Derive was ter-
minated prematurely in 2005, I was determined to find a way to pass on the accumu-
lated knowledge in such systems that would survive changing technology. 

To that end, I began implementing a rule-based integrator, nicknamed Rubi. Cur-
rently it consists of over 6200 integration rules organized into a decision tree that 
uniquely determines the appropriate rule to apply to a given integrand. Stored as a 
simple directed graph, this decision tree is what distinguishes Rubi from the program 
code used by its predecessors to select rules. 

Indefinite integration accounts for only a tiny fraction of all mathematical knowledge. 
However, based on my time implementing muMath and Derive, I see no reason why 
much of the rest of mathematics cannot be organized as a rule-based decision tree 
as well. Certainly much of analysis including equation solving, expression simplifica-
tion, differentiation, summation, limits, etc. can be automated using this paradigm. 

It's Desirable 

So assuming a discipline of mathematics can be reduced to a rule-based decision 
tree, is it worth the considerable effort required? My experience implementing Rubi 
clearly indicates the answer is a resounding yes!  The benefits include: 

 While loading a rule-based system, it is easy to enclose each rule in a “wrap-
per” that displays the rule when it is applied and temporarily suspends evalua-
tion so the result of the application is displayed. This is exactly what occurs in 
Derive 6.1, and now in Rubi, when showing the steps required to simplify an 
expression. Not only is this ability to show steps great for pedagogical rea-
sons, when debugging the system it makes it relatively easy to track down er-
rant rules. 

 The ability to craft rules tailored for specific classes of problems makes possi-
ble the fine control required to produce optimal results. Whereas systems that 
depend on monolithic, one-size-fits-all algorithms frequently return dramati-
cally inferior ones. For example, there are hundreds of problems in the integra- 
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tion test suite where the major commercial systems return incomprehensible, 
multi-page antiderivatives, but Rubi returns a simple, compact one involving 
only elementary functions. 

 A rule-based system solves problems by evaluating predicate tests in a deci-
sion tree to determine the appropriate rule to apply. For a balanced tree hav-
ing n rules, log2 n test evaluations are required to select the appropriate rule. 
For example, since Rubi 4.8 has about 6200 rules in a relatively balanced 
tree, it only needs to evaluate 12.6 tests on average to select an integration 
rule. 

To fully solve a problem several such applications may be required. For ex-
ample, Rubi uses 308,301 rule applications to integrate the 55,430 problems 
in its test suite, for an average of 5.56 applications per problem. 

Therefore, only about 70 (12.6 x 5.56) tests are required to fully integrate a 
typical problem in the test suite. What's more, the tests are fast and easy to 
perform. For example, common in Rubi are tests to determine if an exponent 
is an integer, fraction or symbolic; or if the discriminant of a quadratic (b2-4 a 
c) is positive, negative or of unknown sign. 

But since Rubi 4.8 is slowed down by its use of pattern matching to search 
down a list of over 6,000 rules, it is only able to integrate expressions at 
roughly the same rate as Mathematica's built-in integrator. However, the 
forthcoming version 5 of Rubi uses the highly efficient if-then-else control con-
struct instead of pattern matching to select rules. Preliminary testing indicates 
Rubi 5 integrates expressions almost 2 orders of magnitude faster than Rubi 
4.8 or Mathematica. 

 Since virtually all computer algebra systems provide an if-then-else control 
construct, it will be relatively easy to port Rubi 5 to a variety of such systems. 
Already written are programs that automatically translate if-then-else decision 
trees written in Mathematica into the syntax used by 3 other computer algebra 
systems. 

 In a rule-based system each rule is independent in the sense that it can be 
added or deleted from the system without affecting the other rules. This modu-
larity makes implementing such systems amenable to group development with 
individuals able to focus on their own areas of expertise. 
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 The decision tree of a rule-based system must provide an appropriate rule for 

every possible instance of a given form. During development, “holes” in the 
tree indicate exactly where new rules can and need to be discovered. Time 
and again during the development of Rubi, filling such holes has resulted in 
finding hitherto unknown (at least to me) integration formulas. Thus the proc-
ess of implementing a rule-based system often leads to the discovery of some 
exciting new mathematics. 

All the integration rules, test suite problem and results demonstrating the above 
benefits are freely available on Rubi’s website at  

http://www.apmaths.uwo.ca/~arich/ 

 

It's Real 

Finally it should be noted that Rubi is an ever improving, but imperfect, model of the 
actual integration decision tree existing in some Platonic sense. In the same way, 
software simulating a hurricane is just an imperfect model of the actual hurricane 
blowing in the physical world. So Rubi may be just a model, but she's a darn good 
looking one. 

Not only does an optimal integration decision tree exist, it is unique. Time and again 
in order to achieve optimal antiderivatives for integrands of a given form, I was forced 
to restructure Rubi's decision tree and/or discover new rules. Often this repetitive 
process severely tested my deeply held belief that an optimal set of rules for integrat-
ing expressions must exist. But eventually the process always did converge, leaving 
me no choice in the design of the decision tree. 

Rubi provides proof-of-concept of the utility of organizing mathematical knowledge in 
the form of a rule-based decision tree. Hopefully it will convince others in the math 
and computer science communities to join the rule-based revolution, and explore 
whether it is applicable to their field of interest as well. 
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A way to make Derive and TI-Nspire identify floats 
by 

David R. Stoutemyer 
dstout@hawaii.edu 

 
Abstract 

 
     Often it is impossible to obtain an exact closed-form solution to an equation, 
or a definite integral, an infinite series etc., but it is possible to obtain a float-
ing-point approximation. You do not have to give up seeking an exact value! 
There are several websites and free downloadable programs that, when given a 
floating-point constant, attempt to determine candidates for what the corre-
sponding float-free exact constant might be. If a proposed exact constant is 
plausible, concise, and agrees closely with your float, then it often is the de-
sired exact constant. That is for you to prove, disprove, or to trust or dismiss 
via successively higher precision comparisons. Without candidates you would 
not know what to prove or disprove or to compare with successively higher-
precision numerical approximations. 
     For another project [6] I needed a Mathematica function that returned such 
candidate exact constants, but there is no such built-in function. Therefore I am 
developing my own. The purpose of this article is to explain the method so that 
anyone who is interested can implement one for Derive or TI-Nspire. 

1.  Introduction: 

Try this:  A 16-digit float approximation to 
2

2
3


   

is 3.508608664766291.  Paste this float into the input fields at the following three websites: 

           http://www.wolframalpha.com/ 

                  http://mrob.com/pub/ries/index.html 

https://isc.carma.newcastle.edu.au/ 

 
They all recover the float-free constant!  It is like unscrambling an egg.  It appears to defy the 
second law of thermodynamics. 
     The results are not necessarily simplified nicely, because these programs do not use com-
puter algebra to find candidates and only the Wolfram|Alpha site has computer algebra to 
simplify what was found.  In fact, your float-free result might be implicit of the form  f [K] = 
constant, which you will then have to solve exactly for the float-free value of variable  K – 
either manually or by computer algebra. (Moreover, without explicit indication, the last of the 
above three websites often omits signs, or approximates only the fractional part, or scales 
your input by a power of 10. It is for you to deduce that when it occurs.) 
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     Try approximating other float-free mathematical constants taken from the answers to cal-
culus textbooks or elsewhere. The more complicated the exact constant is, the more float dig-
its you will need – often more than 16 digits. As an estimate, you might need several digits 
more than the total number of digits in the exact constant plus the number of occurrences of 

symbolic constants such as , functions such as cos, and operators such as  “+”, including 

implicit multiplication, built-up fractions and raised exponents. 
     Moreover, often you will not get a correct result regardless of how many digits you pro-
vide because: 
 

 The program you are using does not support a required function or you have not se-
lected it in the setup panel, 

 The program only tries expressions fitting certain structural patterns. 

 An exact closed-form does not exist in terms of all the functions and symbolic con-
stants ever published:   Expressions are countable.  Consequently an infinitesimal por-
tion of the real numbers are expressable in closed form even using all of the functions 
and special constants every published.  Although floats are countable, for significands 
of length 16 or more, floats are far more numerous than plausibly concise closed-form 
float-free constants.  Therefore you should be sceptical of complicated candidates 
from programs that often return unrated or highly rated results for random floats. 
 

    Each of these programs can succeed where the other two fail, so do not give up if the first 
one does not succeed. 
    Also download and run the free java program from the website 
 

http://www.xuru.org/mesearch/MESearch.asp , 
 

which has a particularly nice interface and gives likelihood estimates that the candidates are 
correct. You will also have to provide an error bound for the float, such as, for example,  
1.0e-14 for the above 16-digit float example. You will also have to choose a set of basis func-

tions, symbolic constants such as , and a set of integers and/or rational numbers to use in 

constructing candidates. That website and the one for RIES nicely explain their exhaustive 
search algorithms. 

