
THE DERIVE - NEWSLETTER #117

ISSN 1990-7079

T H E B U L L E T I N O F T H E

U S E R G R O U P

 C o n t e n t s:

 1 Letter of the Editor

 2 Editorial - Preview

 3 DERIVE & CAS-TI User Forum

 Julius Angres

 4 Hyperoperations with DERIVE

 16 Surfaces from the Newspaper (8)

 & Steiner’s Roman Surface

 Don Phillips and Josef Böhm

 18 Penney-Ante for TI-Nspire and DERIVE

 Josef Böhm

 30 Direction Fields, Phase Planes and Nullclines

 37 Spring Time – Flower Time – Butterflies Awake

March 2020

+ CAS-TI

 DNL 117

Information

 DNL 117

Some Links and one recommended reading:

John Hanna is an expert in the use of TI-Nspire. You can find a rich collection of applications together

with the respective tns-files. Enjoy it.

http://www.johnhanna.us/

A bundle of resources in English and German (Try Nordvik and Sousa …)

https://wiki.zum.de/wiki/TI-Nspire/freies_Material

Prof. Hans Humenberger at the University of Vienna offers a huge collection of papers (in German and in

English) on his website (~ 130). Most of his articles have a didactical background.

https://homepage.univie.ac.at/hans.humenberger/publikationen.html

Unser langjähriges DUG-Mitglied Wolfgang

Alvermann, der uns schon viele schöne Beiträge

geliefert hat, hat eine Sammlung von 28 Aufsät-

zen zusammengestellt und diese den Mitgliedern

der DUG zur Verfügung gestellt.

Lieber Wolfgang, herzlichen Dank dafür und

weiterhin frohes Schaffen

wünscht im Namen der DUG

Josef

Our long-time DUG-member Wolfgang Al-

vermann, who has contributed many great

articles has collected 28 “Complex Problems

in Mathematics” (A small collection of special

problems).

The German version can be downloaded

from our website. I intend to include transla-

tions of his problems by and by in future

newsletter.

Many thanks to Wolfgang and we wish happy work for the future,

On behalf of the DUG community

Josef

http://www.johnhanna.us/
https://wiki.zum.de/wiki/TI-Nspire/freies_Material
https://homepage.univie.ac.at/hans.humenberger/publikationen.html

 DNL 117

L e t t e r o f t h e E d i t o r

 p 1

Dear DUG Members,

 This is a very short letter in difficult Corona-times. We wish you and your

family to stay healthy. (Follow the rules and recommendations of your authorities!)

Better times will come.

Let’s look ahead to another DUG year (it will be year 30 of its existence, which not

so bad?).

Best regards and wishes to all of you

Noor and Josef

It is springtime and the first butterflies are around us:

http://old.nationalcurvebank.org/home/home.htm

http://old.nationalcurvebank.org////povray/povray.htm

Papilio derivia

More butterflies are fluttering on page 35.

http://old.nationalcurvebank.org/home/home.htm
http://old.nationalcurvebank.org/povray/povray.htm

 p 2

E D I T O R I A L

 DNL 117

The DERIVE-NEWSLETTER is the Bulletin of the

DERIVE & CAS-TI User Group. It is published at
least four times a year with a content of 40 pages

minimum. The goals of the DNL are to enable the

exchange of experiences made with DERIVE, TI-
CAS and other CAS as well to create a group to

discuss the possibilities of new methodical and di-

dactical manners in teaching mathematics.

Editor: Mag. Josef Böhm

D´Lust 1, A-3042 Würmla, Austria
Phone: ++43-(0)660 31 36 365

e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.

Non-English speakers are encouraged to write
their contributions in English to reinforce the

international touch of the DNL. It must be

said, though, that non-English articles will be

warmly welcomed nonetheless. Your contri-
butions will be edited but not assessed. By

submitting articles, the author gives his con-

sent for reprinting it in the DNL. The more
contributions you will send, the more lively

and richer in contents the DERIVE & CAS-TI

Newsletter will be.

Next issue: June 2020

Preview: Contributions waiting to be published

 Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER

 Wonderful World of Pedal Curves, J. Böhm, AUT

 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT

 Cubics, Quartics – Interesting features, T. Koller & J. Böhm, AUT

 Logos of Companies as an Inspiration for Math Teaching

 Exciting Surfaces in the FAZ

 BooleanPlots.mth, P. Schofield, UK

 Old traditional examples for a CAS – What´s new? J. Böhm, AUT

 Mandelbrot and Newton with DERIVE, Roman Hašek, CZ

 Tutorials for the NSpireCAS, G. Herweyers, BEL

 Dirac Algebra, Clifford Algebra, Vector-Matrix-Extension, D. R. Lunsford, USA

 A New Approach to Taylor Series, D. Oertel, GER

 Statistics of Shuffling Cards, Charge in a Magnetic Field, H. Ludwig, GER

 Selected Lectures from TIME 2016

 More Applications of TI-InnovatorTM Hub and TI-InnovatorTM Rover

 Surfaces and their Duals, Cayley Symmetroid, J. Böhm, AUT

 Affine Mappings –Treated Systematically, H. Nieder, GER

 Investigations of Lottery Game Outcomes, W Pröpper, GER

 A Collection of Special Problems, W. Alvermann, GER

 DERIVE Bugs?, D. Welz, GER

 Tweening & Morphing with TI-NspireCX-II-T, J. Böhm. AUT

 Why did the Tacoma-Narrows-Bridge Collapse? K-H. Keunecke, GER

 The Gap between Poor and Rich, J. Böhm, AUT

 Tumbling Tour in the Amusement Park, W. Alvermann, GER

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA
Richtung: Fachzeitschrift

Herausgeber: Mag. Josef Böhm

 DNL 117

DERIVE & CAS-TI User Forum

 p 3

Information from Prof. Simon Plouffe:

