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Some Links and one recommended reading:

John Hanna is an expert in the use of TI-Nspire. You can find a rich collection of applications together
with the respective tns-files. Enjoy it.

http://www.johnhanna.us/

A bundle of resources in English and German (Try Nordvik and Sousa ...)

https://wiki.zum.de/wiki/T1-Nspire/freies Material

Prof. Hans Humenberger at the University of Vienna offers a huge collection of papers (in German and in
English) on his website (~ 130). Most of his articles have a didactical background.

https://homepage.univie.ac.at/hans.humenberger/publikationen.html

Unser langjahriges DUG-Mitglied Wolfgang
Alvermann, der uns schon viele schéne Beitrage
geliefert hat, hat eine Sammlung von 28 Aufsat-
zen zusammengestellt und diese den Mitgliedern

der DUG zur Verfiigung gestellt. Komplexe

Problemstellungen
in der Mathematik

r —

Lieber Wolfgang, herzlichen Dank dafir und
weiterhin frohes Schaffen

winscht im Namen der DUG

Josef

Our long-time DUG-member Wolfgang Al-
vermann, who has contributed many great
articles has collected 28 “Complex Problems

in Mathematics” (A small collection of special
Eine kleine Sammlung
problems). besonderer Aufgaben

The German version can be downloaded
from our website. | intend to include transla-
tions of his problems by and by in future Wolfgang Alvermann
newsletter.

Many thanks to Wolfgang and we wish happy work for the future,
On behalf of the DUG community
Josef


http://www.johnhanna.us/
https://wiki.zum.de/wiki/TI-Nspire/freies_Material
https://homepage.univie.ac.at/hans.humenberger/publikationen.html

DNL 117 Letter of the Editor pl

Dear DUG Members,

This is a very short letter in difficult Corona-times. We wish you and your
family to stay healthy. (Follow the rules and recommendations of your authorities!)
Better times will come.

Let's look ahead to another DUG year (it will be year 30 of its existence, which not
so bad?).
Best regards and wishes to all of you

Noor and Josef

It is springtime and the first butterflies are around us:

http://old.nationalcurvebank.org/home/home.htm
http://old.nationalcurvebank.org////povray/povray.htm

Papilio derivia
More butterflies are fluttering on page 35.


http://old.nationalcurvebank.org/home/home.htm
http://old.nationalcurvebank.org/povray/povray.htm
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The DERIVE-NEWSLETTER is the Bulletin of the
DERIVE & CAS-TI User Group. It is published at
least four times a year with a content of 40 pages
minimum. The goals of the DNL are to enable the
exchange of experiences made with DERIVE, TI-
CAS and other CAS as well to create a group to
discuss the possibilities of new methodical and di-
dactical manners in teaching mathematics.

Editor: Mag. Josef Béhm

D’Lust 1, A-3042 Wiirmla, Austria
Phone: ++43-(0)660 31 36 365
e-mail: nojo.boehm@pgv.at

Preview: Contributions waiting to be published

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to write
their contributions in English to reinforce the
international touch of the DNL. It must be
said, though, that non-English articles will be
warmly welcomed nonetheless. Your contri-
butions will be edited but not assessed. By
submitting articles, the author gives his con-
sent for reprinting it in the DNL. The more
contributions you will send, the more lively
and richer in contents the DERIVE & CAS-TI
Newsletter will be.

Next issue: June 2020

Some simulations of Random Experiments, J. Bohm, AUT, Lorenz Kopp, GER
Wonderful World of Pedal Curves, J. Bohm, AUT

Simulating a Graphing Calculator in DERIVE, J. Bohm, AUT

Cubics, Quartics — Interesting features, T. Koller & J. Bohm, AUT

Logos of Companies as an Inspiration for Math Teaching

Exciting Surfaces in the FAZ

BooleanPlots.mth, P. Schofield, UK

Old traditional examples for a CAS — What's new? J. Bohm, AUT

Mandelbrot and Newton with DERIVE, Roman Hasek, CZ

Tutorials for the NSpireCAS, G. Herweyers, BEL

Dirac Algebra, Clifford Algebra, Vector-Matrix-Extension, D. R. Lunsford, USA
A New Approach to Taylor Series, D. Oertel, GER

Statistics of Shuffling Cards, Charge in a Magnetic Field, H. Ludwig, GER

Selected Lectures from TIME 2016

More Applications of TI-Innovator™ Hub and TI-Innovator™ Rover
Surfaces and their Duals, Cayley Symmetroid, J. Bbhm, AUT
Affine Mappings —Treated Systematically, H. Nieder, GER
Investigations of Lottery Game Outcomes, W Propper, GER

A Collection of Special Problems, W. Alvermann, GER

DERIVE Bugs?, D. Welz, GER

Tweening & Morphing with TI-NspireCX-II-T, J. Béhm. AUT

Why did the Tacoma-Narrows-Bridge Collapse? K-H. Keunecke, GER
The Gap between Poor and Rich, J. Bohm, AUT

Tumbling Tour in the Amusement Park, W. Alvermann, GER

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wirmla, D"Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag. Josef B6hm




DNL 117 DERIVE & CAS-TI User Forum p 3

Information from Prof. Simon Plouffe:

Hello Mr B6hm,
the English version is here:

http://plouffe.frINEW/a%20formula%20for%20primes.pdf

The calculation of p,, and m(n)

Simon Plouffe
Feb.23 2020

Abstract

A new approach is presented for the calculation of pnand m(n) which uses the Lambert W
function. An approximation is first found and using a calculation technique it makes it possible to have
an estimate of these two quantities more precise than those known from Cipolla and Riemann. The cal-
culation of pn uses an approximation using the Lambert W function and an estimate based on a logarith-
mic least square curve (LLS) c(n). The function c(n) is the same in both cases. The two formulas are:

p, = —nW (_—e]——n C(n) 1
' “Un ) W)

-1
n(n)= —nWl(_—e)—L(n) 2
n ) W(n)
The results presented are empirical and apply up to n = 10,

If you prefer the French original version, then go to:

http://plouffe.fr/NEW/Une%20formule%20pour%20les%20nombres%20premiers%20IL.pdf

The figure shows Steiner’s Roman Surface. It belongs to page 17.
Z

spl (LU= sin (2‘ f)‘ (cos(u))2 3D Plot Parameters ==
ypl (tu)= sin(i)‘ sin(2: u)

zpl  (tu) = COS(I)‘Sin (2- u)

tmin = @

tmax = [3.141593

|
|
urmin = |-1.570796 |
|

umax = [1.570796

This is the TI-Nspire 3D plot


http://plouffe.fr/NEW/a%20formula%20for%20primes.pdf
http://plouffe.fr/NEW/Une%20formule%20pour%20les%20nombres%20premiers%20II.pdf
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Hyperoperations with DERIVE
Julius Angres, Neuminster, Germany

1 Abstract

This paper deals with the order of arithmetic operations and the hyperoperations tetration, pentation etc.
and their implementation in DERIVE. We present recursive implementations of basic arithmetic opera-
tions on the set of natural numbers and have a look at the relationship between the hierarchy of arithmetic
operations, hyperoperations and the well-known ACKERMANN function®.

2 Ordinary Arithmetic Operations

In this section we will only study arithmetic operations on the naturals. Hence, we sometimes leave out
the attribute ‘natural’ and only use the term number. We put them into an order regarding their complex-
ity. Starting with the successor function, binary addition, multiplication and exponentiation, we extend
this hierarchy with the hyperoperations as defined in the up-arrow notation by Donald KNUTH?.

2.1  Counting (Level 0)

The most basic operation in this context are functions that return the successor resp. predecessor of a

number. Thus, we can move along the number line in steps of one. We define the corresponding functions
succ and pred as follows.

succ:N—N,succ(a)=a+1 @

pred :N\{0} > N,pred(a)=a-1 2

Defining these functions in DERIVE is straight forward. For the sake of readability, we will continue to
use succ, but write a — 1 instead of pred.

2.2 Addition (Level 1)

Addition is repeated application of succ. Hence, we can define the addition of two naturals recursively.
Examples:
344=34+14+14+14+1=7 (3)
4 times
142=14+14+1=3 (4)
‘-,_/
2 times
a+b=a+1+1+4+--+1 (5)
b times
Addition can be interpreted in a graphical way using the standard number line. The first operand indicates
the starting point of the construction and the second one denotes the number of arrows of length one
(applications of succ) that are required. The last arrow now points to the resulting number.