2.  How to generate candidates via an integer-relations algorithm:  

The inspiration for my  Propose [...]  function was the Maple  identify (...)  function, whose 
algorithm is described in the thesis [5]. Here is the idea as realized in my Mathematica func-
tion:  If for the input  FindIntegerNullVector [{c1, c2, ...}]  at least one of the constants   
c1, c2, ... is a float, then the function returns an indication of failure or a corresponding list of 
integers  {m1, m2, ...}  such that 

m1 c1 + m2 c2 +  ...  0. 
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There are many ways to exploit this: 

2.1  Generate a rational number,  2

1

m
F

m
 : 

       For example: 

In[1]  :=  float1 = N [103/101,  16] 
Out[1]  =  1.019801980198020 
 
In[2]  :=  FindIntegerNullVector [{1,  -float1}] 
Out[2]  =  {-103,  -101} 
 
In[3]  :=  Solve [-103*1  – 101*F,   F] 

Out[3]  =  
103

F
101

  
 
  

  

      Success! 
      Most computer algebra systems have a more specialized function than FindIntegerNull-
Vector [...]  for approximating floats by rational numbers.  However, although they are well 
suited to generate the best candidate with a particular maximum absolute or relative differ-
ence from a float, they are not as effective as FindIntegerNullVector for generating the best 
compromise between this difference and the conciseness of the candidate. 
 

2.2  Generate a constant of the form,  1 1 2 2

3

m c m c
F

m
   with particular c1 and c2: 

       For example: 

In[4]  :=  float2 = N [(32 + 2) / 6, 16] 
Out[4]  =  1.754304332383145 
 
In[5]  =  FindIntegerNullVector [{2, , -float2}] 
Out[5]  =  {3,  2,  -6} 
 
In[6] := Solve [3*2 + 2* – 6*F  ==  0,  F] 

Out[6] = 
3 2 2

F
6

      
     

 

     Success again! 

This idea can be generalized to any number of given float-free constants.  This suggests using 
one vector containing many float-free constants.  However: 

 The computing time of  FindIntegerNullVector  increases dramatically with the num-
ber  n  of components in the vector argument of  FindIntegerNullVector. 

 To find a relation whose largest integer magnitude is about  10k,  the given float and 
the float arithmetic must have precision of  d  decimal digits somewhat greater than  k 
n,  even if many of the resulting integers are 0.  Therefore including float-free con-
stants whose integer coefficient would be 0 requires a higher-precision float than if 
you had used only the necessary set of float-free constants. 
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 Therefore it is better to better to try several input vectors whose entries rather tightly 
span actual examples found in textbooks and research literature – even if there is over-
lap in these vectors. 

 

2.3  Generate a quadratic number : 

       For example: 

In[7]  :=  float3 = N [(15 + 4 10) / 30, 16] 

Out[7]  =  0.9216370213557839 
 
In[8]  :=  FindIntegerNullVector [{1,  float3,  float32}] 
Out[8]  =  {-13,  180,  -180} 
 
In[9]  :=   twoCandidates  =  Solve [-13*1 + 180*F – 180*F2 == 0,  F] 

Out[9]  =  
15 4 10 15 4 10

,
30 30

F F
       
   
        

    

 
     To determine which candidate most closely matches the given float: 

In[10]  :=  N [twoCandidates ,  16] 

Out[10]  =  {{F    0.0783629786442160},   {F    0.9216370213557839}} 

 
     The second of  two Candidates  more closely matches float3. 

     This idea generalizes to higher-degree algebraic numbers.  Beyond degree 4 you often 
cannot obtain an explicit result.  However, it is often helpful to have a “semi-explicit” result 

in a form such as a Mathematica result  Root  [2 + 3 #1 + #16 &,  1].  The first argument of  

Root[..., ...] is an anonymous function, and this example means the 1st  zero of the polynomial 

2 + 3 x + x6. 

(Mathematica has an algorithm for uniquely numbering polynomial zeros.) 

      Root [...]  subexpressions  compose,  and FullSimplify [...]  can simplify expressions con-
taining them.  For example, 
 
In[11]  :=  With [{minPoly = 4  +  7 #1  –  2 #13&, 
                            FullSimplify [Root [minPoly, 1] * Root [minPoly, 2] * Root [minPoly, 3]]] 
Out[11]  =  2 
 
      Root [...]  subexpressions can also be evaluated numerically to compare them with the 
input floats.  For example,  
 
In[12]  :=  N [Root  [2  +  3 #1  +  #16 &,   1],   16] 
Out[12]  =  1.280125056271326 
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     I initially disliked results containing Root [...]  or the similar Maple  rootOf [...]  subex-
pressions.  However, Root [...]  is the best possible float-free representation when a polyno-
mial zero is not expressible in terms of radicals.  Therefore I have learned to accept Root [...].  
Moreover, for degree greater than 2 they are often more concise than a result in terms of radi-
cals. 
 

2.4  Generate a constant of the form  1 2

3 4

m m
F

m m
 





 

      For example: 

In[13]  :=  float4 = N [(4 + 5 ) / (3 + 3 ),  16] 

Out[13]  =  1.725019368921002 
 

In[14]  :=  FindIntegerNullVector [{1,  ,  float4,  float4*}] 
Out[14]  =  {-4,  -5,  2,  3} 
 
In[15]  :=  Solve [-4*1 – 5* + 2*F + 3*F  == 0,   F] 

Out[15]  =  
4 5

F
3 3




    
      




 

 
      Success again! 
      This idea generalizes to any set of irrational float-free numerator constants and any set of 
such denominator constants. 
 

2.5  Generate a constant of the form  
 

 
 

2

1

Cos
n

F
n


: 

       For example: 

In[16]  :=  float5 = N [Cos [3  / 11],  16] 

Out[16]  =  0.6548607339452851 

     Inverting the cosine then dividing by  ,  we compute: 

In[17] := FindIntegerNullVector [{1,  -ArcCos [float5] / }] 
Out[17]  =  {-3,  -11} 
 
In[18]  :=  Solve [-3*1 + 11*ArcCos [F] /   ==  0,   F] 

Out[18]  =  
5

F Sin
22
    

      
  

 
In[19]  :=  N [ Sin [5  / 22],  16] 
Out[19]  =  0.6548607339452851 
 

    This result is different from  
3

Cos
11
 

  
,  but equivalent! 

    This idea generalizes to arguments having any of the previous and following forms. 



 
 
 p 12  
 

 
D. Stoutemyer: A Way to make DERIVE and TI-Nspire … 

 

 
 DNL 100  
 

  
2.6  Generate a constant of the form  base1 

exponent1  * base2 
exponent2    F: 

       Log is the natural logarithm in Mathematica. Applying it to a product of positive float-
free constants allows us to distribute it over the product.  Then for arguments that are a real 
power of a positive base, we can further convert the exponent into a multiplier of the Log of 
the base.  For example,  
 

In[20]  :=  example6  =  22 e /6 2/5; 
 

In[21]  :=  logExample6  =  Log [example6] 

Out[21]  =  
2

2 6 5Log 2 e



 
 
  

 

 
In[22]  :=  FunctionExpand  [logExample6] 

Out[22]  =     2 Log 2 2 Log
3

    

 

     This is a rational linear combination of the irrational constants  {,  2 Log [2] ,  Log []}.  

Therefore we can apply the technique of subsection 2.2 to this basis vector, and then apply the 
inverse of Log to the resulting float-free constant to obtain a candidate.  For example: 
 
In[23]  :=  float6 = N [example6,  16] 
Out[23]  =  12.00529315765626 
 

In[24]  :=  FindIntegerNullVector [{,  2 Log [2] ,  Log [],  -Log [float6]}] 

Out[24] = {5,   15,  6,  -16} 
 

In[25]  :=  candidate6  =  Exp [Solve [5* + 15*2 Log[2] + 6*Log[] – 16*F == 0, F] 

[[1,1,2]]] 

Out[25]  =  
5 15 2 Log 2 6Log

16e
       

 

 
In[26]  :=  FullSimplify [candidate6] 

Out[26]  =  
2

2 6 52 e


  

 
Success again!  To me, such power-product examples are the most magical. 
 

2.7  More about FindIntegerNullVector [...] 

FindIntegerNullVector [...]  uses Helaman Ferguson’s PSLQ integer relation algorithm, which 
has been named  “One of the top ten algorithms of the 20th century”   [2].  Descriptions of 
increasingly complicated but more efficient variants include [7], [3], [5], [4], then [1].  The 
less ambitious variants should not be difficult to implement in Derive or in TI-NSpire. 
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3.  How to discriminate between likely and unlikely candidates: 

3.1  Digits of agreement: 

We want our float and a candidate float-free constant to be close to each other. Therefore we 
need a measure of agreement. 
 
Definition:  Let  d  be the number of digits in the significand of a float  F,  let  C  be a float-
free constant, and let  M = Max [|C|, |F|].  The digits of agreement between  C  and  F  is: 

 d  if  M is 0  or  F – C  is 0, 

 | |
Log10

F C
M

 
  

    otherwise. 

 
Remarks: 

 I use base 10 rather than base 2 logarithms because most users think in terms of deci-
mal digits rather than bits. 