Hello Mr Böhm,

the English version is here:

http://plouffe.fr/NEW/a%20formula%20for%20primes.pdf

Abstract

A new approach is presented for the calculation of 𝑝n and 𝜋(𝑛) which uses the Lambert W

function. An approximation is first found and using a calculation technique it makes it possible to have

an estimate of these two quantities more precise than those known from Cipolla and Riemann. The cal-

culation of 𝑝n uses an approximation using the Lambert W function and an estimate based on a logarith-

mic least square curve (LLS) 𝑐(𝑛). The function 𝑐(𝑛) is the same in both cases. The two formulas are:

()

1

0

1

1

0

()
1

()

()
2

()

n

e n c n
p nW

n W n

e n c n
n nW

n W n

−

−

−

− 
 − − 

 

 − 
  − −  

  

The results presented are empirical and apply up to n ≈ 1016.

If you prefer the French original version, then go to:

http://plouffe.fr/NEW/Une%20formule%20pour%20les%20nombres%20premiers%20II.pdf

The figure shows Steiner’s Roman Surface. It belongs to page 17.

This is the TI-Nspire 3D plot

http://plouffe.fr/NEW/a%20formula%20for%20primes.pdf
http://plouffe.fr/NEW/Une%20formule%20pour%20les%20nombres%20premiers%20II.pdf

 p 4

DERIVE & CAS-TI User Forum

 DNL 117

Hyperoperations with DERIVE

Julius Angres, Neumünster, Germany

1 Abstract

This paper deals with the order of arithmetic operations and the hyperoperations tetration, pentation etc.

and their implementation in DERIVE. We present recursive implementations of basic arithmetic opera-

tions on the set of natural numbers and have a look at the relationship between the hierarchy of arithmetic

operations, hyperoperations and the well-known ACKERMANN function1.

2 Ordinary Arithmetic Operations

In this section we will only study arithmetic operations on the naturals. Hence, we sometimes leave out

the attribute ‘natural’ and only use the term number. We put them into an order regarding their complex-

ity. Starting with the successor function, binary addition, multiplication and exponentiation, we extend

this hierarchy with the hyperoperations as defined in the up-arrow notation by Donald KNUTH
2.

2.1 Counting (Level 0)

The most basic operation in this context are functions that return the successor resp. predecessor of a

number. Thus, we can move along the number line in steps of one. We define the corresponding functions

succ and pred as follows.

1 (1)

0 1 (2)

→ = +

→ = −

succ : ,succ(a) a

pred : \{ } ,pred(a) a

Defining these functions in DERIVE is straight forward. For the sake of readability, we will continue to

use succ, but write a – 1 instead of pred.

2.2 Addition (Level 1)

Addition is repeated application of succ. Hence, we can define the addition of two naturals recursively.

Examples:

 3 + 4 = 3 + 1 + 1 + 1 + 1⏟ = 7
4 times

 (3)

 1 + 2 = 1 + 1 + 1⏟
2 times

= 3 (4)

 𝑎 + 𝑏 = 𝑎 + 1 + 1 +⋯+ 1⏟
𝑏 times

 (5)

Addition can be interpreted in a graphical way using the standard number line. The first operand indicates

the starting point of the construction and the second one denotes the number of arrows of length one

(applications of succ) that are required. The last arrow now points to the resulting number.

Using these examples, we can define recursive addition addr as follows.

:if 0

: , (,) (6)
((, 1)) :else

a b
addr addr a b

succ addr a b

=
 → = 

−

1 The ACKERMANN function was first defined by mathematician Wilhelm ACKERMANN (1896-1962) in 1928

in a proof concerning computability problems on primitive-recursive functions.
2 Donald KNUTH (*1938) is an American computer scientist.

 DNL 117

Julius Angres: Hyperoperations with DERIVE

 p 5

This almost directly translates into DERIVE code. The line above the definition contains the signature of

the function in HASKELL style in all our code listings involving function definitions (comments).

A call of addr(3,2) for example would be evaluated like this:

 addr(3,2) = succ(addr(3,2)) Case 2

 = succ(succ(addr(3,0))) Case 2

 = succ(succ(3)) Case 1

 = succ(3+1) Def. succ

 = (3 + 1) + 1 Def. succ

 = 5

We see that the function evaluation consists of some recursive calls that expand the term before the

terminating case of recursion is reached and the terms can be evaluated to concrete values. This behavior

of expanding and collapsing is typical for recursive functions.

The experienced programmer knows that the evaluation of recursive functions can be speeded up by

using a so-called accumulator that computes the result of a function while the function’s body is ex-

panded by the recursive calls. Thus no ‘running back’ is required. A recursive definition of addition using

an accumulator can be implemented in DERIVE like this:

In this function the accumulator n must have an initial value of a to produce correct results. An initial

value of 0 for the accumulator would require the function to return n + a and would thus rely on addition.

