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Hello Josef,

I just learned about

http://www.ibiblio.org/technicalc/packages/mathtools/MathTools.pdf

which you might already know about.

It certainly deserves publicity in your next newsletter if you haven't already done so.

-- best wishes for you and your family.

david stoutemyer

This is the TechniCalc website:

http://www.ibiblio.org/technicalc/

Techni AL
Handheld computing in Math, Science, and Engineering

TechniCalc is an alliance of sites devoted to the use of handheld computers and calculators in industry and academics.

Member sites:

TI-89/T1-92+ Examples

Andrew Cacovean's site contains several tutorials designed to illustrate the use of the TI-89 or TI-92+ calculators in solving various mathematical engineering problems

T\ Geaghang Caloukator FAQ

Ray Kremer's FAQ covers all popular models of TI graphing calculators with information on math tasks. games, and more.

FRANK P. WESTLAKE

This archives programs made by Frank Westlake for the TI-89 family of graphing calculators.

Bhuvanesh Bhatt's TI-89/T1-92 Plus/Voyage 200 page
Bhuvanesh Bhatt's page has many resources for the TI-68k family of graphing calculators, including the MathTools package and the free EQW equation writer.

r
TI-TipList

Doug Burkett's Tip List is the largest single collection of tips, tricks and helpful examples for the TI-89, TI-92 and Vovage 200 calculator families.

TechniCale Forums
Discuss TechniCalec member sites here

Other forums we like: ilnre !mks:

N - Texas Instruments calculators
TT's discussion groups -
United-TT's forum ticalc org
— Hewlett-Packard calculators
comp.sys.hpd8 hpcaleors ore

I downloaded Mathtools.pdf and the respective TI-92/V200 grouped file and sent a mail to

Bhuvanesh Bhatt that | would like to prepare his library (347 functions from agm to zetaprim !!!)
for the TI-NspireCAS platform. He replied very friendly:

Dear Professor Boehm,

Please feel free to port any of my programs to the TI-Nspire. I myself don’t have that device, but assum-
ing the operating system is similar to the T1-68k series (T1-89, TI-89 Titanium, T1-92/92+, V200) | might

be able to help with the port.

Regards,
Bhuvanesh

See the first function of the TI-NspireCAS mathtool-library on page 48.


http://www.ibiblio.org/technicalc/packages/mathtools/MathTools.pdf
http://www.ibiblio.org/technicalc/
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Dear DUG Members,

This was indeed a memorable and
strange spring time. A wee bite changed
our all lives. "C" finds its expression in this
DNL, of course. Sebastian Rauh's simula-
tion of the spread and my modelling the
development of the infection in Austria is
our respective contribution. Sebastian was
very productive and provided tfools for
capturing data from the TI-Nspire Graphs
application.

Wolfgang Alvermann sent his math-
ematics final exam from 1968 together
with his treatment how it has been usual in
that times. I could not resist to add the
TI-Nspire solutions with a few add-ons.
I sent my solution to Wolfgang and he an-
swered: "Inspecting your Nspire elabora-
tion I am very happy that we in that time
had o work manually.”

It might be charming if some of you
would also find their examination tasks
from more or less time ago. We could com-
pare with recent task with or without
technology use permitted.

Enjoy like me Rick Nungester's col-
ourful tubes and his function to produce
them. This is a significant improvement
compared with the SPACE_TUBE-function
provided in DfWb5's utility file
GRAPH.MTH. His function could easily be
ported to the TI-Nspire platform.

Many thanks for your mails, ideas
and cooperation and until next time

with my best regards

Yours Josef

DUG-Mitglieder,

Wir haben doch ein denk- und
merkwiirdiges Frihjahr hinter uns. Ein
winziges Etwas hat unser aller Leben um-
gestaltet. ,C" findet auch in diesem DNL
seinen Niederschlag. Sebastian Rauhs Si-
mulation und meine Modellierung der Ent-
wicklung der Infektion in der ersten Zeit
ist unser Beitrag. Sebastian war sehr pro-
duktiv und hat Werkzeuge zur Datener-
fassung aus dem Grafikfenster des TI-
Nspire geschaffen.