 The worst case is when nonzero  F == -C, making  
| |F C

M


|  == 2.0;  and Log10[2.0]  

is approximately  -0.30103.  Consequently  -0.30103    agreement    d. 

 

3.2  Complexity := base-10 entropy: 

We want the float free candidate to be concise.  Therefore we need a measure for the com-
plexity of an expression.  For consistency with information theory, my definition of Com-
plexity is based on the entropy of an expression: 

 
Partial definition:  The base-10 entropy of a multi-set of positive integers is the sum of 
their base-10 logarithms. 
 
Remarks:  

 This sum is equivalent to the base-10 logarithm of the product of the integers.  There-
fore a mentally computable  upper bound is the total number of digits. However, 
the total number of digits is a coarse step function.  In contrast, the base-10 entropy is 
much smoother, providing a finer discrimination between alternative candidates. 

 To include the integer 0, I define its base-10 entropy as 0.  

To extend the idea of base-10 entropy to include symbolic constants such as , operators such 

as “+”, and functions such as Cos: 

 If there were ten such symbols and they were equally likely, then it seems appropriate 
from an information theory standpoint to add Log10[10] = 1.0 for each occurrence of 
such a symbol. 

 Otherwise it seems appropriate to take into account their relative likelihood of occur-
rence, adding a lesser amount for commonly occurring symbols such as “+” or a 
greater amount for rarely occurring symbols such as Bessel function  J13[...].  This is 
what I do in my Complexity[...] function, but I am still experimenting and adjusting 
these numbers, so I will not list specific values here. 



 
 
 p 14  
 

 
D. Stoutemyer: A Way to make DERIVE and TI-Nspire … 

 

 
 DNL 100  
 

 
 
3.3 Optimizing the agreement versus complexity tradeoff: 

Notice that 

 All floats are rational numbers whose denominators are a power of 2 for binary or a 
power of 10 for decimal implementations. Thus we can always offer as a candidate the 
exact rational value of the float, which has an absolute error of 0, giving the maximum 
possible agreement d.  However if that is what a user wants, the built-in function for 
rationalizing floats usually offers it. Consequently that extreme is almost certainly not 
what a user seeks from my  Propose [...]   function. 

 The candidates 0 and 1 have a minimum possible complexity of  0.  A user does not 
need the  Propose [...]  function to learn that  0  is an optimal exact candidate for input  
0.0  or that  1  is an optimal exact candidate for input  1.0;  and a user would rightfully 
disdain a Propose function  that always returned one or both of those candidates re-
gardless of the input. 

 Consequently what the user wants from Propose [...]  is an optimal compromise be-
tween maximal agreement and minimal complexity. 
 

This is an example of a multi-objective optimization problem: 
1.  According to Occam’s razor or the Principal of Parsimony: 

 Given two candidates having the same agreement, we should prefer the one having 
lesser complexity. 

 Given two candidates having the same complexity, we should prefer the one having 
greater agreement. 

2.  Pareto optimality  [Wikipedia]   formalizes these ideas to provide a way to discard some 
     candidates for either reason, but usually more than one candidate remains. 

 Pareto pruning could discard a candidate that is the correct limit as the precision of the 
numerical procedure computing the float increases toward infinity. 

 However, that is unlikely for candidates produced by  FindIntegerNullVector [...],  be-
cause it terminates either when the agreement is as good as is justified by the precision 
of the input floats or the 2-norm of the integer vector becomes larger than is justified 
by that precision. 

 Thus if the result has an agreement much lower than the input precision or a complex-
ity that is almost as larger or larger than the input precision, then that result is almost 
certainly a bogus candidate that should be rejected. 

 Conversely, if the result has a complexity that is low compared with the agreement, 
then it is very promising as the limit you seek. 

3.  To avoid the slight risk of discarding the correct result and overcome the dilemma that 
Pareto pruning rarely leaves only one choice, we want an optimal way to combine agreement 
and complexity so that we can rank the candidates and return all of the promising candidates 
together with their ranking scores, discarding only those that have a negligible probability of  
being correct. 
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 We would like that ranking to have a perfect correlation of 1.0 with the likelihood that 
the candidate is what the float would approach with increasing precision of the nu-
merical equation-solving, integration, summation, etc. that produced the float.  In 
other words, we would like the combined measure to be a good discrimination meas-
ure. 
 

Definition:  The agreement ratio is the ratio of the agreement to the complexity. 
Definition:  The agreement margin is the agreement minus the base-10 entropy measure of 
complexity. 
 
Remark:  To be meaningful, the agreement margin requires that the agreement and the com-
plexity have the same units. That is the reason I use a base-10 logarithm for the complexity 
rather than the base-2 logarithms used in information theory.  In contrast, the agreement ratio 
does not require that the agreement and complexity have the same units. 
 
Both of these alternatives are appealing measures that can be used to rank alternatives.  I have 
been using the agreement margin, but more experimentation is needed. 
 
     However, neither choice is a probabilistic likelihood estimate, and neither choice will be 
familiar to users.1  Consequently users will at least initially have no idea how much to trust a 
candidate as a function of its agreement margin. Therefore, based on my limited experience so 
far, my implementation also returns a quality adjective with each candidate, tentatively de-
fined as follows: 
 

Adjective Agreement margin 

Excellent [11, ..., ] 

Good [9, ..., 11) 
Medium [7, ..., 9) 

Poor [5, ..., 7) 
Bad [3, ..., 5) 

Terrible [-, ..., 3) 

 
     Only Bad or better candidates are retained.  If there are no Bad or better candidates, then 
the float is returned. 
     For each returned candidate there is a list containing the candidate, the agreement, the 
base-10 entropy, the agreement margin, and the appropriate adjective. 
 

                                                 
1 . MESearch can provide likelihood estimates because expressions are generated in monotonically increasing 
order of its complexity measure, and the number of expressions considered so far is known.  In contrast, each 
invocation of  FindIntegerNullVector [...]  covers a vague large number of possible result integer vectors of 
varying complexity, and the predetermined structures omit many possible simpler expressions that MESearch 
can eventually generate.  
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4.  Trying a sequence of models 
I am naming my function Propose [...] as a warning that returned float-free constants are not 
guaranteed to be correct – even those with an Excellent agreement margin. 
     The most straightforward way to try a sequence of models is to have a function for each of 
the six ways to use an integer-relation function described in Section 2.  Glossing over details, 
for each of these six functions there can be a list of lists, with each inner list being: 

 a list of non-float constants for Subsections 2.1 and 2.2, 

 a list of polynomial degrees such as {2, 3, 4} for Subsection 2.3. 

 two lists of non-float constants for Subsection 2.4, 

 a list of function names, their real-domain ranges, their inverse function name, and an 

argument multiplier such as  for Subsection 2.5, 

 a list of non-float constants for Subsection 2.6. 
     Each of the six functions in turn then loops over its top-level list, trying the model and 
deciding whether or not its agreement margin is worthy enough to retain the candidate. 
     A set of cost-effective models can be inferred from studying the exercise answers to many 
algebra through calculus texts – not only constant answers, but also the constants in non-
constant answers.  Definite integrals are a particularly good source. 
     One particularly effective vector for the technique of Subsection 2.2  is the logarithms of 

successive primes up to some modest maximum such as 7, perhaps also including  1 and/or    

and/or  Log[].  Other common elements in published float-free constants include  2, 3, , 

and 2, 
1

,


 and 
1


. 

     A significant majority of published non-float constants are rational numbers, rational mul-

tiples of  , and quadratic numbers or   times quadratic numbers. Those alone would delight 

many users.  However, it is hard to resist the temptation to include more than that. 

5.  The state of  Propose [...] 
My  Propose [...]  function is far from done, and I have decided that I should turn it into a 
website because it complements the ones listed in Section 1.  If such a website is launched, I 
will announce it in the Derive Newsletter. 

6.  A suggestion : 

Whoever is interested in implementing or benefiting from these ideas for Derive and/or TI 
CAS, I suggest that you email the editor of this newsletter so that he can connect you with 
each other.  The more people that contribute good examples, curate them, and test prototypes, 
the better.  (I too would appreciate unusual good published examples with citations or URLs, 
and my email is dstout@hawaii.edu.) 
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Dear Josef, 
Find below the letter from Peter, congratulating to 25 years of outstanding con-
tributions to the development of math education. I only can second every word 
he says. 
Merry Christmas! 
Stephan 
  
+++++++++++++++++++++++++++++++++++++++ 
  
Congratulations on the 100th issue of the Derive Newsletter.  I would like to 
thank Dr. Josef Böhm and the entire Derive User Group (DUG) for a quarter cen-
tury of active engagement and leadership around the effective and appropriate 
use of technology in mathematics education.  Your contributions towards evolv-
ing education technology and the teaching and learning of mathematics over the 
years have been revolutionary.  You truly have raised the bar for the advance-
ment of mathematics education.  As a result of your work, ministries and de-
partments of education and STEM (Science, Technology, Engineering, Mathemat-
ics) leaders around the world have challenged their own thinking about how 
mathematics could be taught given advancements in education technology and 
what mathematics should be taught in order to prepare students for the ad-
vanced mathematical thinking required to solve real-world problems, become the 
innovators of tomorrow, and go on to make our world a better place.  The DUG 
drove rich pedagogical discussions that triggered an avalanche of scientific re-
search - influencing needed curriculum changes worldwide. 
  