However, both recursive functions are closely related to the mathematical notation. By contrast to this

functional approach, a conventional imperative version of addition using a loop can be realized in DERIVE

like this:

 p 6

Julius Angres: Hyperoperations with DERIVE

 DNL 117

In the listing above we see that one big advantage of functional programming is the direct transformation

from the mathematical notation into code.

2.3 Multiplication (Level 2)

In the same sense that addition is repeated application of the successor function, we can think of multi-

plication as repeated addition. Examples:

 3 ∙ 4 = 3 + 3 + 3 + 3⏟ = 12
4 times

 (7)

 1 ∙ 2 = 1 + 1⏟
2 times

= 2 (8)

 𝑎 ∙ 𝑏 = 𝑎 + 𝑎 + ⋯+ 𝑎⏟
𝑏 times

 (9)

Again, the first operand indicates what number to start with and the second one denotes the number of

repetitions needed. Note that multiplication usually (aside from some cases involving very small num-

bers) produces bigger numbers than addition.

We can thus realize multiplication in a recursive way using the aforementioned succ function. We start

with the mathematical definition:

0 :if 0

: , (,) (10)
(, (, 1)) :else

b
multr multr a b

addr a multr a b

=
 → = 

−

And again, using functional style we can directly convert this definition into DERIVE code:

Please note, that any call of multr will not only call addr but also succ as we have defined addition

through the successor function. This forces us to change our implementation a little when advancing to

higher order operations to improve performance and avoid huge amounts of recursive calls that all have

to be held in memory waiting for evaluation.

2.4 Exponentiation (Level 3)

The most complex operation we usually see in ordinary mathematics is exponentiation. Yet again, we

can use exponentiation to abbreviate an expression of lower level operations. Exponentiation is in fact

repeated multiplication as the following examples show.

 34 = 3 ∙ 3 ∙ 3 ∙ 3⏟ = 81
4 times

 (11)

 12 = 1 ∙ 1⏟
2 times

= 1 (12)

 𝑎𝑏 = 𝑎 ∙ 𝑎 ∙ … ∙ 𝑎⏟
𝑏 times

 (13)

 DNL 117

Julius Angres: Hyperoperations with DERIVE

 p 7

This time we will skip the mathematical function definition and directly proceed with the DERIVE imple-

mentation.

We can verify the correctness of the function by testing it with some self-chosen input.

This is the output we get, if we enter our running examples and simplify the expression. Our hierarchy

of recursively defined functions from ordinary mathematics behaves just as expected so far.

3 Beyond the Ordinary

3.1 Tetration (Level 4)

At this point we leave the common arithmetic operations behind and continue with the so-called

hyperoperations, i.e. operations which are of even higher levels than exponentiation. In fact, exponenti-

ation is defined as first level hyperoperation in KNUTH’s up-arrow notation. Having a careful look at the

code snippets above, one might already spot the pattern that leads us further up the ladder: The first

number is a starting point or base as it is called in exponential terms and the second one is the number

of repetitions for the operation. The implementations also reflect this pattern as each operation makes a

recursive call to the operation of the level directly below. That way we can define multiplication as

repeated addition and exponentiation as repeated multiplication. Following this pattern, the next opera-

tion, the second hyperoperation must be repeated exponentiation. This operation is called tetration. On

paper there exist several notations for titration and the big numbers it produces. We will stick with

KNUTH’s up-arrow notation. Using this notation, the tetration of two numbers a (the base) and b (the

height of the power tower) can be written as a↑↑b resp. a↑2b.

 1 ↑↑ 2 = 11 = 1 (14)

 2 ↑↑ 4 = 22
22

= 216 = 65536 (15)

 3 ↑↑ 4 = 33
33

= 37622597484987 (16)

 𝑎 ↑↑ 𝑏 = 𝑎𝑎
⋰𝑎

⏟
𝑏 times

 (17)

Now tetration can be defined in DERIVE as follows:

 p 8

Julius Angres: Hyperoperations with DERIVE

 DNL 117

As the examples show, the results of tetration rapidly become mindboggling. Playing around a little with

some small values (numbers smaller than 3 in fact) already causes DERIVE to calculate several seconds

before presenting the result. Using the implementation above this is also due to the fact that all our

recursive functions call their predecessors from lower levels in the hierarchy meaning that a call of tetr

will involve lots of calls of succ in the end. We overcome this shortcoming by using a modified imple-

mentation of tetration that uses DERIVE’s built-in exponentiation.

Using tetr2 we can obtain some more results of tetration operations, at least on small integers. The reason

why the numbers are getting so huge quickly is the definition of tetration as repeated exponentiation.

Each tetration defines a power tower that is evaluated from the top to the bottom (tetration is right-

associative). Below is some example output of DERIVE calculating tetrations. Using VECTOR we can

quickly find out where the borders of DERIVE’s ability are for any given base number. Let’s have a look

at the tetration of 2.

The results for k ≤ 4 are fine, but 2↑↑5 (only a few digits of which are shown in the screenshot) is an

enormous number since it equals 265536. We can use the DIM command to count the number of digits.

 DNL 117

Julius Angres: Hyperoperations with DERIVE

 p 9

Trying tetrations with base 3 also comes to a quick end.

The number 3↑↑4 is already so large that DERIVE can only provide us with a symbolic result but is unable

to count even the digits of it3. Recalling the definition of tetration, we see that 3↑↑4 equals

7625597484987 times 3 multiplied by itself.