Using these examples, we can define recursive addition addr as follows.

ifb=0
addr :NxN —> N, addr(a,b) =4 ' ©6)
succ(addr(a,b—1)) :else

! The AcKERMANN function was first defined by mathematician Wilhelm ACKERMANN (1896-1962) in 1928
in a proof concerning computability problems on primitive-recursive functions.
2 Donald KNUTH (*1938) is an American computer scientist.
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This almost directly translates into DERIVE code. The line above the definition contains the signature of
the function in HASKELL style in all our code listings involving function definitions (comments).

#1: succ -: Int —= Int
#2: succla) = a + 1
#3: addr :: Int —» Int -» Int
addria, b) ==
ItTh =0

#4- a
succ{addr{a, b - 1))

A call of addr(3,2) for example would be evaluated like this:

addr(3,2) = succ(addr(3,2)) Case 2
= succ(succ(addr(3,0))) Case 2
= succ(succ(3)) Case 1l
= succ(3+1) Def. succ
= B3+ +1 Def. succ
=5

We see that the function evaluation consists of some recursive calls that expand the term before the
terminating case of recursion is reached and the terms can be evaluated to concrete values. This behavior
of expanding and collapsing is typical for recursive functions.

The experienced programmer knows that the evaluation of recursive functions can be speeded up by
using a so-called accumulator that computes the result of a function while the function’s body is ex-
panded by the recursive calls. Thus no ‘running back’ is required. A recursive definition of addition using
an accumulator can be implemented in DERIVE like this:

#5 - addrc :: Int -= Int —= Int —»= Int

addrc(a, b, n) =
Ifh=0
#6: n
addrc(a, b - 1, succ(n))

In this function the accumulator n must have an initial value of a to produce correct results. An initial
value of 0 for the accumulator would require the function to return n + a and would thus rely on addition.

However, both recursive functions are closely related to the mathematical notation. By contrast to this
functional approach, a conventional imperative version of addition using a loop can be realized in DERIVE
like this:

#7: add1 :: Int —» Int —= Int

addi(a, b) =
Loop
IfTh=0
#8: RETURN a
succla)
b -1

a:
b :
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In the listing above we see that one big advantage of functional programming is the direct transformation
from the mathematical notation into code.

2.3 Multiplication (Level 2)

In the same sense that addition is repeated application of the successor function, we can think of multi-
plication as repeated addition. Examples:

3-4=3+3+3+3=12 )

4 times
1-2=1+1=2 (8)
2 times
ab=a+a+--+a 9)
b times
Again, the first operand indicates what number to start with and the second one denotes the number of
repetitions needed. Note that multiplication usually (aside from some cases involving very small num-
bers) produces bigger numbers than addition.
We can thus realize multiplication in a recursive way using the aforementioned succ function. We start
with the mathematical definition:
iifb=0

0
multr :NxN — N, multr(a,b) = 20)
addr(a, multr(a,b-1)) :else

And again, using functional style we can directly convert this definition into DERIVE code:

#9: multr :: Int — Int —» Int

multria, b) =
Ifbh=0
#10: 0

addr(a, multria, b - 1))

Please note, that any call of multr will not only call addr but also succ as we have defined addition
through the successor function. This forces us to change our implementation a little when advancing to
higher order operations to improve performance and avoid huge amounts of recursive calls that all have
to be held in memory waiting for evaluation.

2.4  Exponentiation (Level 3)

The most complex operation we usually see in ordinary mathematics is exponentiation. Yet again, we
can use exponentiation to abbreviate an expression of lower level operations. Exponentiation is in fact
repeated multiplication as the following examples show.

3*=3-3-3-3=81 (11)
N——— —_—
4 times

P=11=1 (12)
2 times

a®’=a-a-..-a (13)
b times
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This time we will skip the mathematical function definition and directly proceed with the DERIVE imple-
mentation.

#11: powr ;. Int -» Int —= Int

powr(a, h) :=
Ifb=0
#12 - 1

multria, powr(a, b - 1))
We can verify the correctness of the function by testing it with some self-chosen input.
powr(3, 4) = 81

powr(l, 2) = 1

powr(2, 0) = 1

powr(2, 10) = 1024

This is the output we get, if we enter our running examples and simplify the expression. Our hierarchy
of recursively defined functions from ordinary mathematics behaves just as expected so far.

3 Beyond the Ordinary

3.1  Tetration (Level 4)

At this point we leave the common arithmetic operations behind and continue with the so-called
hyperoperations, i.e. operations which are of even higher levels than exponentiation. In fact, exponenti-
ation is defined as first level hyperoperation in KNUTH’s up-arrow notation. Having a careful look at the
code snippets above, one might already spot the pattern that leads us further up the ladder: The first
number is a starting point or base as it is called in exponential terms and the second one is the number
of repetitions for the operation. The implementations also reflect this pattern as each operation makes a
recursive call to the operation of the level directly below. That way we can define multiplication as
repeated addition and exponentiation as repeated multiplication. Following this pattern, the next opera-
tion, the second hyperoperation must be repeated exponentiation. This operation is called tetration. On
paper there exist several notations for titration and the big numbers it produces. We will stick with
KNUTH’s up-arrow notation. Using this notation, the tetration of two numbers a (the base) and b (the
height of the power tower) can be written as at1b resp. a1?b.

11M2=1"=1 (14)

2114 = 22" =216 = 65536 (15)

3 TT 4 = 3333 — 37622597484987 (16)

atb=a®" (17)
bms

Now tetration can be defined in DERIVE as follows:
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#13: tetr :: Int —= Int —= Int

tetr(a, h) ==
Ifbh =0
#14: 1

powr(a, tetr(a, b - 1))

As the examples show, the results of tetration rapidly become mindboggling. Playing around a little with
some small values (humbers smaller than 3 in fact) already causes DERIVE to calculate several seconds
before presenting the result. Using the implementation above this is also due to the fact that all our
recursive functions call their predecessors from lower levels in the hierarchy meaning that a call of tetr
will involve lots of calls of succ in the end. We overcome this shortcoming by using a modified imple-
mentation of tetration that uses DERIVE’s built-in exponentiation.

#15: tetr?2 :: Int - Int -> Int

tetr2{a, b) =
Ifb=0
#16: 1

a’tetr2(a, b - 1)

Using tetr2 we can obtain some more results of tetration operations, at least on small integers. The reason
why the numbers are getting so huge quickly is the definition of tetration as repeated exponentiation.
Each tetration defines a power tower that is evaluated from the top to the bottom (tetration is right-
associative). Below is some example output of DERIVE calculating tetrations. Using VECTOR we can
quickly find out where the borders of DERIVE’s ability are for any given base number. Let’s have a look
at the tetration of 2.

VECTOR(tetr2(2, k), k, 1, 5)
[2, 4, 16, 65536,

200352993040684646497907235156025575044782547556975141926501659;
64761547029165041871916351587966347219442930927982084309104855¢
50020667156370236612635974714480711177481588091413574272096719(
090570756031403507616256247603186379312648470374378295497561377
41529463842244845292537361442533614373729088303794601274724958¢
90113423778270556742108007006528396332215507783121428855167555¢4
2000024141963706813559840464035947219401606951769015611972698232
611006403621197961018595348027871672001226046424923851113934004
97333357615955239488529757995402847194352991354376370598692891:2
77031380647813423095961909606545913008901888875880847336259560¢
91403236328496233046421066136200220175787851857409162050489711
37620399920349202390662626449190916798546151577883906039772075¢
363840838477826379045960718687672850976347127198889068047824322
18301158780701975535722241400019548102005661773589781499532325;
867306539931640720492238474815280619166500933805732120816350707
10058924766554458408383347905441448176842553272073155863493476(
381040764688784716475529453265947661700424461063311238021134588¢

The results for k < 4 are fine, but 2115 (only a few digits of which are shown in the screenshot) is an
enormous number since it equals 2°°°%. We can use the DIM command to count the number of digits.

DIMC(VECTOR(tetr2(2, k), k, 1, 5)) ) = 19729
5
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Trying tetrations with base 3 also comes to a quick end.
7625597484987

VECTOR(tetr2(3, k), k, 1, 4) = [3, 27, 7625597484957, 3

The number 3114 is already so large that DERIVE can only provide us with a symbolic result but is unable
to count even the digits of it’. Recalling the definition of tetration, we see that 3114 equals
7625597484987 times 3 multiplied by itself.