Texas Instruments – Education Technology values our long-standing relationship 
with the DUG which is based on the following shared principles: 

 Ensuring a strong customer focus in all aspects of education technology 
development.   

 Teacher professional development is the foundation for the successful 
adoption of education technology and the advancement of mathematics 
education. 

 The importance of supporting teachers and students with rich lessons and 
activities contextualizing the effective use of technology in the teaching 
and learning of mathematics. 

I would also like to thank the DUG for helping us define the foundational ele-
ments behind our TI-Nspire CAS technology.  
We value our relationships with leaders of the DUG and with every one of the 
members.  I especially want to thank Dr. Josef Böhm for his leadership, patience, 
and drive for innovation in mathematics education technology and pedagogy.  
We look forward to the next quarter century of collaboration with these key 
mathematics education leaders. 
  
Thank you for your contribution to the mathematics community around the 
world. 
Best regards, 
Peter 
  
Peter Balyta, Ph.D. 
President, Education Technology 
Texas Instruments Incorporated 
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Prime Pairs & Goldbach’s Conjecture (2) 

Rob Gough 
 

3.8 Creating Ω1 conditions by preventing common prime-multiple pairs 

With Ω1 E-numbers, no prime multiple can pair with itself otherwise that prime would be present in E. 
The following analysis shows how this can be modelled. 

 

N
p   p-multiples in A 

 

1N p
N N

p p

 
   

 
= the number of non-p numbers in A of which ( )n A  are prime 

1
( )

ˆ1 ( )
11

p
N n A

p p
n A

pp
N

p

 
           

 
 

= the probability of a non-p composite in the 

blue sector of A 
 
 
 
non-p numbers in this sector 
of B 
 
 

N
p   p-multiples in B 

1N p
N N

p p

 
   

 
= the number of non-p numbers 

in B of which ( )n B  are prime 

1
( )

ˆ1 ( )
11

p
N n B

p p
n B

pp
N

p

 
           

 
 

= the prob-

ability of a non-p composite in the blue sector of B 

ˆ1 ( )
1

p
n B

p

  
    

= the 

probability of a non-p com-
posite in this sector of B 

1
ˆ1 ( )

1

p
n B

p p

  
    

= 

the fraction of p-multiples in 
A pairing with non-p multi-
ples in B 

ˆ1 ( )
1

p
n A

p

  
    

= the 

probability of a non-p com-
posite in this sector of A 

1
ˆ1 ( )

1

p
n A

p p

  
    

= 

the fraction of p-multiples in 
B pairing with non-p multi-
ples in A 

ˆ ˆ1 ( ) 1 ( )
1 1

p p
n A n B

p p

     
            

= the prob-

ability of composite pairs in this sector. 

2 2N p
N N

p p

 
   

 
= the number of non-p pairs in 

this sector. 

2
ˆ ˆ1 ( ) 1 ( )

1 1

p p p
n A n B

p p p

       
                

= 

the fraction of non-p composite pairs in this section. 
 

 
The total fraction of composite pairs in this situation is: 

1 1 2
ˆ ˆ ˆ ˆ1 ( ) 1 ( ) 1 ( ) 1 ( )

1 1 1 1

p p p p p
n A n B n A n B

p p p p p p p

               
                                      

 

and this simplifies to: 

( 2) ( 2)
ˆ ˆ ˆ ˆ1 ( ) ( ) ( ) ( ) 0

2 2( 1) ( 1)

p p p p
n A n B n A n B

p p
 

           
       

 

So the normalized prime pair measure is: 

2

( 2)
0

( 1)

p p

p


 
  
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This function reduces the prime pair measure below the 0  value. So by preventing  p-multiple pair-

ing, we approach the prime-prime pair measure 1 . We thus have a new *  function: 

*
10 2

1 ( 2)

0 ( 1)

p
p p p

p



        

or: 

*

10 2

( 2)
1 0 0

( 1)
p p p p

p
   


    


 

where the prefix p denotes that the functions 1p and *

10

p  are dependent on the choice of p. For ex-

ample, with 3p   and 5p  then: 

3 * 5 *

10 10

3 15
 and   

4 16
    

 
 
 
3.9 The β-function extended to real and theoretical prime measures 

A direct comparison between p  and 1  is not possible because they are based on different E-

numbers with different prime factors, but we can estimate ratios using 0  as an intermediary as this 

can be based on any value of E. We define: 

1

1 1 0

0
p

p p

  


  
 

  
 

  
      

 

But we have 

10 0

1 0
0.660 and 

0
p

p

 
 

 


  


  
      

 

hence 

1 10 0p p    

Using this nomenclature we also have the inverse function: 

1

xy yx    

And the ratio of a particular prime pair measure, p  to 1 is given by 

0

1

10 0 10

1

 
p

p

p




  
 

 

Using Derive 6 the 0 p  functions have been calculated and the results are shown in Graph 11.  
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Graph 11: ß 0p  functions

 

From this data 1p  has been calculated for a number of p-values and these are shown in the table be-

low (taking 10 0.66  0). These are based on the highest E-numbers where the 0 p -measures have 

largely settled down (see Graph 11). It is apparent that when p is a single prime ( p   ) 1p  very 

closely matches an integer ratio denoted *

1p  where: 

*

1

1

2
p

p

p






 

and these values have been included in the table. 

 

p 0 p  1 10 0p p    1
1 1p p    *

1
( 1)

( 2)p
p

p    *
1p  (dec) 

3 0.758 0.500 2.000 2 2.000 
5 1.138 0.751 1.331 4/3 1.333 
7 1.262 0.833 1.200 6/5 1.200 
11 1.366 0.902 1.109 10/9 1.111 
13 1.389 0.917 1.091 12/11 1.091 

 
This remarkable match between real data (based on prime numbers and prime-prime pairing) and sim-
ple theoretical integer ratios begs an explanation. This can be found in a modified version of the above 
β-formula derived from theory as: 

* * *

1 10 0

p

p p   
.
 

From Section 3.4 we determined the following formula for estimating the boosted prime-prime meas-
ure from a prime factor, p, in E, by identifying a common prime pairing, namely: 

0 0
ˆ ˆ( , ) 0 ( , ) 0

1 1
p

p p
n A B p n A B

p p
   

 
   
   
   
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from which we identified *

0p  as: 

*

0
1

p

p

p
 


 

and from this we get its inverse: 

*

0

1
p

p

p



  

In Section 3.8 we found that preventing prime-pair matching, as in Ω1 numbers, leads to a scaling 

down from the π0 value in the direction of 1  and: 

2

1 ( 2)

0 ( 1)

p
p p

p





 



 
 
 

 

and from this we have identified:  

* *

10 102 2

( 2) ( 2)
1 0 0 with

( 1) ( 1)
,p p pp p p p

p p
    

 
     

 
 

where the prefix p denotes that the function *

10  is dependent on the choice of p. Combining these two 

results gives: 

* * * *

1 10 0 12

( 2) 1 2 1 1

( 1) 1 1 2
or by invertingp

p p p

p p p p p p

p p p p


   


   

      
   

       
       
       

 

where 1p  is the theoretical equivalent of p  based on the real value of 1 . This hybrid measure, 

1p , is based on: 

*

1

1
1 1 1.

2
p

p
p

p
   


    


 
 
 

 

 
3.10 The β-function and multiple primes in E 

When extended to E-numbers containing two prime factors (Ωpq) or three primes (Ωpqr) then the 
table in Section 3.9 can be extended and the theoretical predictions suggest that the β-functions are 
multiplicative (see the table below).  

 

p 0 p  1 10 0p p    1
1 1p p    * * *

1 1 1pq p q     *
1pq  (dec) 

3 0.758 0.500 2.000 2 2.000 
5 1.138 0.751 1.331 4/3 1.333 
7 1.262 0.833 1.200 6/5 1.200 
11 1.366 0.903 1.109 10/9 1.111 
13 1.389 0.917 1.091 12/11 1.091 

15 0.5692 0.3757 2.662 842 3 3    2.666 

21 0.6328 0.4176 2.395 6 122 5 5    2.4 

35 0.9482 0.6258 1.598 6 84
3 5 5    1.6 

105 0.4739 0.3128 3.197 6 1642 3 5 5     3.2 
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From this we get: 

       * * * * * * * * * * *

1 1 1 10 0 10 0 10 10 0 0 .p q p q

pq p q p q p q                     

Now *

0pq  has already been identified in Section 3.5 as: 

* * *

0 0 0pq p q     

Hence the inverse: 
* * *

0 0 0pq p q     

This suggests that the *

10a  functions are also multiplicative with: 

* * *

10 10 10

pq p q     

and hence: 
* * *

1 10 0

pq

pq pq     

 

Graph 12 shows some examples of real ( p ) and theoretical ( 1p ) prime measures for the  

E-numbers containing the prime factors 3 and 5, and the composite 15. They show a strong connection 
between the real and theoretical measures. 
 