3.2 Pentation (Level 5) and above

Of course, the pattern for the lower level operations can be repeated itself to define an infinite hierarchy

of hyperoperations starting with the exponentiation as level one of this hierarchy. The next step after

tetration, would be pentation which is defined as repeated tentration. All these hyperoperations can easily

be implemented in DERIVE using the built-in exponentiation and the already defined hyperoperations. As

the pattern is always the same and the number produced by pentation, hexation, heptation, etc. almost

immediately become so large that they cannot even be computed (or even displayed) by supercomputers

we will provide the implementation of pentation as our final example.

Note that we are using tetr2 for the recursive call due to the aforementioned performance issues wit the

generic implementation of tetr.

And this is what pentation of small numbers looks like:

3.3 KNUTH’s Up-arrow Notation

One possible mathematical way to define hyperoperations of arbitrary level is the up-arrow notation

which only consists of three simple rules. The recursive definition for it is the following4:

(18)

Here, ↑n stands for n arrows, so for example 2↑4 3 = 2↑↑↑↑3. This notation can be used to express some

of the largest integer numbers that proved to be relevant in mathematics. One of the largest of them is

the so-called GRAHAM’s number G that originates from a proof about a problem in graph theory. To get

an idea of its sheer size, consider the following function.

3 See my comment on page 10 (bottom)
4 Definition taken from https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation

https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation

 p 10

Julius Angres: Hyperoperations with DERIVE

 DNL 117

(19)

Now by definition GRAHAM’s number G = g64.

Ordinary and higher order operations can be combined in the hyperfunction hyper defined as follows.

(20)

It’s easy to see that the parameter n corresponds to the level we have assigned to the operations in this

paper. We can define the hyperoperations function in DERIVE.

Note, that KNUTH’s up-arrow notation is a part of the hyperoperation function. More precisely, it holds

that a↑nb = hyper(a,n + 2,b). We can now use our hyperoperation function to test it with our running

example where a = 3 and b = 4.

The results prove that the function hyper is indeed a summary of all the functions presented.

Comment

(JB):

Gives the number of dig-

its!

 DNL 117

Julius Angres: Hyperoperations with DERIVE

 p 11

4 The ACKERMANN Function revisited

When investigating computable functions and fast-growing sequences one almost certainly comes

across the ACKERMANN function sooner or later. It is an example of a computable non-primitive recur-

sive function that is closely related to the hyperoperation discussed in the last chapter. The modified

ACKERMANN function a (the original one had three parameters) has the following definition.

Using a functional programming style in DERIVE we can easily implement the ACKERMANN function.

Playing around with some small input values gives us a small lookup table for n = 1,2,3 and

m = 0,1,2,3,4,5.

However, the next column is impossible to calculate for the presented values of m. DERIVE easily cal-

culates ackermann(4,0) = 13, but struggles to evaluate ackermann(4,1) = 65535 (really takes some time

on my machine). The values of ackermann(4,m) with m ≥ 2 cannot be computed be computed as the

numbers grow incredibly large. In fact, columns of ACKERMANN function are related to the hierarchy

of operations presented in the last chapter. The following table shows the relationship.

 p 12

Julius Angres: Hyperoperations with DERIVE

 DNL 117

We notice that each column produces results that represent a certain level in the hierarchy of arithmetic

operations. In fact, the parameter n of the ACKERMANN function matches with the operation’s level as

presented in this paper. The values in the fifth column would therefore be related to pentation (↑3) and

thus are almost impossible to compute except for m = 0, as Ackermann(5,0) = 65533.

5 Upshot

The hierarchy of standard arithmetic operations and hyperoperations proved to be a good use case for

programming and exploring with DERIVE. If discussed with students the focus can be set on different

levels. For beginners just provide them with some functions and let them explore the boundaries of com-

putability by creating lookup tables etc. For more advanced classes the hyperoperations can be used to

work on the topic of recursion and recursive definitions in an abstract way using Derive to make results

visible.

The big integers can also be used to initiate discussions about metamathematics, (ultra-) finitism, con-

structivism as well as philosophy.

Finally, the code snippets in this paper show that a functional programming style can be practiced with

students using DERIVE. Of course, a fully-fledged purely functional language as HASKELL offers way

more possibilities for professional programming, e.g. pattern matching, but in my opinion DERIVE can

be used as an introductory tool to explain the concepts. This is especially beneficial if the students are

used to working with DERIVE in their math lessons.

You know that I like to “translate” DERIVE-code into TI-Nspire-code and vice versa. So, we can

ask ourselves how to realize Julius Angres’ didactical concern and concept using TI-Nspire

technology.

Recursion technique is available, so it is not surprising that this is not so difficult.

But I must admit that I came across one problem. In

DERIVE-code function addrc(a,b,n) needs three argu-

ments– a, b, n – with n being a local variable and we

need only entering a and b. This is not possible in

TI-Nspire-syntax. I found no other way to circumvent

this problem as to enter a as third argument (playing

the role of n). Using the command local n did not

help. I wonder if there is another way to transfer the

DERIVE code into TI-Nspire code?

I tried a second way. It works, but for “larger” numbers Recursion is too deep. (Same happens

with addr(121,345), but reversing the summands gives the expected result.)

Find more about HASKELL on page 15.

 DNL 117

Julius Angres: Hyperoperations with DERIVE

 p 13

Functions addr and addi for TI-Nspire:

addrc(a,b,n) needs to enter the value of a for parameter n.