3.2 Pentation (Level 5) and above

Of course, the pattern for the lower level operations can be repeated itself to define an infinite hierarchy
of hyperoperations starting with the exponentiation as level one of this hierarchy. The next step after
tetration, would be pentation which is defined as repeated tentration. All these hyperoperations can easily
be implemented in DERIVE using the built-in exponentiation and the already defined hyperoperations. As
the pattern is always the same and the number produced by pentation, hexation, heptation, etc. almost
immediately become so large that they cannot even be computed (or even displayed) by supercomputers
we will provide the implementation of pentation as our final example.

#17: penr :: Int —= Int —= Int

penr(a, bh) =
IfTh=0
#14: 1

tetr2(a, penr(a, b - 1))

Note that we are using tetr2 for the recursive call due to the aforementioned performance issues wit the
generic implementation of tetr.

And this is what pentation of small numbers looks like:

penr(2, 2) = 4

penr(2, 3) = 65536

penr(3, 1) = 3

penr(3, 2) = 7625597484987

3.3  KNuTH’s Up-arrow Notation

One possible mathematical way to define hyperoperations of arbitrary level is the up-arrow notation
which only consists of three simple rules. The recursive definition for it is the following®:

ab ifn=1

at"b={1 fn=1Ab=0 (18)
at" Hatt (b—1)) :else

Here, 1" stands for n arrows, so for example 21* 3 = 211113. This notation can be used to express some
of the largest integer numbers that proved to be relevant in mathematics. One of the largest of them is
the so-called GRAHAM’s number G that originates from a proof about a problem in graph theory. To get
an idea of its sheer size, consider the following function.

% See my comment on page 10 (bottom)
4 Definition taken from https://en.wikipedia.org/wiki/Knuth%27s up-arrow _notation



https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation
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1 i —
g — {31 3 rifm=1 19)

3113 :else

Now by definition GRAHAM’s number G = Q4.

Ordinary and higher order operations can be combined in the hyperfunction hyper defined as follows.

(a ifn>1Ab=1
asl tifn=10
a+b rifn=1
hyper(a,n,b)=<a-b Hfn =2 20
ab (ifn=23
ghuper(a,d,b-1) ifn=4
 hyper(a,n — 1, hyper(a,n,b—1)) :ifn >4

It’s easy to see that the parameter n corresponds to the level we have assigned to the operations in this
paper. We can define the hyperoperations function in DERIVE.

#19: hyper :: Int - Int -» Int -= Int

hyper(a, n, b) :
Ifn=1ab
a
IF n =20
a+1

If

(I
|_I|

n =1
a+bh
#20: Ifn=2
de
IF n =3
a’h
IF n -4
a“hyper(a, 4, b - 1)
hyper(a, n - 1, hyper(a, n, b - 1))

Note, that KNUTH’s up-arrow notation is a part of the hyperoperation function. More precisely, it holds
that a1"b = hyper(a,n + 2,b). We can now use our hyperoperation function to test it with our running
example where a =3 and b = 4.

hyper(3, 0, 4) = 4
hyper(3, 1, 4) =7
hyper(3, 2, 4) = 12
hyper(3, 3, 4) = 81

7625597484987
hyper(3, 4, 4) =3

The results prove that the function hyper is indeed a summary of all the functions presented.

Comment 7625597484987 12 _lees the number of dig-
(JB): LOG(3 , 10) = 3.6383346400240996855.10 its!



DNL 117 Julius Angres: Hyperoperations with DERIVE p 11

4 The ACKERMANN Function revisited

When investigating computable functions and fast-growing sequences one almost certainly comes
across the ACKERMANN function sooner or later. It is an example of a computable non-primitive recur-
sive function that is closely related to the hyperoperation discussed in the last chapter. The modified
ACKERMANN function a (the original one had three parameters) has the following definition.

a(0bm) = m+1
aln+1,0) = a(n,1)
aln+1m+1) = a(n,an+1l,m))

Using a functional programming style in DERIVE we can easily implement the ACKERMANN function.

#21: ackermann :: Int -= Int —= Int

ackermann{n, m) =

I'Fn:[]
m+ 1
#22: Ifm=10

ackermanni{n - 1, 1)
ackermann{n — 1, ackermann{n, m — 1))

Playing around with some small input values gives us a small lookup table for n = 1,2,3 and
m=0,1,2,3,4,5.

APPEND([[m, a(l,m), a(2,m), a(3,m)]], TABLE([ackermann(l, k), ackermann(2, k),

ackermann(3, k)1, k, 0, 5))

[ m a(l,m) a(2,m) a(3,m) ]
0 2 3 5
1 3 5 13
2 4 7 29
3 5 9 61
4 6 11 125
[ 5 7 13 253

However, the next column is impossible to calculate for the presented values of m. DERIVE easily cal-
culates ackermann(4,0) = 13, but struggles to evaluate ackermann(4,1) = 65535 (really takes some time
on my machine). The values of ackermann(4,m) with m > 2 cannot be computed be computed as the
numbers grow incredibly large. In fact, columns of ACKERMANN function are related to the hierarchy
of operations presented in the last chapter. The following table shows the relationship.

n m Operation

{ m+1 SNCCeSS0T

1 m+ 2 addition

2 2m+ 3 multiplication
3 g.2Mm -3 exponentiation
1| 27 t(m+3)—3 | tetration
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We notice that each column produces results that represent a certain level in the hierarchy of arithmetic
operations. In fact, the parameter n of the ACKERMANN function matches with the operation’s level as
presented in this paper. The values in the fifth column would therefore be related to pentation (1*) and
thus are almost impossible to compute except for m = 0, as Ackermann(5,0) = 65533.

5 Upshot

The hierarchy of standard arithmetic operations and hyperoperations proved to be a good use case for
programming and exploring with DERIVE. If discussed with students the focus can be set on different
levels. For beginners just provide them with some functions and let them explore the boundaries of com-
putability by creating lookup tables etc. For more advanced classes the hyperoperations can be used to
work on the topic of recursion and recursive definitions in an abstract way using Derive to make results
visible.

The big integers can also be used to initiate discussions about metamathematics, (ultra-) finitism, con-
structivism as well as philosophy.

Finally, the code snippets in this paper show that a functional programming style can be practiced with
students using DERIVE. Of course, a fully-fledged purely functional language as HASKELL offers way
more possibilities for professional programming, e.g. pattern matching, but in my opinion DERIVE can
be used as an introductory tool to explain the concepts. This is especially beneficial if the students are
used to working with DERIVE in their math lessons.

You know that I like to “translate” DERIVE-code into TI-Nspire-code and vice versa. So, we can
ask ourselves how to realize Julius Angres’ didactical concern and concept using TI-Nspire
technology.

Recursion technique is available, so it is not surprising that this is not so difficult.

But | must admit that | came across one problem. In

DERIVE-code function addrc(a,b,n) needs three argu- | agare(121,245,121) = addrc2 475
ments— a, b, n — with n being a local variable and we | "Emor: Recursion t | Define addre2(a,b,n)-
need only entering a and b. This is not possible in | adarc(245,121,345) ff“;zo The
TI-Nspire-syntax. | found no other way to circumvent 466 | piq
this problem as to enter a as third argument (playing | addrc2(121,345,0) Els;(h 2ab-1m+1) g
addrc2lag,b-1,n

. . " - v_;' ] )

the role of n). Using the command local n did not | =ror Reeursion & Fignqye
i EndFunc
, . ddre2(345,121,0

help. | wonder if there is another way to transfer the | “““° (s, ,4235 |
DERIVE code into TI-Nspire code? =

| tried a second way. It works, but for “larger” numbers Recursion is too deep. (Same happens
with addr(121,345), but reversing the summands gives the expected result.)

Find more about HASKELL on page 15.
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Functions addr and addi for TI-Nspire:

addrc(a,b,n) needs to enter the value of a for parameter n.