 
 

3.11 The theoretical value of β10 

Given the multiplicative nature of *

10

pqr   as  * * * *

10 10 10 10

pqr p q r       

and that: 

3 * 5 *

10 10

3 15
 and   

4 16
    
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it would suggest that the multiplication of these numbers will converge. It therefore seems reasonable 

to see *

10  as a product over all primes p: 

* *

10 10 2
3 3

( 2)

( 1)

u u
p

p p

p p

p
 

 


 


   

where u is the largest prime that needs to be considered, depending on E. All of the composite pairs in 
E are composed of primes in the first two thirds of N in the A group (these are the only primes that can 

form multiples) so u is the largest prime in 2
3

N  . See Appendix 2A for further details of the calcula-

tion in Derive. 

 
Indeed, Graph 13 shows how *

10  changes with the number of primes you wish to include. After a-

bout 1000 primes the value converges at 10dp to:  
 

*

10 0.6601791191   

This theoretical value is remarkably close to the real value determined in Section 3.7 of: 

10 0.660337319.   

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0 0.5 1 1.5 2 2.5 3 3.5 4

log of number of primes (starting with 3)

 
3.12 The complete theoretical pair measure 

Sections 3.3 to 3.6 were the first to suggest that there was a hierarchy of prime pair measures based on 

simple integer ratios of the prime factors of E. This lead to the 
0

*

p
 -functions as a way to estimate the 

p measures based on the theoretical measure 0p  where: 

*

00 0 = 0.
1

p

p
p

p
     


 

Graph 13: The theoretical measure ß*10 
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They were, however, totally inaccurate because they were based solely on the generalized pairing 

measure 0 . 

 

A more suitable base-line measure was 1  both because it seemed to be the lowest measure and 

because 1  numbers contain no odd prime factors which could contribute to the prime pair measure 
via the delta rule. 

This lead to a technique developed in Section 3.8 to remove prime multiple composites from 0  and 

so reduce the prime pair measure (again via the delta rule).  This, in turn, lead to the *

10

p -functions 

and: 

*

10 2

( 2)
1 0 0

( 1)
p p p p

p
   


    


 

where the p-prefix denotes that the removal of p-multiple pairs from 0  reduces 1p in the direction 

of 1 and: 

*

10 2

( 2)
.

( 1)
p p p

p






 

In Section 3.9 the relationship between the real   measures, where:  

1 10 0

2
 

1
p p

p

p
  


 


 

started to converge with the theoretical measures, where: 

* * *

1 10 0 2

( 2) 1 2
.

( 1) 1
p

p p

p p p p

p p p
  

  
    

 
     
     
     

 

And from this, a theoretical prime pair measure predictor, 1p , was created where: 

*

1

1
1 1 1.

2
p

p
p

p
   


    


 
 
 

 

Still, 1p  is a hybrid measure dependent on the calculation of 1 with an intimate knowledge of the 

number and positions of all primes in A and B and how those primes pair up. 

 

The multiplicative nature of these β-functions developed in Sections 3.9 and 3.10 then suggested a 

way (Section 3.11) to calculate the theoretical value of 10 called *

10 with the value (to 10dp) of: 

*

10 0.6601791191   

This provided a strong connection between 0  and 1 .  

We are now in position to replace 1 with a theoretical measure, called 01 , where: 

*
1001 0     

This new measure only required knowledge of the number of primes in A and B and not on their posi-
tions or the way they paired up. 
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Furthermore we can now replace the old definition of the theoretical prime pair measure developed in 
Sections 3.3 to 3.6 which was: 

*

00 0 = 0
1

p

p
p

p
     


 

with this more accurate version: 

* * * *

1 1 10 10

1
0 01 0 0.

2
p p

p
p

p
       


       


 
 
 

 

3.13 The efficacy of the new prime pair measures 

We can compare 01  with 1 by introducing an accuracy measure 1  where: 

*

10 001 0.6601791191 0
1

1 1 1

  


  
 

  
  

 

Likewise 0p can be compared to p with p where: 

* *

1 10

1
0.6601791191 0

00 2
.p

p

p p
p

p p p


  


  


 

  
  

  

 
 
   

The closer both measures are to unity the better. Taking the logarithm of this measure is akin to estab-

lishing an error index because if 1   then log 0  and there is no error. Graph 14 displays the error 

index for 1  and 3.  
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The data in Graph 14 took about 3 days to create, but shows convincingly that the theoretical measure 

01  is a good predictor of 1 , and 03 is a good predictor of 3 . This is especially true at higher 

E in the region of 100 million. The errors seem to decrease as E increases, but it would take much 
computing time to be sure. 
 
An interesting question for future analysis, and requiring much greater computer time, is whether or 
not there exists a ‘DC bias’ in the error functions: their variations might decrease at higher E but tend 
towards a small positive or negative value. But when working at higher E values it might also be nec-

essary to calculate *

10 to more decimal places. 

 
 

4. Transient effects when a new prime enters the system 
 
Up to now we have been concerned with the long-term trends in pairing measures based on large 
numbers and have ignored any possible short-comings in this approach. For example, we have isolated 
particular prime multiples without modifying the number of remaining primes in the system – some-
thing only feasible when considering large numbers. 

One common theme throughout this paper has been the sympathetic nature of the prime-prime and 
composite-composite measures. This sounds counter-intuitive, and it is seemingly made worse by the 
fact that any particular prime factor p in E is the source of p-multiples that raise the composite meas-
ure; but that prime is not then available to contribute to the prime measure that is raised as a result of 
the composite measure increase.  

 
 
4.1 Measuring new prime multiples 

As was mentioned in Section 1.2 a new number enters the system on the left of the B-group and as E 
increases it moves along until it is fixed sequentially in the A-group. If that new number is a prime p 
then when E = 2p that prime is present at the end of both the A and B groups and for that time only it 
pairs with itself contributing one to the total prime pair measure. That prime p has not yet formed any 
multiples and therefore cannot contribute to the composite pair measure increase and consequently 

cannot raise the prime measure via the delta rule. Indeed, when E = 2p the prime measure, p , is 

sometimes depressed below the 1  level (see Graph 2 and 4). This is referred to as the anomalous 

behaviour of new primes. 

This raises the issue of new primes entering E and how these create prime multiples as   increases in 

E. Consider the following table where ( , )pn A B  is the number of composite-composite p-pairs   in E. 

α  p-pairs  

1 2p 

 

A p 
B p 

0 

2 4p 

 
A p 
B 3p 

0 
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3 8p 

 
A p 3p 
B 7p 5p 

1 

4 16p 

 
A p 3p 5p 7p 
B 15p 13p 11p 9p 

3 

5 32p 

 
A p 3p 5p 7p 9p 11p 13p 15p
B 31p 29p 27p 25p 23p 21p 19p 17p

7 

 
When 2   the rule here is: 2( , ) 2 1pn A B     

and the normalized p-composite pair measure is: 
22 1

ˆ ( , ) .pn A B
N

  
  

But from Section 1.1 when 2  we have: 

22
1 1 2 1

4 4

E p
N p


      

  
     

 

This yields: 
2

2

2 1
ˆ ( , ) .

2 1
pn A B

p













 

From this we can construct a modified prime measure, ( )p  , that takes into account the progressive 

development of p as   increases where: 
2

2

1 2 1
( )

ˆ ( , ) 2 1p

p
p

n A B










  


 

and  

( )   as  .p p     

 

There would seem to be a troublesome infinity here when 2  , but we are not interested in p  as 

much as its influence on *

1.p  

 
 
4.2 Developing prime-multiples & β*p1 

From Section 3.9 we have: 

*

1

1
.

2
p

p

p






 

 
This can be modified by the results of Section 4.1 where 2   to give: 

*

1

2

1 1
( ) .

12 2
2

p

p p

p p 

 



  
 

   
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The table below shows how *

1 ( )p    develops with increasing  .  It also includes 1   which is the 

same as 2.   
 

α 1 2 3 4 5 

 1 1 
 1

3
2

p

p


  
 

 
 1

7
4

p

p


  
 

 
 1

15
8

p

p


  
 

 

 
In the limit: 

*

1

1
( )   as  

2
p

p

p
  


 


 
 
 

 

This goes some way to satisfying the observation that when a new prime p enters the system and 

2E p  then the p  value is depressed, but only down to the 1  value and not below it. 

 
 
4.3 Examples of new prime entries 

The advantage of the Derive analysis lies in the ability to plot how these primes behave at higher pow-

ers of 2. Two examples are 61 and 859 (see graphs and data). Graph 15 compares 859  with 1  

but it would take a lot of computing time at higher E to see if this curve eventually assumes a higher 

value than 1 . However, 61  shows the trend that Section 3.12 suggests and this is shown in 

Graph 16 and 17. 
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What all these graphs show is that however low these p  curves begin (when they enter at  

2E p ), they are never as low as 1  will become at higher E.  