Wolfgang Alvermann hat uns sein
M-Abitur aus dem Jahr 1968 mit seiner
fir damals Ublichen Bearbeitung ge-
schickt. Die TI-Nspire-Ausarbeitung mit
kleinen Zusdtzen habe ich dann drange-
hdngt. Es wdre doch reizvoll, wenn einige
von Euch auch ihr altes Abitur (Matura in
Osterreich) finden und uns schicken kann-
ten. Vielleicht gibt es da noch etwas? Eine
aktuelle Abiturangabe steht bereit fiir
den DNL#119.

Als ich Wolfgang meine Losungen
geschickt habe, hat er nur geantwortet:
.Wenn ich deine Nspire Version sehe, bin
ich ja im Nachhinein noch froh, dass wir
damals hdndisch arbeiten mussten.”

Der Aufsatz von K.H. Keunecke (Ta-
coma Briicke) ist in deutscher Sprache in
MTH118.zip enthalten.

Erfreut Euch so wie ich an den
schonen Rohrfldachen von Rick Nungester
und seiner Fassung der entsprechenden
Funktion, die sich leicht von DERIVE auf
den TI-Nspire iibertragen lief.

Mit bestem Dank fiir Eure Zu-
schriften, Ideen und Mitarbeit und bis
zum ndchsten Mal

Euer Josef
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The DERIVE-NEWSLETTER is the Bulletin of the
DERIVE & CAS-TI User Group. It is published at
least four times a year with a content of 40 pages
minimum. The goals of the DNL are to enable the
exchange of experiences made with DERIVE, TI-
CAS and other CAS as well to create a group to
discuss the possibilities of new methodical and di-
dactical manners in teaching mathematics.

Editor: Mag. Josef Béhm

D"Lust 1, A-3042 Wiirmla, Austria
Phone: ++43-(0)660 31 36 365
e-mail: nojo.boehm@pgv.at

Preview: Contributions waiting to be published

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to write
their contributions in English to reinforce the
international touch of the DNL. It must be
said, though, that non-English articles will be
warmly welcomed nonetheless. Your contri-
butions will be edited but not assessed. By
submitting articles, the author gives his con-
sent for reprinting it in the DNL. The more
contributions you will send, the more lively
and richer in contents the DERIVE & CAS-TI
Newsletter will be.
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Karl-Heinz Keunecke
What caused the Collapse of the Tacoma-Narrows-Bridge?
or
Solving Motion Problems numerically applying
Newton’s Fundamental Law of Motion

Fig. 1: The carriage way of the bridge is excited to torsional vibration®

1. Introduction

It is one task of physics teaching to impart the importance of Newton’s second axiom for calculating
movement processes. This axiom, also called Fundamental Law of Motion says:

If a force is acting on an object then this object is accelerated in direction of the force. The
acceleration is proportional to the force F and inversely proportional to the mass m of the
object.

This relation is often described by F = m - a, where a is the acceleration. However, from this expres-
sion one cannot recognize the importance of this law. For students F = m - a is one of many other for-
mulae which they know from physics teaching. Not before acceleration is replaced by the second deriv-
ative of the position with respect to time it becomes clear that this equation is a differential equation,

F(x(1)) =m-X(t), 1)

which allows to predict the motion of a mechanical system, if the law of force and the initial values of
the motion are known.

In class the general form (1) of the fundamental law can be used only in a few special cases, because
when treating mechanics in secondary Il the necessary knowledge of calculus to work with differential
equations is generally missed.

In order to demonstrate nevertheless the universal validity of equation (1), solutions can be calculated
numerically and then graphically represented. This needs only basic knowledge of difference quotients,
limits and derivatives.