. ___________________|

addr
Define addr(a,b]=
when[b=0,a,addr(a+ 1.b- 1]]

addr{23,47) 70
addr{125,203) 328
addrc(47,23,47) 70
addrcl125,203,125) 328
addi(23,47) 70
addi(125,203) 328
|
addrc 115
Define addrc(a,b,n]=
Func
If b=0 Then
n
Else
addrc(a,b—l,n-i—l]
EndIf
EndFunc

addi
Define addila,b)=
Func
Loop

If b=0:Return a

a:=a+1

b:=b-1
EndLoop
EndFunc

1M

1/5

Functions multr, powr and tetr2 for TI-Nspire:

R

multra,7 28
powr34) 81
powr{11,0) 1
powr{1,10) 1
tetr2(2,4) 65536
tetr2(3,3) 7625597484987
tetr2(3,4) %

"tetr2" stored successfully
Define tctr2(a,b]=
Func

When(_b=0, l,atctrZ(a,b—l]]

EndFunc

"multr" stored successfully

Define multr(a,b]=

Func
When(b=0,0,addr[a,multr(a,b—1]]]
EndFunc

"powr" stored successfully

Define powr(a,b]=

Func

When(b=0, l,muﬂr[a,powr(a,b— 1]]]
EndFunc




Hyperoperations with TI-NspireCAS

DNL 117

Here are the remaining functions for TI-Nspire:

- |
penr{2,3) 65536 | fveer 020
Define hyper(a,b,n]=|
penr(3,1) 3 Nfunc
penr{3,2) 7625597484987 |If n>1 and b=1 Then
a
hyper(3,4,0) 4| Else
hyper(3,4,1] 7 If n=0 Then
atl
hyper(3,4,2) 12 Else
kyper(3,4,4] co If n=1 Then
a+b
hyper{3,2,5) 7625597484987 _ Hlse
penr 111 If n=2 Then
Define penr(a,b]= ab
Func Else
When(b=0, 1,!etr2[a,penr(a,b—1]]] It n;3 Then
EndFunc a
Else
If n=4 Then
ahyper(a,b—l,él]
Else
hyper[a,hyper(a,b—l,n],n—1]
EndIf:EndIf:EndIf:EndIf: EndIf:EndIf
Finally, the ACKERMANN function:
ackerm
ackerm(0,10) 11 ‘
Define ackerm(n,m]=
aciﬂem(z,Z] 7 | Func
ackerm(3,2] 29 |Hn=0:
Return m+1
ackem[3,5] 253 If #=0 and m=0:
ackerm(dl,ﬂn] "Error: Recursion too deep" Return ackerm(n—l,l}
Return ackerm {n— 1 ,ackerm(n,m— 1]}
| EndFunc

When | asked Mr Angres to send the Haskell-code for his hyperoperations he was so friendly to fulfill
my request within a few days. (Maybe that | will — having some leisure time?? — install Haskell on my
PC. There is a Windows, a Mac and a Linux distribution for download.
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If you like to inform about Haskell which is mentioned in Julian Angres’ contribution then go to

hitps://www.haskell.org/ )k Has kell

An advanced, purely functional programming language

for information, examples, download, documentation and lots of resources.

See also https://wiki.haskell.org/Introduction#Why use Haskell.3F

This is the Haskell code provided by Juilus Angres:

—-— Successor function is built-in as Prelude.succ

-—- Addition

add :: Integer -> Integer -> Integer
add a 0 = a

add a b = succ $ add a (b-1)

-— Multiplication

mult :: Integer -> Integer -> Integer
mult a 0 = 0

mult a b = add a $ mult a (b-1)

-- Exponentiation

pow :: Integer -> Integer -> Integer
pow a 0 =1

pow a b = mult a $ pow a (b-1)

-— Tetration (using previously defined arithmetic)
tetr :: Integer -> Integer -> Integer

tetr a 0 =1

tetr a b = pow a $ tetr a (b-1)

-— Tetration (using built-in arithmetic)

tetr2 :: Integer -> Integer -> Integer

tetr2 a 0 =1

tetr2 a b = (") a $ tetr2 a (b-1)

—-— Generalized hyperoperation

hyper :: Integer -> Integer -> Integer -> Integer
hyper a n 1 = a

hyper a 0 b = a + 1

hyper a 1 b = a + b

hyper a 2 b = a * b

hyper a 3 b =a * b

hyper a 4 b = a ~ hyper a 4 (b-1)

hyper a n b = hyper a (n-1) $ hyper a n (b-1)

https://en.wikipedia.org/wiki/Hyperoperation

https://waitbutwhy.com/2014/11/1000000-grahams-number.html

http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-gra-

hams-number

https://groups.google.com/forum/#!topic/tinspire/iTK2BulxtCQ

and once more:
https://www.haskell.org/



https://www.haskell.org/
https://wiki.haskell.org/Introduction#Why_use_Haskell.3F
https://en.wikipedia.org/wiki/Hyperoperation
https://waitbutwhy.com/2014/11/1000000-grahams-number.html
http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-grahams-number
http://www.alaricstephen.com/main-featured/2016/11/4/knuths-up-arrow-notation-and-grahams-number
https://groups.google.com/forum/#!topic/tinspire/iTK2BulxtCQ
https://www.haskell.org/
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Surfaces from the Newspaper (8)
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Steiner’s Roman Surface. 1t was discovered by Jacob Steiner when he visited Rome in 1844.

2 2 2 2 2 2
ImplicitPts(x -y + x 2 + ¥y +2 - x-y+2, -1, 1, 0.02)

2
[SIN(E-S)-CUS(t) . SIN(s).SIN(2.t), CUS(S)-SIN(E-t)]
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Surfer (www.imaginary.org) DPGraph (http://www.dpgraph.com/)

This is a remarkable surface — so you can find numerous websites:

https://de.wikipedia.org/wiki/Steinersche Flache

https://en.wikipedia.org/wiki/Roman surface

https://www.mathcurve.com/surfaces/romaine/romaine.shtml

https://mathworld.wolfram.com/RomanSurface.html

http://paulbourke.net/geometry/steiner/
https://www.geogebra.org/m/QRqgzzDGN

http://old.nationalcurvebank.org/romansurfaces/romansurfaces.htm



http://www.imaginary.org/
http://www.dpgraph.com/
https://de.wikipedia.org/wiki/Steinersche_Fläche
https://en.wikipedia.org/wiki/Roman_surface
https://www.mathcurve.com/surfaces/romaine/romaine.shtml
https://mathworld.wolfram.com/RomanSurface.html
http://paulbourke.net/geometry/steiner/
https://www.geogebra.org/m/QRqzzDGN
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Penney-Ante for TI-Nspire and DERIVE
Don Phillips and Josef Béhm

Don’s mail came in on the last day of 2019, December 31. See what did follow:

Josef,

I don’t know if you ever came across this probability problem before, but it might give your
readers some food for thought. | will give you the strategy if you cannot figure it out.

Best regards,

Don

Penney Ante

| was a long—term substitute in an AP statistics class
when a student told me about this game of chance.
Two people each choose a sequence of three coin
tosses, e.g., HTH or TTH, etc. They would then toss a
coin until one of the sequences came up first. He then
told me that if the second person chose a sequence
after the first person chose one, there was a winning
strategy for the second person. The odds of winning
could be increased. | said no way! The chance of
winning for each was 50%. The student persisted, so |
started to do some research.

| found out the game was first presented by Walter
Penney in the Journal of Recreational Mathematics in
1969 and that Martin Gardner described it in his
Mathematical Games column in the October 1974 issue
of Scientific American. So, the upshot s, there is a
winning stategy! See if you can discover it.

penneyante({ 1,2,1 },{ 1,1,2 },100)
I!Pl n n P2 n ”ODDS” ”ApprOXH

g 18
28 72 —
7

Person 2 has the odds of 18/7 to win! That is, out of 25
games, he will win about 18.

2.6
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If you do more repititions the odds for winning
approaches 2 to 1.
penneyante({ 1,2,1 },{ 1,1,2 },10000)

"P1" "P2" "ODDS" "Approx"

" 133
3350 6650 — 2.
67

And, how about this one!
penneyante({ 1,1,1 },4 2,1,1 },10000)
'H'Pl n HP2H TTODDSH Hﬁ_-%ppl,oxﬂ

> /

4363
1274 8726 —— 6.8
637

This is the simulation program.