Meanwhile, as E increases the number of p-multiples also increases. This increases the number of 
composite pairs and at the same time increases the number of prime pairs by the delta rule. 

Furthermore, we must take seriously the connection between the real prime pair measures via: 

1 10 0

2
 

1
p p

p

p
  


 


 

and the theoretical prime pair measures via: 

* * *

1 10 0 2

( 2) 1 2

( 1) 1
p

p p

p p p p

p p p
  

  
    

 
     
     
     

 

as this connection brings to light something that would otherwise remain hidden: the prime pair meas-
ures are hierarchical and not chaotic. 

 
5. Summary & conclusions 

The results of this paper can be summarized as follows: 

1. All real composite and prime measures are based on the positions of primes in the A and B 
groups. These measures are best considered in their normalized forms. 

2. The two important measures used throughout this paper are the normalized prime-prime pair-

ing measure ˆ( , )  or  n A B   and the composite –composite pairing measure ˆ( , ) or  n A B  . 

When looked at as E increases, the pattern of values seems quite chaotic, but both seem to 
group into two populations. The upper population is based on E containing the factor 3, the 
lower population does not contain 3. So influential is 3 on the size of prime and composite 
pairing measures that these two populations are quite distinct. 

3. The prime-prime and composite-composite measures obey the δ-rule. 

4. When   and   are organised according to 2E    then order appears. For any value 

of Ω the values of   eventually form a seemingly smooth curve as α increases that appears 

to be asymptotic towards zero. 

5. The prime fractions in A and B, called ˆ( )n A  and ˆ( )n B , are crucial in establishing the probabil-

istic, generalized prime measure 0
ˆ ( , ) or 0n A B   and the generalized composite measure 

0
ˆ ( , ) or 0n A B  . 

6. The generalized prime and composite measures obey the δ-rule. 

7. The generalized prime measure is definitely asymptotic towards zero as E increases because 
the primes thin out at higher E. 

8.  Because the generalized prime measure applies to all values of E it provides a link with the 
various real prime pair measures, which are dependent on the prime factors in E, through the 
β-functions. 
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9. The β-functions (real and theoretical) make a strong case for 1  being the lowest of the 

prime pair measures. 

10. The new theoretical prime pair measures, 01  and 0p , are excellent predictors of p with-

out the detailed knowledge of the number and positions of all primes in A and B or how these 

primes pair up. As these new measures are based on 0 , which is asymptotic towards zero, 

then the new measures should be as well. 

11. The anomalous behaviour of prime measures involving new prime entries would seem to re-
cede at high E-values, but on this point I cannot be certain because: 

 Large computing time would be needed to observe trends 

 The theoretical analysis of Section 4 only suggests an entry in the region of 1  and 

not below it as indicated by observations. 

 

The overall conclusion is that the above analysis strengthens the case for Goldbach’s Conjecture being 

true (GCT) because all p  are: 

1. well behaved, especially at higher    

2. uniquely levelled by the prime factors in E, and  

3. asymptotic on zero like the 0  measure. 

 

It also suggests that if the conjecture is false (GCF) it will fail on the Ω1 numbers because these natu-
rally form the lowest prime-pair measures. Any new high prime entries (the seemingly anomalous 

primes) are only locally lower than 1  and not lower than 1  will become, so this should not upset 

the general conclusion. 

 

In any case, when 2E p , then 0p   because on these occasions there is a least one prime pair 

(itself). Therefore no new prime entry can create GCF. 

 
 
Dear Josef, 

I have attached the l latest version. Wasn’t sure, however if you wanted the Word or pdf version so I 
have enclosed both. 

Compared to the original version I sent you, the biggest changes are Sections 3.12 and 3.13 with the 
new error index graph (if you thought the other calculations took a long time, these took over 3 
days!). 

I have also modified Appendix 2A (see GC v9.3.pdf) to show the calculations for the error index. As 
you seem to like testing these out, I have also included the modified DERIVE file (Appendix 2A ex‐
tended). If you know someone with a super computer, or better still a quantum computer, who could 
extend the computations of the error index I would be very interested to see how the errors develop. 

Best wishes, 

Rob 

(Next page shows the second part of Rob's DERIVE file, Josef) 
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Rob's paper contains many pages filled with Excel tables, which were used for creating the plots. 
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What's the Next Number? 
by 

Benno Grabinger, Neustadt/Weinstraße, Germany 
 

In many intelligence tests one can find problems like this: given are the first elements of a 
sequence of numbers, how to continue? Let's take the numbers 1,2,4,7,11, then the test per-
son is expected to continue with 16 because it is obvious that the differences of neighbouring 
numbers are 1, 2, 3, and 4. So the next number is obtained by adding 5 to 11 giving 16. 

Of course, the designers of such problems expect that their own sequence rule will be rec-
ognized but in most cases they don't know that there are infinitely many possibilities to con-
tinue the given sequence. One may take 19 instead of 16 as next number – and this makes 
also sense. We choose (1,1), (2,2), (3,4), (4,7), (5,11) and (6,19) as nodes of an order 5 
polynomial and calculate the coefficients of this polynomial. The last line of the screen shot 
below shows the first 10 elements of the respective sequence. 

 
 
Choice of number 19 was not at all a random one but refers to Carl E. Linderholm who in his 
book "Mathematics Made Difficult" because of the ambiguity of the problem proposes to 
choose always 19 as next number completely independent of the first given numbers. 

Without regarding this facts it would be great to find an algorithm which enables continuing 
the sequence according to the expectations of the presenter of the task. In the following we 
will present an algorithm which can be applied on many such number sequences appearing 
in intelligence tests. Besides it is a fine example for using computer algebra. The next screen 
shot shows how for the sequences 1,8,27,64,125 and 11,9,7,5,3 a rule can be found and 
then the next elements can be obtained. (German and English version are provided.) 
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We will avoid calculating the polynomial as done above and try another approach.  
 
The key to this algorithm is the concept of the sequence of differences (SoD) – and we will 
focus on this concept. The 1st element of the SoD is the difference of 2nd and 1st element of 
the sequence, the 2nd element of the SoD is the difference of the 3rd and the 2nd element of 
the given sequence, etc. 

 
 
Example 1 
 
Sequence 1 3 6 10 15 ... 

1. SoD      2      3       4       5      ...  

2. SoD  1 1 1 ...   

3. SoD        0       0       ...    

 
TI-Nspire gives the 1st SoD applying the function ∆List(seq). SoD of higher order are created 
recursively. So the 3rd SoD equals the SoD of the 2nd SoD. Function d_folge(i,folge) / 
d_seq(i,sq) makes use of this principle. 
 
Function print presents the rows of the differences. (See example 2.) 
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Example 2 
 

     
 
In both examples above the SoDs develop to 
constant sequences. This does not occur 
with all sequences. Try {1,-1,1,-1,1,-1}. 
 
But if it is the case of a constant SoD after 
some steps, then it is easy work to continue 
the given sequence. Example 3 refers to 
example 2. 
 
 

Example 3 

 

Sequence 1 3 6 10 15 21 28 

1. SoD      2      3       4       5      6.       7 

2. SoD  1 1 1 1  1   

3. SoD        0       0       ...    

Adding the next 1 in the third row (assuming that the 2nd SoD remains constant) to the ele-
ment 5 (left above) gives 6. Adding 6 to 15 (again left above) gives 21. Then start with the 
next 1, leading to 7 and 28, … 
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For continuing the sequence it is sufficient to know the first elements of the SoDs: 
 

Sequence 1 

1. SoD      2 

2. SoD  1 

Subsequent additions deliver the missing numbers: 
 
Sequence 1 3 6 10 15 21 28 

1. SoD      2      3       4       5      6       7 

2. SoD  1 1 1 1  1   

 
 
Example 4 
 
Let us now have a closer look to a sequence with its 3rd SoD constant. The first elements of 
the SoDs (SoD #0 = given sequence is included) are denoted as a, b, c, and d. Assisted by 
CAS the following table of the SoDs can be filled in: 
 

 
 

 
 
All is done now – more or less. One has to replace a, b, c and d by numbers for a special 
sequence and/or extend the table if the constant SoD appears later. I proposed to have a 
closer look, so let's look closer again. 
 
Observing how often d is appearing in the cells of the table we find: 
 

0 _ 0 _ 0 _ 1 _ 4 _ 10 _ 20 _ 35

_ 0 _ 0 _ 1 _ 3 _ 6 _ 10 _ 15 _

_ _ 0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6

_ _ _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _
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We notice that the last line consists of only ones, the next to last one is the sequence of the 
natural numbers, the second row is formed by the triangular numbers and the first one by the 
tetrahedral numbers. This scheme is well known from Pascal's Triangle: 

 

 
 

The SoDs of 
 
 
 

n

n
a =

3
 give exactly the coefficients of d, while the SoDs of 

 
 
 

n

n
a =

2
, 

 
 
 

n

n
a =

1
 

and 
 
 
 

n

n
a =

0
 deliver the coefficients of c, b, and a, respectively. 