Functions multr, powr and tetr2 for TI-Nspire:

 p 14

Hyperoperations with TI-NspireCAS

 DNL 117

Here are the remaining functions for TI-Nspire:

Finally, the ACKERMANN function:

When I asked Mr Angres to send the Haskell-code for his hyperoperations he was so friendly to fulfill

my request within a few days. (Maybe that I will – having some leisure time?? – install Haskell on my

PC. There is a Windows, a Mac and a Linux distribution for download.

 DNL 117

Hyperoperations with TI-NspireCAS

 p 15

If you like to inform about Haskell which is mentioned in Julian Angres’ contribution then go to

https://www.haskell.org/

for information, examples, download, documentation and lots of resources.

See also https://wiki.haskell.org/Introduction#Why_use_Haskell.3F

This is the Haskell code provided by Juilus Angres:

-- Successor function is built-in as Prelude.succ

-- Addition

add :: Integer -> Integer -> Integer

add a 0 = a

add a b = succ $ add a (b-1)

-- Multiplication

mult :: Integer -> Integer -> Integer

mult a 0 = 0

mult a b = add a $ mult a (b-1)

-- Exponentiation

pow :: Integer -> Integer -> Integer

pow a 0 = 1

pow a b = mult a $ pow a (b-1)

-- Tetration (using previously defined arithmetic)

tetr :: Integer -> Integer -> Integer

tetr a 0 = 1

tetr a b = pow a $ tetr a (b-1)

-- Tetration (using built-in arithmetic)

tetr2 :: Integer -> Integer -> Integer

tetr2 a 0 = 1

tetr2 a b = (^) a $ tetr2 a (b-1)

-- Generalized hyperoperation

hyper :: Integer -> Integer -> Integer -> Integer

hyper a n 1 = a

hyper a 0 b = a + 1

hyper a 1 b = a + b

hyper a 2 b = a * b

hyper a 3 b = a ^ b

hyper a 4 b = a ^ hyper a 4 (b-1)

hyper a n b = hyper a (n-1) $ hyper a n (b-1)

https://en.wikipedia.org/wiki/Hyperoperation

https://waitbutwhy.com/2014/11/1000000-grahams-number.html

http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-gra-
hams-number

https://groups.google.com/forum/#!topic/tinspire/iTK2BulxtCQ

and once more:

https://www.haskell.org/

https://www.haskell.org/
https://wiki.haskell.org/Introduction#Why_use_Haskell.3F
https://en.wikipedia.org/wiki/Hyperoperation
https://waitbutwhy.com/2014/11/1000000-grahams-number.html
http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-grahams-number
http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-grahams-number
https://groups.google.com/forum/#!topic/tinspire/iTK2BulxtCQ
https://www.haskell.org/

 p 16

Surfaces from the Newspaper (8)

 DNL 117

Surfaces from the Newspaper (8)

DERIVE Plots (superimposed explicit form – in 4 parts)

 Surfer DP Graph

 Surfer DP Graph DERIVE

 DNL 117

Surfaces from the Newspaper (8)

 p 17

Steiner’s Roman Surface. It was discovered by Jacob Steiner when he visited Rome in 1844.

 Surfer (www.imaginary.org) DPGraph (http://www.dpgraph.com/)

This is a remarkable surface – so you can find numerous websites:

https://de.wikipedia.org/wiki/Steinersche_Fläche

https://en.wikipedia.org/wiki/Roman_surface

https://www.mathcurve.com/surfaces/romaine/romaine.shtml

https://mathworld.wolfram.com/RomanSurface.html

http://paulbourke.net/geometry/steiner/

https://www.geogebra.org/m/QRqzzDGN

http://old.nationalcurvebank.org/romansurfaces/romansurfaces.htm

http://www.imaginary.org/
http://www.dpgraph.com/
https://de.wikipedia.org/wiki/Steinersche_Fläche
https://en.wikipedia.org/wiki/Roman_surface
https://www.mathcurve.com/surfaces/romaine/romaine.shtml
https://mathworld.wolfram.com/RomanSurface.html
http://paulbourke.net/geometry/steiner/
https://www.geogebra.org/m/QRqzzDGN

 p 18

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

Penney-Ante for TI-Nspire and DERIVE

Don Phillips and Josef Böhm

Don’s mail came in on the last day of 2019, December 31. See what did follow:

Josef,

I don’t know if you ever came across this probability problem before, but it might give your

readers some food for thought. I will give you the strategy if you cannot figure it out.

Best regards,

Don

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 19

This is the simulation program.

Can you figure out the winning strategy?

 p 20

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

Dear Don,

many thanks for this great example for probability theory.

Instead of figuring it out, I – shame on me – “googled” for Penney Ante and found a lot of respective

websites (strategy included!!).

http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/Pen-

neyAnte_CounterintuitiveProbabilities.pdf

https://en.wikipedia.org/wiki/Penney%27s_game

https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf

Maybe that I will try translating your Nspire program to a DERIVE function?

Thanks again and

best regards and wishes

Josef

Dear Don,

I like your Prob problem very much.

Just to demonstrate this – and just for fun – I made a little change:

Instead of entering {1,1,1} and {2,1,1} I enter “HHH” and “THH”.

This is function penney2.