1 https://sites.lsa.umich.edu/ksmoore/research/tacoma-narrows-bridge/
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The following will describe a teaching course “Numerically solving differential equations”. The calcu-
lations were performed using a TI-Nspire CX CAS, which was used in class, too.

It is wanted to provoke students’ interest for the numerical solution of differential equations. So, a
movie free available in the internet as motivation: “The Collapse of the Tacoma Narrows Bridge” is
chosen.
https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=mXTSnZgrfxM

Then the question: “What’s the reason for this catastrophe?” can be posed.

The movie shows that the bridge vibrates heavily, and this leads finally to its collapse. Obviously, a
strong wind was responsible for this disaster.

First of all, the students should investigate en  forced oscillations of a spring-mass-system. By this
simple model they collected experimental experiences, how and under which conditions large oscilla-
tions can result from small exciting forces. Then they could set up the respective equations of motion
and finally solve them numerically.

At the end of this project the students were able — based on their results — to interpret the collapse of
the Tacoma-Bridge as a resonance catastrophe.

2. Methods for numerically solving of Differential Equations

This paragraph describes how to solve differential equations of order 2 numerically.

Most of the dynamic processes like motion, growth and decay, any change of state etc. can be de-
scribed as a mathematical model using a differential equation. As it is not possible in all cases to find
an analytical solution, one has to apply a numerical approximation method. In doing so, motion is only
calculated stepwise in defined time intervals. The result can be given in a table and/or as a graph.

An undamped oscillation of a spring is chosen as introductory example. The students should know this
from earlier lessons. They expect as result a sinusoidal oscillation with constant amplitude. So, they
can judge the quality of the numerical approximation.

Starting with initial values to and X, the position coordinate x; after time step At shall be determined.
. . AX .
Velocity v can be approximated by v ~ A v. The first values are Ax = x1 — Xo and v = Vo which leads

immediately to
X =X, +V, - At 2
In order to calculate the next coordinate x, = x, +v;, - At from the previous one iteratively, it needs the

value of vi. This can be achieved applying the law of force for the undamped oscillation.

There is a linear relationship between the force acting on a body of mass m and the excursion x of the
oscillator during the oscillation

F(x)=—k-x, 3)
where K is the spring hardness.

. . . . A
Because of Newton’s 2" axiom F(x) can be replaced by m-a. Introducing the approximation a ~ A_\t/

gives Av :—h-x-At.
m


https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=mXTSnZgrfxM
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Using the initial values and equation (3) and replacing Av by vi — Vo gives for vi:
k
Vi =Vp =X AL (4)

For calculating x» and v» it only needs to increase the counting variables in equations (2) and (3) by
one:

X, =X +V, - At and szvl—%-xl-At. ®)

Further calculations can be done in the appropriate way.
This iteration is called Euler Method.

2.1 Using a Spreadsheet

The method described in the paragraph above shall be performed using the spreadsheet application of
the TI-Nspire CX CAS. However, the parameters must be defined. Thus, At= 0.1, x0 =1, vo =0 and

K =1 are set. After inserting the Lists & Spreadsheet application three columns as time, position and
m

veloc are defined. Then the initial values are entered in the first row. Cell a2 becomes cell content of al
increased by 0.1.

EXN » *ODE2_u.ped reo [l X

A time E position Cweloc D Atime E position Cwveloc D

1 0 1 0 1 0 1 0

2 2 0.1 1 0.1

3 3

4 -

S - -
=g 7+0.1 9 b 1

Fig. 2: Entering the initial values; Fig. 3: Iterative calculation of position and

increasing time by At=0.1 velocity

This iteration is performed for 200 rows resulting in
the coordinates for position and velocity for the first
20 seconds. An upper bound is only limited by the
hardware resources.

Fig. 4 shows the numerical approximation of the posi-
tion of the oscillating mass (blue) and its velocity
(red) dependent on time.

As expected, sinusoidal shaped curves appear. But the

. A
tex{.mne,velot] x’i“r Ej"

25 amplitude increases by time. This is not realistic — due
to the method applied for the approximation. Fig. 5
will explain this.