T —

© Here is the program I wrote to simulate the penneyante i
coin tosses. If 1 is heads and 2 is tails, I start Define LibPub penneyantelr7,12,r)=
with a randInt list of 3 elements of 1's and 2's. Func
If there is no match, T keep the right 2 Local n,l,a,b,m,0,01
elements of the list and add one more element. a:=0: b:=0

This goes on until there is a match and then For n,1,r
another iteration is started. I:=randInt[1,2,3]: m:=0
While m=0
© What is the winning strategy? I leave it for If string(l)=string(t I] Then
you, gentle reader, to figure out. a:=a+1: m:=1
ElseIf string(l]=string(f2] Then
b=bt1l: m:=1
Else
I ::augment[right(l, 2),{randInt(1,2) })
EndIf
EndWhile
EndFor
b
0:=—
a
ol:=round approx(o], 1)
"P1" "P2" "ODDS" "Approx"
a b o ol
EndFunc

Can you figure out the winning strategy?




p 20 Don Phillips & Josef Bohm: The Penney-Ante Game DNL 117

Dear Don,

many thanks for this great example for probability theory.

Instead of figuring it out, I — shame on me — “googled” for Penney Ante and found a lot of respective

websites (strategy included!!).

http://www.math.unl.edu/~sdunbarl/Probability Theory/BackgroundPapers/Penney%20ante/Pen-
neyAnte CounterintuitiveProbabilities.pdf

https://en.wikipedia.org/wiki/Penney%27s game

https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney ante problem for website.pdf

Maybe that I will try translating your Nspire program to a DERIVE function?
Thanks again and

best regards and wishes

Josef

Dear Don,

I like your Prob problem very much.

Just to demonstrate this —and just for fun — I made a little change:
Instead of entering {1,1,1} and {2,1,1} I enter “HHH” and “THH”.
This is function penney?2.

Regards as ever

Josef

penney?2 allows to enter the given sequences as strings:

"HTH" "HHT" "ODDS" "Approx"

penney2("HTH","HHT ",10000) * 6671
3329 6671 2.
3329
"HHH" "THH" "ODDS" "Approx"
penney2("HHH ", "THH",10000) * 351
1225 8775 7.2
| 49 J
"THH" "HHH" "ODDS" "Approx"
penney2("THH","HHH ",10000) * 78
8752 1248 0.1
| 547
"HHH" "TTT" "ODDS" "Approx"
penney2("HHH","TTT",10000) * 2513
4974 5026 1.
2487



http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
https://en.wikipedia.org/wiki/Penney%27s_game
https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf
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Josef,

I like your improvement! You should use that one if you decide to publish it in the newslet-
ter. And, it's given me another thought. I’'m going to add some code so a person can play
against the program. I'll let you know when I’'m successful.

Well, | hope you're not in a deep freeze like we are on this side of the pond!

I've added penney3 which chooses the correct strategy. As long as you don’t look at the
code, you have a chance to discover the strategy yourself.

Regards,
Don
m
6689
3311 6689 ——
3311
penney3("HTH",10000) "HTH" "HHI" "ODDS" "Approx"|
6703
3207 6703 < ——
3297
penney3(" HH",10000) "HHH" "THH" "ODDS" "Approx"
8811
1189 8811 —— 7.4
1189
penney3("HHT",10000) "HHT" "THH" "ODDS" "Approx"|
929
2568 7432 —_— 2.9
321
Hi Don,

I added one more function penney4(t1,t2). It demonstrates one single game between two players and

shows the series of tosses together with the winner.
Regards
Josef

penney4("HTH","HHT")
penney4("HTH"," HHT")
penney4("HTH","HHT")
penney4("HTH"," HHT")

penney4(" HTH","HHT")

|

4
"Player 2 wins"

"TTTHHHT"
"Player 2 wins"

" HTHII
"Player 1 wins"

"TTTTTTTHTTHHT"
"Player 2 wins"

1" HTHII
"Player 1 wins"

"THHHT"
"Player 2 wins"

A
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Dear Don,

sorry, to bother you once more:

I changed penney4(t1,t2) in such a way that you can enter toss-sequences of variable length e.g.
penney4(“HHHHH”,”TTTTT”).

Regards
Josef
-
(" . ") “! penney4 11/22
penney\" HHHHH', "TTTTT Define LibPub penney4(t] ,t2)= -
HHTTT Func
HHTTTH Local c(,l]),l,lc,m,k,i
fe=dim (¢1

HHTTTHT C::{ ||H||’||T|| }

HHTTTHTT Z:: " i—ni "

HHTTTHTTH For i,1,k

HHTTTHTTHH 1=1&c[randTnt(1,2,1)] 1]]

HHTTTHTTHHH EEnleor

=
HHTTTHTTHHHH Lbl next
HHTTTHTTHHHHH | © next line can be removed
"HHTTTHTTHHHHH" | Disp e
" o Y || If I=t] Then
Player 1 wins
~|  m:=1:Goto end -

Josef,

I have changed my original program to handle any number of coin sequences, using some of
your code. Thanks for all your help! By the way, the same strategy seems to work for any
number of coins.

Don

1 —
© Two examples of more coin sequences.

penneyante(" TTHHT"," THHIT",5000)

“TTHHT" "THHHT" "ODDS" "Approx"

1219
2562 2438 — 1.
1281

penneyante(" HHOTTT"," TTTHHH",5000)

"HHHTTT" "TTTHHH" "ODDS" " Approx"

1273 ’
2454 2546 — 1.

1227

penneyante(" HHHTTT"," THHHTT",5000)

"HHHTTT" "THHHTT" "ODDS" " Approx"

3193 8
1807 3193 — 1.8
1807
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|
© Two examples of more coin sequences.
penneyante(" TTHHT"," THHHT" ,5000)

"ITHHT" "THHHT" "ODDS" "Approx"
1219

1281

2562 2438

penneyante(" HHHTTT","TTTHHH",5000)
"HHHTTT" "TTTHHH" "ODDS" "Approx"

1273 4
2454 2546 — L.

1227

penneyante(" HHHTTT"," THHHTT",5000)

"HHHTTT" "THHHTT" "ODDS" " Approx"

3193 ’
1807 3193 — 1.8
1807

Hi Don,
many thanks. | had the intention to suggest this generalization.

I am sure that this will make a fine contribution for the next DNL (including your penney3 and possi-
bly my penney4).

I liked this collaboration very much.
Best regards
Josef

As Don is writing: “the same strategy seems to work for any number of coins” I am not sure if
this is true. | found only one paper dealing with n-tuples of tosses (see the first link among the URLs
given below). Latest news: Please follow my DERVE implementation!

I wanted to realize the Penney Ante Game with DERIVE, too — and | added two more functions (pro-
grams) to indicate the difference between using the winning strategy and using it not. You can follow
my functions on the next page. I don’t print the programs in order to save space. All functions are con-
tained in penney_ante.dfw.

Links:

http://www.math.unl.edu/~sdunbarl/Probability Theory/BackgroundPapers/Penney%?20ante/Pen
neyAnte CounterintuitiveProbabilities.pdf

https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney ante problem for website.pdf

https://plus.maths.org/content/os/issue55/features/nishiyama/index

http://mlg.eng.cam.ac.uk/adrian/Penney.pdf

https://digitalcommons.newhaven.edu/cgi/viewcontent.cqi?referer=https://www.google.com/&httpsre-
dir=1&article=1004&context=chemicalengineering-facpubs



http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/BackgroundPapers/Penney%20ante/PenneyAnte_CounterintuitiveProbabilities.pdf
https://penneyante.weebly.com/uploads/5/9/3/5/59353369/penney_ante_problem_for_website.pdf
https://plus.maths.org/content/os/issue55/features/nishiyama/index
http://mlg.eng.cam.ac.uk/adrian/Penney.pdf
https://digitalcommons.newhaven.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1004&context=chemicalengineering-facpubs
https://digitalcommons.newhaven.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1004&context=chemicalengineering-facpubs
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These are my DERIVE functions. They are a little bit different from the Nspire programs from above:

Player 1 enters a sequence of his choice with ar- | #4- no_pennay(HHHHT )
bitrary length. The computer- it is Player 2 - does
not apply any strategy but behaves like an unin- | PLayer 2:TTTHH
formed opponent and answers with a random se- |ty

guence of heads and tails.

THTTTH
The output shows the second player’s sequence,

followed by the history of the tosses. THTTTHH

It can happen that the computer chooses the same 45 - THTTTHH
sequence as Player 1. Then we will have no win- )
ner —and no looser, of course.