Regards as ever

Josef

http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
https://en.wikipedia.org/wiki/Penney%27s_game
https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 21

Josef,

I like your improvement! You should use that one if you decide to publish it in the newslet-

ter. And, it’s given me another thought. I’m going to add some code so a person can play

against the program. I’ll let you know when I’m successful.

Well, I hope you’re not in a deep freeze like we are on this side of the pond!

I’ve added penney3 which chooses the correct strategy. As long as you don’t look at the

code, you have a chance to discover the strategy yourself.

Regards,

Don

Hi Don,

I added one more function penney4(t1,t2). It demonstrates one single game between two players and

shows the series of tosses together with the winner.

Regards

Josef

 P 22

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

Dear Don,

sorry, to bother you once more:

I changed penney4(t1,t2) in such a way that you can enter toss-sequences of variable length e.g.

penney4(“HHHHH”,”TTTTT”).

Regards

Josef

Josef,

I have changed my original program to handle any number of coin sequences, using some of

your code. Thanks for all your help! By the way, the same strategy seems to work for any

number of coins.

Don

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 23

Hi Don,

many thanks. I had the intention to suggest this generalization.

I am sure that this will make a fine contribution for the next DNL (including your penney3 and possi-

bly my penney4).

I liked this collaboration very much.

Best regards

Josef

As Don is writing: “the same strategy seems to work for any number of coins” I am not sure if

this is true. I found only one paper dealing with n-tuples of tosses (see the first link among the URLs

given below). Latest news: Please follow my DERVE implementation!

I wanted to realize the Penney Ante Game with DERIVE, too – and I added two more functions (pro-

grams) to indicate the difference between using the winning strategy and using it not. You can follow

my functions on the next page. I don’t print the programs in order to save space. All functions are con-

tained in penney_ante.dfw.

Links:

http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/Pen

neyAnte_CounterintuitiveProbabilities.pdf

https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf

https://plus.maths.org/content/os/issue55/features/nishiyama/index

http://mlg.eng.cam.ac.uk/adrian/Penney.pdf

https://digitalcommons.newhaven.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsre-

dir=1&article=1004&context=chemicalengineering-facpubs

http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf
https://plus.maths.org/content/os/issue55/features/nishiyama/index
http://mlg.eng.cam.ac.uk/adrian/Penney.pdf
https://digitalcommons.newhaven.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1004&context=chemicalengineering-facpubs
https://digitalcommons.newhaven.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1004&context=chemicalengineering-facpubs

 p 24

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

These are my DERIVE functions. They are a little bit different from the Nspire programs from above:

Player 1 enters a sequence of his choice with ar-

bitrary length. The computer- it is Player 2 - does

not apply any strategy but behaves like an unin-

formed opponent and answers with a random se-

quence of heads and tails.

The output shows the second player’s sequence,

followed by the history of the tosses.

It can happen that the computer chooses the same

sequence as Player 1. Then we will have no win-

ner – and no looser, of course.

Same as above, but we simulate n games between

Player 1 and Player 2 (again the computer) having

no special strategy.

I (Player 1) choose HTHTHT. My opponent

(computer = Player 2) bets on HTTTTH (ran-

domly chosen). The (simulated) odds for Player 2

are 1.24 : 1.

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 25

Function penney(t1,t2) allows playing against

a real opponent: Player1 enters his sequence of

tosses (as t1) and then Player 2 can enter his se-

quence as second argument t2.

Now you can follow what happens and finally you

get the winner.

My last function penney_n(t1,n) lets you play

n times against an opponent who knows the right

strategy (the computer).

Did you find out the winning strategy for

Player2?

You can find the proof following the links to some websites which are given above. All proofs are con-

cerning the case of choosing three tosses. I repeat the trick: Player 2 should take the second toss of

player 1, reverse it (T ↔ H or H ↔ T) and set this one in front of Player 1’s sequence and delete the

last one. H T H → H H T.

I am not sure if this recipe will hold for longer sequences. Simulation indicates that it is improving the

odds for Player 2 significantly, but I don’t know if there is a better strategy depending on the length of

the sequence.

Would be great to receive any answers or comments.

Thanks to Don for providing this game with a surprising result and the wonderful communication.

Josef (See the following appendix!)

 p 26

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

More simulations – and an important resource:

It is a nice coincidence that I – just after having finished the article above for this newsletter – found

among my so (too) many books and papers the proceedings of a Lehrerfortbildungstag (teacher train-

ings day) held in 1998 (!!!) at the Vienna University. Hans Humenberger – he is now full professor for

Mathematics with Special Consideration to the Didactics of Mathematics – gave a talk: Ein Paradoxon

bei Münzwurfserien und bedingte Erwartungswerte (A paradox at sequences of coin tosses and condi-

tional expected values).

http://www.oemg.ac.at/DK/Didaktikhefte/1998%20Band%2029/Humenberger1998.pdf

Here Humenberger demonstrates how to calculate the probabilities for the appearance of the various

combinations of Heads and Tails not only for three coins but also for two and for more than three.

Similar like in the paper given in the first URL on page 20 he treats the expected values for the waiting

times (number of tosses) until the requested pattern will appear.

Sequence HHH HHT HTH THH HTT THT TTH TTT

Expectation 14 8 10 8 8 10 8 14

I will not demonstrate how to find the values (applying conditional expectations) but will refer to a

computer simulation:

Nine tosses to have TTT the first

time

If you remove the two DISPLAY
commands you will receive only the

number of tosses:

http://www.oemg.ac.at/DK/Didaktikhefte/1998%20Band%2029/Humenberger1998.pdf

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 27

Now I’d like to investigate the expected values performing n random experiments:

We can have all expected values in one list applying my favorite command: VECTOR.