0 _ 0 _ 0 _ 1 _ 4 _ 10 _ 20 _ 35

_ 0 _ 0 _ 1 _ 3 _ 6 _ 10 _ 15 _

_ _ 0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6

_ _ _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _

 

 

0 _ 0 _ 1 _ 3 _ 6 _ 10 _ 15 _ 21

_ 0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6 _

_ _ 0 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1

_ _ _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

 

 

0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6 _ 7

_ 0 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _

_ _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ _

_ _ _ 0 _ 0 _ 0 _ 0 _ 0 _ _ _

 

 

1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

_ _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ _

_ _ _ 0 _ 0 _ 0 _ 0 _ 0 _ _ _

 

2
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For confirming these considerations one can apply the print(sequence) function on the se-

quences 
 
 
 

n

i
. These sequences are created using the Nspire-function pascal(i) which gen-

erates the first 8 elements. 

 
 

 
 
In example 1 we investigated the sequence 1,3,6,10,15,... (Triangular numbers). Its second 
SoD is constant. The first elements of the SoDs are 1, 2, 1. 
 
So we have for the sequence the following expression (formula, rule): 

     
       
     

n n n
1 + 2 +1 .

0 1 2
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We have to take into account that numbering of the elements – like in Pascal's Triangle – 
starts with zero. As we are used to start numbering with one we have to replace n by n-1, i.e. 

to take
     
       
     

n -1 n -1 n -1
1 + 2 +1

0 1 2
 (left screen below). 

   
 
All the singular steps of calculation as forming the sequences of differences, searching for a 
constant SoD and finally generating the expression for the sequence formula (rule) can be 
collected in one function: formel (German version) or rule (English version). This function 
returns an expression for the elements of the sequence provided that a constant SoD can be 
found. This is only then the case if the sequence is described by a polynomial function. The 
right screen above shows the result of this function applied on the sequence of the sum of 
square numbers, on the sequence of the octahedral numbers and on the Fibonacci se-
quence. 
 

Josef Böhm: Remarks on Benno's contribution 
 
When I read Benno's contribution I remembered my first years as teacher. It was in the late 60ies when 
I – according to the then curriculum – had to teach "arithmetic sequences of higher order". And I 
found a chapter on this issue in a 3-volumes book which had purchased from a "bouquinist" in Am-
sterdam some years earlier (see page 45). This was exactly the stuff presented by Benno above (with-
out treating the connection to the binomial coefficients). But we also considered the case when there 
was no constant SoD found and only one number remained in the last row. I will take the Fibonacci 
Sequence as an example {1,1,2,3,5,8} and I assume that 19 is the next number? Can I be right? Let's 

find the table of the SoDs (black numbers below). We could apply print. 
 

Sequence 1 1 2 3 5 8 19   71       253 

1. SoD 0 1 1 2 3 11 52        182 

2. SoD  1 0 1 1 8  41     130 

3. SoD   -1 1 0 7  33       89 

4. SoD   2 -1 7 26 56  

5. SoD    -3 8 19 30 

6. SoD    11 11 11   
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Now we will assume that the last row is the constant SoD with the difference 11. So we can create the 
next elements of the given sequence from backwards. First we will obtain the red numbers giving 71 
(the red numbers) and then 253 (the blue numbers). 
I adapt Benno's function – it is really a very small change! – and it works.  
 
And there was another thing I had in mind. Continuing the table of SoDs in the other direction (up-
wards) we will receive the sequence of partial sums of the respective series. The given sequence is the 
first SoD of the partial sums. Having obtained this sequence it is no problem to find the formula for 
the respective series, too. 
 

Series 1 4 10    20       35      46 
Sequence 1 3  6  10  15  21 ... 

Benno agreed to change his function in order to make it more general and to add the "series part", too. 
 

See some examples (using the English function names): 

 
 

English function names  Deutsche Funktionsbezeichnungen 

rule(sequence)   formel(folge) 
continue(sequence, n)  fortsetzung(folge,n) 
poss(sequence)   möglich(folge) 
d_seq(sequence)   d_folge(folge) 
print(sequence)   print(folge) 
serie(sequence,n)   reihe(folge,n) 
rule_series(sequence)  formel_reihe(folge) 
pascal(i)    pascal(i) 
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The two screens on this page demonstrate the use of the adapted (= generalized) functions. So, for 
example I can insist that 19 will follow 1, -2, 3, -4 and 5 in a row and then prove my assertion.  
 
 

  
 
The next page gives the Nspire code of the English version. 
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Define poss(sq)= 

Func 

:© returns number m of the first constant SoD 

:Local i,m,term,auxsq 

:m:=−1:i:=0 

:auxsq:=sq 

:While m=−1 and i≤20 and dim(auxsq)≥2 

:  If konstant(auxsq) Then 

:     m:=i 

:     Else 

:     i:=i+1 

:     auxsq:=d_folge(1,auxsq) 

:     EndIf 

:     EndWhile 

:     If m=−1 Then 

:     m:=i 

:     EndIf 

:     Return m 

:EndFunc 

 

 

Define konstant(sq)= 

Func 

:Local i,element,truthval 

:truthval:=true 

:If dim(sq)=1 Then 

:  Return false 

:Else 

:  element:=sq[1] 

:  i:=2 

:  While i≤dim(sq) and truthval=true 

:       If sq[i]≠element Then 

:       truthval:=false 

:       EndIf 

:       i:=i+1 

:  EndWhile 

:  Return truthval 

:EndIf 

:EndFunc 

 

Define continue(sq,k)= 

Func 

:Local auxsq,i 

:auxsq:={} 

:For i,1,k 

:auxsq:=augment(auxsq,{rule(sq)|n=i}) 

:EndFor 

:Return auxsq 

:EndFunc 

 

 

Define rule(sq)= 

Func 

:Local i,m,term 

:m:=poss(sq): term:=0 

:   For i,0,m 

:   term:=term+d_folge(i,sq)[1]*nCr(n‐1,i) 

:   EndFor 

:   Return factor(term) 

:EndFunc 

 

 

Define d_seq(i,sq)= 

Func 

:If i=0 Then 

:  Return sq 

:  Else 

:  Return d_seq(i‐1,ΔList(sq)) 

:  EndIf 

:EndFunc 

 

 

 

 

 

 

 

 

 

 

 

File next_number.tns contains the English and German functions as well. File nächste_zahl.tns is 

Benno's first original version (in German only). 



 
 
 DNL 100 
 

 
Josef Böhm: What's the Next Number - Comments 

 

 
 p 45
 

 
 
Define print(sq)= 

Func 

:Local i,k,n,matrix,sq_,anfang 

:n:=dim(sq)‐1:matrix:=newMat(n+1,2*dim(sq)‐1) 

:For i,1,n+1 

:  For k,1,2*dim(sq)‐1 

:    matrix[i,k]:=_ 

:  EndFor 

:EndFor 

:For i,0,n 

:  anfang:={} 

:  For k,1,i 

:    anfang:=augment({_},anfang) 

:  EndFor 

:  sq_:={} 

:  For k,1,2*dim(d_folge(i,sq))‐1 

:    If mod(k,2)=1 Then 

:    sq_:=augment(sq_,{d_folge(i,sq)[intDiv(k,2)+1]}) 

:    Else 

:      sq_:=augment(sq_,{_}) 

:    EndIf 

:  EndFor 

:   sq_:=augment(anfang,sq_) 

:  For k,1,dim(sq_) 

:    matrix[i+1,k]:=sq_[k] 

:  EndFor 

:EndFor 

:Return matrix 

:EndFunc 

 

Define serie(sq,k)= 

Func 

:Local sf,i 

:sf:={0} 

:For i,1,k 

:sf:=augment(sf,{sf[i]+continue(sq,k)[i]}) 

:EndFor 

:Return right(sf,dim(sf)‐1) 

:EndFunc 

 

 

Define rule_series(sq)= 

Func 

:rule(serie(continue(sq,dim(sq)+1),dim(sq)+1))

:EndFunc 

 

 

Define pascal(i,k)= 

Func 

:Local sq,n 

:sq:={} 

:For n,0,k 

:  sq:=augment(sq,{nCr(n,i)}) 

:  EndFor 

:  Return sq 

:EndFunc 

 

 

 
 

 

 
 
H. Weber, J. Wellstein; Encyklopädie der Elementar-Mathematik, I:Elementare Algebra und 
Analysis, 1909 Teubner, Leipzig. 
 
https://archive.org/details/encyklomentmatik01weberich 
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Fractals and their Basin of Stability 
 

David Halprin, Australia 
 
 

Hans Lauwerier(*) outlined a method to predict the Cardioid basin arising from the iteration of 
the Circle in the Mandelbrot fractal, however he left it at the one example, therefore the generalisation 
of the approach begs investigation. 