Player 2 wins
#6:  no_penney(HHH)

PLayer 2:HHH

HHT
#2: no_penney(HHHH)
HHTT
PLayer 2:TTTH
HHTTH
TTHH
HHTTHH
TTHHH
HHTTHHH
TTHHHH
HHTTHHH
TTHHHH 47
#3: . no winner
Player 1 wins

. no_penney_n(HTH, 10000)
Same as above, but we simulate n games between

Player 1 and Player 2 (again the computer) having [ HTH THH 0Odds ]

no special strategy. 4978 5022 1.0088

no_penney_n(HHH, 20000)
HHH THT Odds

4
8347 1.1653.10 1.3960

no_penney_n(HTHTHT, 30000)
I (Player 1) choose HTHTHT. My opponent

(computer = Player 2) bets on HTTTTH (ran- HTHTHT HTTTTH Odds
domly chosen). The (simulated) odds for Player 2

are 1.24 : 1. 4 4

1.3417.10 1.6583.10 1.2359
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) ) ) #22: penney(HHH, TTT)
Function penney(t1, t2) allows playing against

a real opponent: Playerl enters his sequence of | THT
tosses (as t1) and then Player 2 can enter his se-

THTH

quence as second argument t2.

Now you can follow what happens and finally you THTHT

get the winner. THTHTH
THTHTHH
THTHTHHT

My last function penney_n(t1,n) lets you play | +prpruyTT
n times against an opponent who knows the right

strategy (the computer). THTHTHHTTH
THTHTHHTTHT
penney_n(HTH, 10000)
THTHTHHTTHTT
HTH HHT Odds
THTHTHHTTHTTH
3377 6623 1.9612
THTHTHHTTHTTHH
penney_n(HHH, 20000)
THTHTHHTTHTTHHH
HHH THH Odds
THTHTHHTTHTTHHH
4 #23: )
2497  1.7503-10 7.0096 Player 1 wins
penney_n(HTHTHT, 10000) #24:  penney(HHHT, TTTH)
HTHTHT HHTHTH Odds TTTT
2237 7763 3.4702 TTTTT
TTTTTH

Did you find out the winning strategy for 475 - [

TTTTTH
Player2? ]

Player 2 wins

You can find the proof following the links to some websites which are given above. All proofs are con-
cerning the case of choosing three tosses. | repeat the trick: Player 2 should take the second toss of
player 1, reverse it (T <> H or H <> T) and set this one in front of Player 1’s sequence and delete the
lastone. HTH—>HHT.

I am not sure if this recipe will hold for longer sequences. Simulation indicates that it is improving the
odds for Player 2 significantly, but I don’t know if there is a better strategy depending on the length of
the sequence.

Would be great to receive any answers or comments.

Thanks to Don for providing this game with a surprising result and the wonderful communication.
Josef (See the following appendix!)
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More simulations — and an important resource:

It is a nice coincidence that | — just after having finished the article above for this newsletter — found
among my so (too) many books and papers the proceedings of a Lehrerfortbildungstag (teacher train-
ings day) held in 1998 (1!1) at the Vienna University. Hans Humenberger — he is now full professor for
Mathematics with Special Consideration to the Didactics of Mathematics — gave a talk: Ein Paradoxon
bei Munzwurfserien und bedingte Erwartungswerte (A paradox at sequences of coin tosses and condi-
tional expected values).

http://www.oemg.ac.at/DK/Didaktikhefte/1998%20Band%2029/Humenberger1998.pdf

Here Humenberger demonstrates how to calculate the probabilities for the appearance of the various
combinations of Heads and Tails not only for three coins but also for two and for more than three.

Similar like in the paper given in the first URL on page 20 he treats the expected values for the waiting
times (number of tosses) until the requested pattern will appear.

Sequence HHH HHT HTH THH HTT THT TTH TTT

Expectation 14 8 10 8 8 10 8 14

I will not demonstrate how to find the values (applying conditional expectations) but will refer to a
computer simulation:

wait(t, m, c = "HT", nc, k, n, 1, lc, dummy) :=
Prog
dummy := RANDOM(O)
k = DIM(t)
m =
1 :== CODES_TO_NAME (VECTOR(NAME_TO_CODES(c i (RANDOM(2) + 1)), 1, k)".11)
-|C::-|
DISPLAY (1c)
#35: Loop
If 1=t
RETURN DIM{1c)
nc = c)(RANDOM(2) + 1)
Tc == APPEND(Tc, nc)

DISPLAY(1c)
1 := APPEND(DELETE(1, 1), nc)
m:+ 1
#36: wait(TTT) Nine tosses to have TTT the first
time
HHT
HHTH If you remove the two DISPLAY
commands you will receive only the
HHTHT number of tosses:
HHTHTH wait(THTHT) = 41
HHTHTHT )
walt(THTHT) = 48
HHTHTHTT
wa1t{THTHT) = 102
HHTHTHTTT
#7- 9 wa1t{(THTHT) = &


http://www.oemg.ac.at/DK/Didaktikhefte/1998%20Band%2029/Humenberger1998.pdf
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Now I’d like to investigate the expected values performing n random experiments:

wait_n(TTT, 100)

12.43

wait_n(TTT, 1000)

13.982

wait_n(TTT, 1000)

14.13

[wai1t_n(HHH, 5000), wait_n(HHT, 5000}, wai1t_n(HTH, 5000), wait_n{THH, 5000)]

[13.795, 7.9328, 9.9148, 8.0532]

We can have all expected values in one list applying my favorite command: VECTOR.

#53:

#54:

#55:

VECTOR(wa1t_n(t, 5000), t, combs)

Please compare with the table from above!

I want to simulate a large number of games with the players each of them keeping their first choice.

I start with Player 1 takes HHH and Player 2 answers with HHT — equal chance on the long hand.

comp_n(HHH,

comp_n{HHH,

comp_n{HHH,

comp_n{HHH,

comp_ni{_HHH,

comp_ni{_HHH,

comp_n{HHH,

The best answer of Player 2 is THH — which is applying the right strategy!!

HHT,

HTH,

THH,

THT,

TTH,

TTT,

10000)

10000)

10000)

10000)

10000)

10000)

10000)

HHH  HHT

4993 5007
HHH  HTH
4037 5963
HHH  THH
1251 8749
HHH  HTT
3912 e038
HHH  THT
4155 5845
HHH  TTH
3027 8973

HHH  TTT

| 4999 5001

combs := [HHH, HHT, HTH, THH, HTT, THT, TTH, TIT]

[13.838, 8.0348, 9.887, 7.9842, 7.9468, 9.849, 7.9904, 13.922]

WinProbh for Player 2 QOdds

0.5007
WinProb for Player
0.5963
WinProb for Player
0.5749
WinProb for Player
0.6088
WinProb for Player
0.5845
WinProb for Player
0.6973
WinProbh for Player

0.5001

Odds

Odds

Odds

Odds

Odds

Odds

for Player
1.0028
for Player
1.477
for Player
6.9936
for Player
1.5562
for Player
1.4067
for Player
2.3036
for Player

1.0004
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Humenberger provides a table showing all probabilities for Player 1 winning against Player 2 for all
possible combinations. (I reordered the first row of table to show the prob of Player 2 to win.)

Player 2

Player 1 HHH HHT HTH THH HTT THT TTH TTT

HHH - 1/2 3/5 718 3/5 7/12 7/10 1/2
Odds 1 3/2 7 3/2 7/5 713 1
The relationship between probability p and odds o is easy: 0=1L. You are invited to compare the
-p

exact values (given by Humenberger) with the results of the simulation of 10000 games.

Now it is no problem to proceed with longer patterns. | can come back to my question on page 23.
(“the same strategy seems to work for any number of coins” I am not sure if this is true.)

One paper among the references gives the answer YES, it is true- but look at the third and the fourth
result given below. Player 1 chooses HHTH. According the Penney Ante strategy Player 2 answers
with THHT and he will have a prob to win of 7/12 (simulated 0.5886) but if he tries TTHH then the
probability increases to 9/14 (simulated 0.6442). So, the strategy is good, but in this case, it is not the
best one.