Please compare with the table from above!

I want to simulate a large number of games with the players each of them keeping their first choice.

I start with Player 1 takes HHH and Player 2 answers with HHT – equal chance on the long hand.

The best answer of Player 2 is THH – which is applying the right strategy!!

 p 28

Don Phillips & Josef Böhm: The Penney-Ante Game

 DNL 117

Humenberger provides a table showing all probabilities for Player 1 winning against Player 2 for all

possible combinations. (I reordered the first row of table to show the prob of Player 2 to win.)

 Player 2

Player 1 HHH HHT HTH THH HTT THT TTH TTT

HHH - 1/2 3/5 7/8 3/5 7/12 7/10 1/2

Odds 1 3/2 7 3/2 7/5 7/3 1

The relationship between probability p and odds o is easy:
1

p
o .

p
=

−
 You are invited to compare the

exact values (given by Humenberger) with the results of the simulation of 10000 games.

Now it is no problem to proceed with longer patterns. I can come back to my question on page 23.

(“the same strategy seems to work for any number of coins” I am not sure if this is true.)

One paper among the references gives the answer YES, it is true- but look at the third and the fourth

result given below. Player 1 chooses HHTH. According the Penney Ante strategy Player 2 answers

with THHT and he will have a prob to win of 7/12 (simulated 0.5886) but if he tries TTHH then the

probability increases to 9/14 (simulated 0.6442). So, the strategy is good, but in this case, it is not the

best one.

Humenberger’s paper closes with a table for all possible games between 4-tosses-games and a very rich

list of references (59). It is interesting that he does not mention the name “Penney Ante” in his article

although his paper – cited by Don Phillips in his first email – can be found among the references as

#44.

The next – and last – page dealing with Penney Ante is the realization of my additional functions with

TI-Nspire.

 DNL 117

Don Phillips & Josef Böhm: The Penney-Ante Game

 p 29

Function name “wait” is not permitted, because “wait” is an implemented Nspire-function.

I cannot use VECTOR to calculate the simulations of the expected values of waiting times, but I create

the table in the Lists & Spreadsheet Application. Just enter the numbers of simulations in cells A1 and

A3. All functions are contained in penney_ante.tns and penney_ante.dfw.

 p 30

J. Böhm: Direction Fields, Phase Planes and Nullclines

 DNL 117

Direction Fields, Phase Planes and Nullclines

Josef Böhm, Würmla

I am member of a small group working through and discussing Steven Strogatz’s book Nonlinear Dy-

namics and Chaos. There are many exercises and we try to solve some selected ones. David, one of the

group members sent a mail asking for support:

… and (2) I recall that a few (or many) years there was a discussion of using DERIVE to plot
"phase planes" for ODEs!"

Can you transmit it to me (via an email or text attachment)? I want to use it for plotting some
of Strogatz's problems. I assume the one program has specific domains which can be poorly
defined. I would appreciate it if you would look around and see what you have and what may
be easy to use.

Let me start with an example from a textbook (because then I can check if I am right or not):

(Nice coincidence: from Differential Equations, C.H. Edwards & David E. Penney, Penney-Ante is

from Walter Penney!)

Given is the system
21

x x y

y x

 = −

 = −
.

We plot the direction field using DERIVE’s built in function DIRECTION_FIELD:

(the slope is
dy y

dx x


=


)

Don’t evaluate expression #1, but open the 2D-plot window (set Options > Display > Points > Small

and Connected and Options > Approximate before Plotting, and plot. You should find the following

graph:

 DNL 117

J. Böhm: Direction Fields, Phase Planes and Nullclines

 p 31

The website given below allows to plot the direction field interactively:

https://aeb019.hosted.uark.edu/pplane.html

Now, we proceed accomplishing the phase portrait (direction field + trajectories = solution curves)

with the solution functions using the built in Runge-Kutta method:

https://aeb019.hosted.uark.edu/pplane.html

 p 32

J. Böhm: Direction Fields, Phase Planes and Nullclines

 DNL 117

The result is a 3-columns matrix with t-values from 0 to 2 (step 0.1) and the respective function values

of the x(t)- and y(t)-solution curve with initial point (-4,-4). Changing the step from 0.1 to -0.1 will give

the values in the reverse direction.

All what remains to do, is to extract columns [1,2] and [1,3] for plotting the solution curves and col-

umns [2,3] for the phase portrait:

Switch to the 2D-plot window and plot (without evaluating in the Algebra window):

This is the phase diagram of the system with initial point (1,2).

The following VECTOR-construct allows to plot a family of phase diagrams in one single step:

Plots of all curves with initial points on the y-axis (from -4 to 4 step 1) with t-steps in both directions (the

outer VECTOR-command). Looks quite nice.

 DNL 117

J. Böhm: Direction Fields, Phase Planes and Nullclines

 p 33

With 0.5-steps for k you will receive a denser net of curves:

We can add the fixed points and finally, we plot the nullclines (all in black):

The nullclines are the loci of the points in the direction field with horizontal (y-nullcline) and vertical

(x-nullcline) slope.