-

Fig. 4: Approximation of displacement and
velocity of the oscillations of a spring using
the Euler method
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In Fig. 5 the exact solution of the differential equation
(red) of an undamped oscillation f1(x) = cos(x) is plot-
. X ted. The coordinates obtained by the Euler-method are
marked by blue crosses. Compared with fig. 4 At was
i /3| changed to 0.25.
il \\ﬂm=cosm ( | calculation starts with initial values xo and Vo which
N give the ordinate of the next point X; = Xo + Vo - At.
T TTTTI i Since the change of the position in the first interval is

|{tinle,pl]sitiun} u
- LS Vo - At =0, X1 does not change: X1 = Xo.

Fig. 5: Comparison of the exact solution and

the approximated one
In the following the values at the right borders (xi.1,vi+1) of the respective intervals are calculated from
the values at the left borders (xi, vi). This leads to discrepancies compared with the exact solution. At
the beginning are the calculated ordinates greater than those of the exact solution. And this leads conse-
guently to higher velocities, too. The next consequence is that the displacements become larger by the
time, which can be observed in fig. 5.

It is obvious that the approximation goes worse when a larger time interval At is chosen. A significant
reduction of the time step interval leads at one hand to an improved approximation but at the other
hand to a larger amount of data. It is also possible to calculate the slope for calculation of the next point
not at the begin of the respective interval but in its mid. This yields an enhanced approximation. There
are numerous other methods which lead to sufficient approximations. average velocity in the intervals.
A description of more methods for numerical solutions of differential equations would go too far in our
teaching unit intended for secondary Il students.

Paragraph 2.1 introduces thoroughly to the simple Euler-iterations by means of spreadsheets. Here the
students have the chance to learn the use the iterative calculation of displacement and velocity by
means of spreadsheets from scratch.

2.2 Application of the menu-controlled TI-Nspire CAS-tool

TI-Nspire CX CAS enables to perform the calculations presented in section 2.1 by means of a menu-
driven application That application needs simply the differential equations of the displacement and the
velocity, their initial conditions and the parameters concerning the iteration. Using such a “Black Box”
is acceptable, because the underlying concept has been worked out with the students in the section be-
fore).

Here again undamped oscillations shall be investigated first, in order to compare with the result shown
in2.1.

Firstly, the 1% order differential equation for the position yields:

X=V. (6)
Secondly, another 1% order differential equation for velocity v can be derived from the law of force
m-X=-K-X considering that X=V:

V=——-X @)



DNL 118

K.-H. Keunecke: Collapse of the Tacoma-Narrows-Bridge | p 7

Equations (6) and (7) are the base for the approximation of the difference quotients, which are used like
in paragraph 2.1 for calculating tables iteratively. The differential equations can be entered directly.
However, the names for the occurring variables are predefined. They differ from the notation known
from physics but they must be used. So, renaming is necessary. Position variable x is replaced by y1
and velocity v by y2. Additionally, time t is named x and the derivative with respect to time t must be

. . k
written as y1”and not as y1. Parameter values are chosen as above: At=0.1,x0 =1, vo=0and —=1.
m

b *ODE2_u.. ped

ran [l] X

oy Tp2
dl:
(o, 1 )

o]

[ETRTH

-10 1

“b.67

Fig. 6: Entering differential equation d1

Differential Equation

Solution I;1-'.-th--=:|:| Runge-Kutta

Error Tolerance: | 0.0017

Field: | None

LR
T

Default (x and )

Z-Zt—| *®

e | y

QK

Cancel

Fig. 7: Setting the parameters for the ap-

proximation

*ODEZ2_u..ped

rap [l] X

V2 '=|‘_}'!
(o2 (0,0

y &8

-1.59

\ /N
AVARV

2.2

\
\J

7

Fig. 8: Entering the DE d2 and the
representation of the displacement

For entering the differential equation the Graph En-
try/Edit Menu in a Graphs-Application is chosen and
the option Diff Eq. is selected. Now equation (5) and
the initial conditions for y1 can be entered using the
syntax of the calculator (see fig. 6).