[ HHHH THHH WinProb for Player 2 0dds for Player 2 ]

comp_n(HHHH, THHH, 10000) =
618 9382 0.9382 15.181

[ HHHH THHH WinProb for Player 2 0dds for Player 2 ]
comp_n{HHHH, THHH, 10000) =
628 9372 0.9372 14.923

[ HHTH THHT WinProb for Player 2 0dds for Player 2 ]
comp_n{HHTH, THHT, 10000)

| 4114 5836 0.5886 1.4307

[ HHTH TTHH WinProb for Player 2 0dds for Player 2 ]
comp_n{HHTH, TTHH, 10000)

| 3558 6442 0.6442 1.8105

[ HHTH TTHH WinProb for Player 2 0dds for Player 2 ]
comp_n{HHTH, TTHH, 10000) =
| 3555 6445 0.6445 1.8129

[ TTHH HHTH WinProb for Player 2 0dds for Player 2 ]

comp_n{TTHH, HHTH, 10000)

| 6393 3607 0.3607 0.56421

Humenberger’s paper closes with a table for all possible games between 4-tosses-games and a very rich
list of references (59). It is interesting that he does not mention the name “Penney Ante” in his article
although his paper — cited by Don Phillips in his first email — can be found among the references as
#44.

The next — and last — page dealing with Penney Ante is the realization of my additional functions with
TI-Nspire.
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HHTTTTHHHTTHHT * | wait 1315
HHTTTTHHHTTHHTH |Define LibPub waitt(t)=
Func
15 .
Local k¢ i,llc,nc
Wﬂfl‘“{"HTH"} k dlﬂl{ } _:{ uHu uTu }
I_ll Jill
HTT For i,1,k
HTTT I:=1&c|randInt(1,2,1)[1]]
HTTTH EndFor
HTTTHH le:=1
Disp Ic
HTTTHHT While I#¢
HTTTHHTT ne: —c[r‘andInt[ ,_,1}[1]]
HTTTHHTTT le:=lc&nc
HTTTHHTTTH Disp Ic
HTTTHHTTTHH I:=r1gl.1t(1,k—1}&nc
EndWhile
HTTTHHTTTHHT dim{fc}

HTTTHHTTTHHTH | |EndFunc
13
waitt("TTH")

HHH

Function name “wait” is not permitted, because “wait” is an implemented Nspire-function.

1 10000 HHH HHT HTH THH HTT THT TTH TTT
2 14.06 7.9453 9.9842 7.,9926 8.0211 10.0445 7.9338 13.9434
3 1000 HHHH HHHT HHTH HTHH THHH HHTT HTHT HTTH

4 30.609 16.45 18.155 17.406 15.575 15.842 20.213 17.831

4 13

=waitt_n(b3,$a$ 53

This is penney from DERIVE. (Two players enter their sequence.)

"HHHTHTTHHTT"
"Player 2 wins"

penney_game(" TTTH" "HHTT ) .

waitt("TTT") » 14

waitt(" THTHT") » 49
waitt_n("TTT",10000) » 13.8632
waitt_n("THTHT",5000) » 41.8796

comp_n("HHTH","TTHH",SOOO) » |"HHTH" "TTHH" "WinProb for P12" "Odds for Pl 2"
1764 3236 0.6472 1.83447

i M

I cannot use VECTOR to calculate the simulations of the expected values of waiting times, but I create
the table in the Lists & Spreadsheet Application. Just enter the numbers of simulations in cells A1 and
A3. All functions are contained in penney_ante.tns and penney_ante.dfw.
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Direction Fields, Phase Planes and Nullclines

Josef Béhm, Wirmla

I am member of a small group working through and discussing Steven Strogatz’s book Nonlinear Dy-
namics and Chaos. There are many exercises and we try to solve some selected ones. David, one of the
group members sent a mail asking for support:

... and (2) I recall that a few (or many) years there was a discussion of using DERIVE to plot
"phase planes" for ODEs!"

Can you transmit it to me (via an email or text attachment)? | want to use it for plotting some
of Strogatz's problems. | assume the one program has specific domains which can be poorly
defined. | would appreciate it if you would look around and see what you have and what may
be easy to use.

Let me start with an example from a textbook (because then I can check if | am right or not):
(Nice coincidence: from Differential Equations, C.H. Edwards & David E. Penney, Penney-Ante is
from Walter Penney!)

Given is the system

We plot the direction field using DERIVE’s built in function DIRECTION_FIELD:

2
1 -x
#1: DIRECTION_FIELD| ——, x, -4, 4, 16, y, -4, 4, 16
L
!

(the slope is dy = L')
dx

Don’t evaluate expression #1, but open the 2D-plot window (set Options > Display > Points > Small
and Connected and Options > Approximate before Plotting, and plot. You should find the following
graph:

f S e e ==t — s
VAP R R
S S S e A3 —
AV S S
S s e — e —
P A A N L R R
I A N S S ST
A A O N N
;fr.f., \\\\.\\
N A Ry =S S S S S |
I A S o P N
I T T T S O N R U
P — e e —
T T T T TN S N
TR R - SN
I R TR R N Y
Il 4 N = — o e — — NN
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The website given below allows to plot the direction field interactively:
https://aeb019.hosted.uark.edu/pplane.html

~
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Now, we proceed accomplishing the phase portrait (direction field + trajectories = solution curves)
with the solution functions using the built in Runge-Kutta method:

RK([x
0

‘]
-y, 1 -x 1, [t, x,
-4

-3.922935156 5.
-3.687382967 -6.
-3.295224611 7.
-2.758336585 -8.
-2.095172969 -9.
-1.325838354 -9.
-0. 4664763402 -9.
0.4764633298 -9.

yl, [0, -4, -4], 0.1, 20)
-4
479650234
838140350
967179885
792571965
289818246
490076438
477799034

385223377
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The result is a 3-columns matrix with t-values from 0 to 2 (step 0.1) and the respective function values
of the x(t)- and y(t)-solution curve with initial point (-4,-4). Changing the step from 0.1 to -0.1 will give
the values in the reverse direction.

All what remains to do, is to extract columns [1,2] and [1,3] for plotting the solution curves and col-
umns [2,3] for the phase portrait:

2
(RK(Lx -y, 1 - x ], [t, x, ¥], [0, 1, 2], 0.1, 20)) COL [2, 3]

2
(RK(Lx -y, 1 - x ], [t, x, ¥], [0, 1, 2], -0.1, 20)) COL [2, 3]

Switch to the 2D-plot window and plot (without evaluating in the Algebra window):

A A
A P
VAV /A
Pl s A
Pl — /IR
P s e — R
P s e — VUV L
Pl s e = R
;F‘l."l \\\'\l‘
Nl A AN B PO SN SR SR {
I A A R 25 P N
I N B R e N T
T = e — sy
S T T RN S N
T e S S N N
T N S
LA N = — — b — — Ny

This is the phase diagram of the system with initial point (1,2).

The following VECTOR-construct allows to plot a family of phase diagrams in one single step:

2
VECI'OR(VECI'DR((RK([X -y, 1 -x ], [t, x, y], [0, O, k], 0.1.t_, 20)) COL [2, 3], k, -4, 4), t_, [-1, 1])

o e e AN e e — —

Plots of all curves with initial points on the y-axis (from -4 to 4 step 1) with t-steps in both directions (the
outer VECTOR-command). Looks quite nice.
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With 0.5-steps for k you will receive a denser net of curves:

2
VECTOR(VECTOR((RK([X -y, 1-x ] [t, x, yl, [0, 0, k], 0.1-t_, 20)) coL [2, 31, k,
-4, 4, 0.5), t_, [-1, 1D
[ ’]
VECTOR(VECTOR((RK(Lx -y, 1 - x 1, [t, x, y], [0, k, 0], 0.1.t_, 20)) coL [2, 3], k, O,

4, 0.5), t_, [-1, 1D

We can add the fixed points and finally, we plot the nullclines (all in black):

The nullclines are the loci of the points in the direction field with horizontal (y-nullcline) and vertical
(x-nullcline) slope.

[ 2 ] 1 1
SIJLUTIDNS(x—y:[],l—x:U,[x,y]):[ ]

E——
m—
E—
F=y
B
=

x -y =0 =
N

2
1-x =10 il ; 5

&

\

\*

A good explication can be found at:

https://mcb.berkeley.edu/courses/mch137/exercises/Nullclines.pdf

Finally, I’d like to plot the solution curves with initial values (1,2) for x(t) and y(t). Using the VECTOR-
construction from above you could plot a family of solution curves in one single step.