A good explication can be found at:

https://mcb.berkeley.edu/courses/mcb137/exercises/Nullclines.pdf

Finally, I’d like to plot the solution curves with initial values (1,2) for x(t) and y(t). Using the VECTOR-

construction from above you could plot a family of solution curves in one single step.

https://mcb.berkeley.edu/courses/mcb137/exercises/Nullclines.pdf

 p 34

J. Böhm: Direction Fields, Phase Planes and Nullclines

 DNL 117

This is a GeoGebra plot of the phase plane:

I will turn to Strogatz Example 6.1.1

Given is the system
yx x e

y y

−= +

= −
.

The plot of the direction field is obtained like above:

This gives a family of solution curves (blue):

 DNL 117

J. Böhm: Direction Fields, Phase Planes and Nullclines

 p 35

I add the fixed points and the nullclines (black):

We don’t need a CAS to find out that (x + e-y = 0, -y = 0) have the solution y = 0 and x = -1. So, the

fixed point is at (-1,0).

The nullclines are the curves x + e-y = 0 (= y = -ln(-x)) and y = 0.

x

Two Nspire screenshots for the first example (textbook):

Followed by three screens for the second system (Strogatz 6.1.1):

I was not able to plot more than one solution curve with TI-Nspire. Is there anybody who knows how to

do this? Please let me know.

 p 36

J. Böhm: Direction Fields, Phase Planes and Nullclines

 DNL 117

I used GeoGebra to plot the direction field, a family of solution curves, the nullclines and two points

which can be dragged through the plane together with the respective trajectories:

A phase portrait is a geometric representation of the trajectories of a dynamical system in the phase

plane. Each set of initial conditions is represented by a different curve, or point. Phase portraits are

an invaluable tool in studying dynamical systems. ... An attractor is a stable point which is also called

'sink'. (Wikipedia)

Two links to interactive applets:

 https://aeb019.hosted.uark.edu/pplane.html https://www.geogebra.org/m/utcMvuUy

 and https://www.geogebra.org/m/s8zdVwt7

https://aeb019.hosted.uark.edu/pplane.html
https://www.geogebra.org/m/utcMvuUy
https://www.geogebra.org/m/s8zdVwt7

 DNL 117

Spring Time – Flower Time – Butterflies Awake

 p 37

Spring Time – Flower Time – Butterflies Awake

When I came across the pretty picture given on page 1 (nationalcurvebank website) I became curious to

search for more information about the Butterfly Curve. After Wikipedia and some other resources,

I found Temple H. Fay’s one-page article “The Butterfly Curve”. He discovered this transcendental curve

when investigating petal curves (not to be confused with pedal curves).

https://www.jstor.org/stable/2325155?read-now=1&seq=1

A family of curves colored using a special DERIVE feature (converting the plot to a bitmap image).

How to do this is described by Tania Koller in DNL#63 from October 2006).

But we can shade regions in various colors defining inequalities as shown below. Unfortunately, the

colors provided by Derive for shading regions are not really bright.

https://www.jstor.org/stable/2325155?read-now=1&seq=1

 p 38

Spring Time – Flower Time – Butterflies Awake

 DNL 117

Temple H. Fay is now Professor Extraordinaire at Tshwane University of Technology. I had the pleas-

ure and honor to meet him at the TIME 2009 Conference held in South Africa. By the way, my best

regards to Steve Joubert (also from Tshwane University).

Temple investigated petal curves of general form
cos() cos()

.
cos()

a n b m+
=

 



 He recommends to try

a < b, a >b, a = b, n is even, n is odd, …

Temple proposes to ask students predicting the number of petals with both m and n odd; what happens if

(at least) one of them is even. The sliders make it easy to apply rational numbers for the parameters.

Range for t must be adapted.

Derive (and TI-Nspire as well) offer sliders to experiment in all directions:

 DERIVE TI-Nspire

 DNL 117

Spring Time – Flower Time – Butterflies Awake

 p 39

At the end of his paper Temple Fay writes about his discovering of the “most interesting and beautiful

of all the curves”.

cos(2) 21.5cos(4) sin
12

0 24

e  
 

 

 
= − +  

 

 

This is the original Temple Fay butterfly:

A small change in one argument gives the

butterfly a 90° turn and now we can create

butterflies as we like:

I colored the butterfly using a painting program

 p 40

Spring Time – Flower Time – Butterflies Awake

 DNL 117

Another butterfly form is given by Clifford Pickover: The MαTHβOOK:

Young Hee Geum’s paper on Butterfly Curves can befound at:

https://www.researchgate.net/publication/232899918_On_the_analysis_and_construction_of_the_but-

terfly_curve_using_Mathematica_R/link/594cf2e9a6fdcc79e18cc97f/download

Watch animated “Butterflies”:

https://www.geogebra.org/m/CjPFXGYj

https://www.youtube.com/watch?v=MCQljZM-jF0

These butterflies are from our garden (summer butterflies):

https://www.researchgate.net/publication/232899918_On_the_analysis_and_construction_of_the_butterfly_curve_using_Mathematica_R/link/594cf2e9a6fdcc79e18cc97f/download
https://www.researchgate.net/publication/232899918_On_the_analysis_and_construction_of_the_butterfly_curve_using_Mathematica_R/link/594cf2e9a6fdcc79e18cc97f/download
https://www.geogebra.org/m/CjPFXGYj
https://www.youtube.com/watch?v=MCQljZM-jF0