2
1

0 0 0

(1) ( )

(2) ( ) ( ) ( ) ( )

z F z z c

F z F z z z F z

  

   
 

where F(z0) represents a translation, (z – z0) represents a rotation and 0( )F z  represents a scale factor 

for enlargement, provided it is non-zero. 
 

The iterative process depends on 

1(3) ( ).n nz F z   

We have to consider the equilibrium points. 

If, at a fixed point z, | ( ) | 1F z   then the orbit of z0 in the vicinity of z approaches a stable (at-

tracting) equilibrium point. If however | ( ) | 1F z   then the orbit is unstable and is repelled by z0. The 

other case to be considered is when | ( ) | 1F z   where we have a neutral equilibrium. 

We put z1 = z in (1) and solve 

2(4)

1 1
(5) ,

1 2 2 4

(6) 1
1 2

z z c

c 

 

 

  

 

  

Graphically the mid point of the two roots is 
1

.
2

 The stability of the orbit depends on 

(7) | ( ) | 2 .F z z   Since 2

1

2
   it creates an unstable orbit so we discard it from further con-

sideration, while 1

1

2
   creates a stable orbit. 

At the margin of the area of stability, (the basin), 

1

1

(8) | 2 | 1

(9) 2 cos sin 1 1 4ii e c



  



      
 

therefore 

2

2

(10) 1 4 1 2

1
(11) ( 2 ) Cardioids

4
1 1

(12) (cos2 2cos ); (sin 2 2sin )
4 4

i i

i i

c e e

c e e

a b

 

 

   

   

 

     
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Mandelbrot, no doubt, was aware that the complex equation for a circle can be generalized for n, 

any positive integer exponent of z, yet all circles are concentric and coincident, with radius = 1: 

1( ) .nf z z c   His choice of n = 2 was the lowest value for n to produce a fractal, since n = 1 pro-

duces only a circular basin. 

Jumping ahead, one finds that all the basins for the areas of stability for the total of (n – 1) frac-

tals can be approximated to a high degree of accuracy by ( ),ni ic k e ne     where 'k' is an arbitrary 

constant. (They were generated by DERIVE XM, see .GIF-files below.) 

Further, each of the basins has (n – 1) cusps starting with one cusp in the normal cardioid where 
n = 2. The background colour is contained within an (n – 1)-sided shape also, when iterated by 
FRACTINT, (see GIF-files below), a freeware software program, readily available for download from 
the web(**). 

However the precise value for c can be calculated for n = 3,while the higher values of n seem to 
be insoluble in general terms. 

3
1

2

3

1

2

3

2 2
1

(13) ( )

(14) ( ) 3

(15) 0

2 1 3 3
(16) sin arcsin

3 23

2 1 3 3
(17) sin arcsin

3 2 33

2 1 3 3
(18) cos arcsin

3 2 63

1 3 3
(19) | ( ) | 3 2 sin arcsin

3 2

i
i

z F z z c

F z z

z z c

c

c

c

c
F z e e












  

 

  

 
    

 

 
      

 

 
     

 

 
      

 

2

2

2

3 31
(20) arcsin arcsin

2 3 2

2
(21) sin 3 arcsin

23 3

(22) (3
2

i

i

i

i

ce

e
c

e
c k e











 
     
 

 
     
 

 
      
 

 

We take the first of the three solutions, since the other two do not produce stable orbits. 

Equations (21) and (22) are alternative expressions for plotting the double cusped 'cardioid'. 
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4 3

4 3
1

4

1

1
1

(23) ( ) ; ( ) 4

(24) 0; | ( ) | | 4 |

(25) ( 4 )

(26) ( ) ; ( )

(27) 0; | ( ) | | |

(28) ( )

i

i i

n n

n n i

ni i

F z z c F z z

z z c F z e

c k e e

F z z c F z n z

z z c F z n e

c k e ne



 



 









  

    

  

   

     

  

 

Equation (25) is taken from the general form, since the closed form solutions for z in terms of c 
cannot be solved exactly for c in terms of z. 

The reciprocal question then arises:- "an we nominate a basin of stability for a conjectured frac-
tal and do the maths to find which curve(s), when iterated, will produce it?" 
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See the FRACTINT-Code to produce the last fractal: 

Halp-Circle-10-8th {;David Halprin 37-1-10 
     ; Yet to be analysed 
     z = Pixel:           ; 
     z = z * z * z * z * z * z * z * z 
     z = z + Pixel, 
     |z| <=4 
} 
 

(*)Hans Lauwerier books: 

Fractals: Endlessly Repeated Geometrical Figures, ISBN-13: 978-0691024455 

Fractals: Images of Chaos (Penguin Press Science), ISBN-13: 978-0140144116 

Fraktale verstehen und selbst programmieren, Bd 1, 1989, Wittig Fachbuch, ISBN 3-88984-060-4 

Fraktale verstehen und selbst programmieren, Bd 2, 1992, Wittig Fachbuch, ISBN 3-88984-061-2 

 
(**) This is one of many websites where you can find FRACTINT for download: 
 
(*)  http://www.nahee.com/spanky/www/fractint/fractint.html 
 
 

Two more memories of lovely Madeira 
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Inspiring Pavements in Funchal 
Wolfgang Alvermann, Hinte, Germany 

 
 
In Funchal, Madeira, one can find many interesting pavements on the streets and squares 
showing geometric patterns which might inspire for mathematical investigations. 
 

 
One example is given by the 
picture on the left. The radius 
of the large semicircle is 
R = 2m, the rectangle on the 
base is 2t thick, and the dif-
ference of the radii (thickness 
of the arcs) is t = 0.15m.  

 
Problem 1: 
 

 
 
 Find the equations of all appearing semicircles and arcs in general form! 

 Right hand side one can see a "gothic style" window formed by two arcs and a seg-
ment.  
Calculate the area of this "window". Calculate the coordinates of points P1, P2 and P3 in 
general form. Then use the given measures for calculating the area. 

 Calculate this area by integration, too, and compare the results!

 Produce a plot of one complete compartment of the pavement including the base rec-
tangle.

 
The solution is given first in form of a TI-Nspire Notes page. Then we will present the 
respective DERIVE plot. 

P1 

P2 

P3 
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Solution 

The next two screens present the solution starting with defining the circles, arcs and points. 
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This is one way to plot the pattern: we define the function – some of them piecewise. It 
seems to be necessary first fixing the functions and then denoting them from f1 to f10 

 

We colour the pavement using the "Integral" and "Bounded Area" tool contained in the 
"Analyze Graph" menu. All labels are hidden except one: the area of the window. 
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We use DERIVE to plot the inverse image. (This might be an additional task for the Nspire 
users, too. Making the picture from an appropriate position it might serve as background for 
Nspire and DERIVE as well.) 

 

 

Problem 2: 
 

 

 

 

Another pattern from Funchal: the regions 
which are bounded by bold curves are filled 
with dark paving stones, the others with 
white ones. 

The radius of the inner circle is r = 3m, the 
radius of the outer one is r + 2t with t = 0.1m. 

The arcs forming the inner four leaved ro-
sette are t thick.  
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Problem 2 Part a: 

 Make a sketch of the figure at a scale of 1:50. What are the centres of the arcs? 
You are invited to plot the figure on a TI-Nspire Graph page or with DERIVE (or any 
other tool, e.g. Geogebra, …! 

 The grey area in the figure above is to be calculated applying appropriate means. It is 
necessary to find the equations of the respective circles! 

 

Solution 

 

 

 

Due to symmetry we need only to calculate 
the area described by the points P1, P2 and 
P3. 

Line y = x intersects the circle in P3. N1 is the 
pedal point of the verticular line through P3. 
P3N1 splits the region into two parts. The 
area of the two parts can be calculated by 
means of integration. 

We need the equation of the circles in order 
to find the coordinates of the intersection 
points.  

Then we will integrate. 
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Problem 2 Part b: 

 Calculate the area marked by bold curves as shown below. 

 

 

 

We need two circles to calculate the intersec-
tion points P1, P2 and P3 

We apply integration again. 
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At first calculate points P1, P2 and P3. Then it is easy to find the requested area as the double 
sum of two integrals: 

 

Josef's additional comments: 

The screen below shows the TI-Nspire 
Graph page with the plot of the pattern of 
the pavement. 

It was produced without defining any 
functions, i.e. applying geometry tools only 
(Circle, Intersection point, Circle arc, 
Reflection). 

 

 

The right figure is the DERIVE plot. This was very much more difficult – but also much more 
interesting – to create. It is a good exercise for working with angles and parameter 
representation of circles (to define the many appearing circle arcs). The grey colour was 
brought in by first converting the plot to a Bitmap Image and then filling the regions with Paint 
tools. All is done within the DERIVE environment, see more in DNL#63. 
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For all of you who need more stuff for 
the students, here is an additional task: 

 

Find the area without integration! 

Hint:  

2*(triangle P9P8P0 + segment P0P8 – 
segment P9P8) 

The coordinates of the points were precalculated by intersecting the respective circles. (See 
also the Nspire results from above.) 

 

 

Fortunately we obtain the same results! 