2
(RK([X -¥., 1-x ], [t, x, y]. [0, 1, 2], 0.1, 20)) CoL [1, 2]

P R VI Y

2
(RK([X -y, 1 -x ], [t, x, ¥], [0, 1, 2], -0.1, 20)) COL [1, 2]

2 -1
(RK([X -y, 1-x ], (t, x, yl. [0, 1, 2], 0.1, 20)) COL [1, 3] 2\

2
(RK([x -y, 1 - x ], [t, x, y¥l, [0, 1, 2], -0.1, 20)) COL [1, 3]


https://mcb.berkeley.edu/courses/mcb137/exercises/Nullclines.pdf
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The plot of the direction field is obtained like above:
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Given is the system

34
¥
DIRECTION_FIELD| - » X, -4, 4, 16, y, -4, 4, 16
-y
X +e

This is a GeoGebra plot of the phase plane:
I will turn to Strogatz Example 6.1.1
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e

f

F R T

S
P
—_—_— - —_- — — — — 1+ — — — — = = =
' —y], [t, x, y], [0, -4, k], 0.1.t_, 20)) COL [2, 3], k, -4, 4), t_, [-1, 1])

i
VECI'DR(VELTDR((RK([X +e —y], [t, x, y], [0, O, k], 0.1.t_, 20)) COL [2, 3], k, -4, 4), t, [-1, 1])

¥

This gives a family of solution curves (blue):
VECFDR(VEC[DR((RI(([X +e
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I add the fixed points and the nullclines (black):

We don’t need a CAS to find out that (X + €¥=0, -y = 0) have the solution y =0 and x = -1. So, the
fixed point is at (-1,0).

The nuliclines are the curves x + €¥=0 (= y = -In(-x)) and y = 0.
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I was not able to plot more than one solution curve with TI-Nspire. Is there anybody who knows how to
do this? Please let me know.
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I used GeoGebra to plot the direction field, a family of solution curves, the nullclines and two points

which can be dragged through the plane together with the respective trajectories:

=l
- Function
~® gll:y=—In(—x)
Line
Y f:y=0
List
- @ |1 ={Sequence(SolveODE(-y, x + e"(-y), p, p, 10, 0.05), p, -4, 4, 0.5),
- @ |2 ={Sequence(SolveODE(-y, X + e"(-y), p, p, -10, 0.05), p, -4, 4, 0.5)
- @ |3 = {Sequence(SolveODE(-y, x + e(-y), -p, p, 10, 0.05), p, 0, 4, 0.5),
- @ |4 ={Sequence(SolveODE(-y, x + e*(-y), -p, p, -10, 0.05), p, 0, 4, 0.5)
Locus
- @ DirectionField = SlopeField((-y) / (x + e"(-y)), 32, 0.5, -4, -4, 4, 4)

- @ Numericallntegrall = SolveODE(-y, x + e*(-y), X(B), y(B), 10, 0.05)
- @ Numericallntegral2 = SolveODE(-y, x + e*(-y), x(B), y(B), -10, 0.05)
® Numericallntegral3 = SolveODE(-y, x + e*{-y), x(A), y(A), 10, 0.05)

- @ Numericallntegrald = SolveODE(-y, x + e”(-y), x(A), Y(A), -10, 0.05)
Point

- @ A=(2.77,1.39)

- @ B=(-2.49, -0.6)

~® C=(-1,0)

‘vﬁv 2

File Edit _View Options Tools Window Help

A phase portrait is a geometric representation of the trajectories of a dynamical system in the phase

plane. Each set of initial conditions is represented by a different curve, or point. Phase portraits are

an invaluable tool in studying dynamical systems. ... An attractor is a stable point which is also called

'sink'. (Wikipedia)

Two links to interactive applets:
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https://aeb019.hosted.uark.edu/pplane.html
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By Pablo Rodriguez Sinchez -
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about.me /pablo.rodriguez.sanchez " —

https://www.geogebra.org/m/utcMvuUy

and https://www.geogebra.org/m/s8zdVwt7



https://aeb019.hosted.uark.edu/pplane.html
https://www.geogebra.org/m/utcMvuUy
https://www.geogebra.org/m/s8zdVwt7
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Spring Time — Flower Time — Butterflies Awake

When | came across the pretty picture given on page 1 (nationalcurvebank website) | became curious to
search for more information about the Butterfly Curve. After Wikipedia and some other resources,
| found Temple H. Fay’s one-page article “The Butterfly Curve”. He discovered this transcendental curve
when investigating petal curves (not to be confused with pedal curves).

https://www.istor.org/stable/23251552read-now=1&seq=1

VECTOR(EXP(C05(2.t)) - a.C005(4.t), a, 6.5, 0.5, -1)

A family of curves colored using a special DERIVE feature (converting the plot to a bitmap image).
How to do this is described by Tania Koller in DNL#63 from October 2006).

But we can shade regions in various colors defining inequalities as shown below. Unfortunately, the
colors provided by Derive for shading regions are not really bright.

VECTOR(r = EXP(COS(2.t)) - a.COS(4.t), a, -4, 4, 1)

VECTOR(EXP(COS(2.-t)) — a.COS(4.t), a, -4, 4, 1)



https://www.jstor.org/stable/2325155?read-now=1&seq=1
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Temple H. Fay is now Professor Extraordinaire at Tshwane University of Technology. I had the pleas-
ure and honor to meet him at the TIME 2009 Conference held in South Africa. By the way, my best
regards to Steve Joubert (also from Tshwane University).

acos(nd) +bcos(mo)

Temple investigated petal curves of general form p=
cos(0)

. He recommends to try
a<b,a>b,a=b,niseven, nisodd, ...

Temple proposes to ask students predicting the number of petals with both m and n odd; what happens if
(at least) one of them is even. The sliders make it easy to apply rational numbers for the parameters.
Range for t must be adapted.

Derive (and TI-Nspire as well) offer sliders to experiment in all directions:

a=550 =
0.0 741_ 10,00
b = -0.50 =
0.0 Ji 10,00
n =900 =
1.00 7} 10.00
m = 9.00 =
00—} 1000
|
a=550 B I‘I
b=-250
A0 ji 10,00
n=>500
1.00 j— 10,00
m =450
1.00 ji 10.00 :
| \
\ |

DERIVE TI-Nspire



DNL 117

Spring Time — Flower Time — Butterflies Awake

p

39

At the end of his paper Temple Fay writes about his discovering of the “most interesting and beautiful

of all the curves”.

p =€) _1 5c0s(4¢) + sin (%)

0<¢<24rn
This is the original Temple Fay butterfly:

A small change in one argument gives the
butterfly a 90° turn and now we can create
butterflies as we like:

2+t —m )5
ro< EXP(SIN(E)) - 2.CQ05(4.t) + SIN[—]
2+t —m )5
ro= EXP(SINCE)) — 3.Q05(4.t) + SIN[i]

2+t —m )5
r o= 0.5-EXP(SINCE)) - 2.005(4.t) + SIN| ——

24

24

24

1.1 | 1.2 |3

*Butterflies

| colored the butterfly using a painting program
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Another butterfly form is given by Clifford Pickover: The MaTHBROOK:

m 7
t - —

m m 2
EXP| CO5]t - — - 2.1.Q05| 6+t - — - SIN| —8 —
2 2 30

Young Hee Geum’s paper on Butterfly Curves can befound at:

https://www.researchgate.net/publication/232899918 On the analysis and_construction of the but-
terfly curve using Mathematica R/link/594cf2e9a6fdcc79e18cc97f/download

Watch animated “Butterflies”:

https://www.geogebra.org/m/CjPFXGY]

https://www.youtube.com/watch?v=MCQIjZM-jF0

These butterflies are from our garden (summer butterflies):



https://www.researchgate.net/publication/232899918_On_the_analysis_and_construction_of_the_butterfly_curve_using_Mathematica_R/link/594cf2e9a6fdcc79e18cc97f/download
https://www.researchgate.net/publication/232899918_On_the_analysis_and_construction_of_the_butterfly_curve_using_Mathematica_R/link/594cf2e9a6fdcc79e18cc97f/download
https://www.geogebra.org/m/CjPFXGYj
https://www.youtube.com/watch?v=MCQljZM-jF0