Afterwards the 2" differential equation (6) and its ini-
tial conditions are entered (see fig. 7). The parameters
for the numerical procedure must be entered as shown
in fig. 7. As seen earlier that the Newton method is too
inaccurate, the much more accurate Runge-Kutta
method is taken. For displaying the displacement as a
function of time, as axes are chosen x (time) and y
(displacement). Further down in this menu the tem-
poral interval for the numerical approximation must be
defined.

Fig. 8 presents the result of this approximation. In con-
trary to the result of the Euler method, the amplitude of
this graph — again sinusoidal — seems to be constant.
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*ODE2_u._ped ruo [l X Fig. 9 demonstrates to students, that the menu-con-
fay x  DEly.~ *| trolled procedure generates as well at first a list of val-
interpolat. ues of time, displacement and velocity by iterations.

vi_1

\ These data are displayed then. Keypress Ctrl + T dis-
A ==
2
3

e plays both, graph and list. (see fig. 9).

'
—

- \/ \j‘“ G The resulting graphs in fig. 8 and fig.10 can be modeled
4' _0'6501'” by trigonometric functions. When for instance cos x is
- drawn in the same graph, both graphs coincide exactly

5 N2R3303 v
2.2 D.5205672499% | 4 »

Fig. 9: Table for the positions and its graph

+ODE2_u. ped TP Both the displacement y1 and the velocity y2 have
2y been calculated as it is seen in fig. 10. Due to the initial
v1 1 conditions and the assumption % = 1, what means

19 _
\ f% \ /7(\ m w=1 % , two phase-shifted sine waves with equal
/ / \ I,l'l VR )
'”U\W ‘\\W 7 \"g'n.s:“ amplitudes appear.
\ \
\

ya 1

Fig. 10: Displacement and velocity

Phase relation of both graphs can be recognized in a phase diagram (fig. 11), where y2 is drawn as
function of y1. The phase diagram gives a circle only when the amplitudes of both waves are equal and

the phase shift between both is %

Students can reproduce such diagrams, when they draw
Tomaryom o s two sine functions against each other and vary the phase
g NS shift between 0 and 2.

This diagram shows the direction vectors of the motion
«|[ in several points. We can recognize that the diagram is

passed through clockwise starting at point (0|1).

Fig. 11: Phase diagram y2 vs y1
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3. Examples from Physics Lessons

Paragraphs 2.1 and 2.2 served as introduction into computer assisted numerical solution of differential
equations. This procedure is an important tool in physics. As it has demonstrated before, this tool can
also easily used in physics lessons. The procedures enable to answers questions, which cannot be
treated without computer assistance. Among others there exist physical problems without analytic solu-
tions in closed form or problems which cannot be solved with the mathematical knowledge of second-
ary Il level.

Students should proceed as follows:

e At first, they develop the law of force of a motion and deduce then the respective 2" order dif-
ferential equation.

e Thereafter they replace this differential equation by two 1% order differential equations for po-
sition and velocity which enable a numerical solution.

e They enter the differential equations into the CAS-calculator and obtain the graphic representa-
tion of position and velocity as function of time.

e They have also access to the calculated values given in a table.

Two examples shall be demonstrated in the next section.

3.1 Pendulum Swinging

Gravity pendulums generally don’t execute undamped (har-
monic) oscillations. Only for small swings the motion can be
considered approximatively as an undamped oscillation.

In order to work out the acting forces, an idealized model is as-
sumed, the so-called mathematical pendulum. It consists of a
‘ point-shaped mass fixed on a massless rod moving without fric-
Va A tion on a pivot (fig. 12).

Fig. 12: Forces acting on a rod

pendulum
For a rotation around the pivot point after being displayed by the angle a(t) repulsive forces F, are act-
ing which are directed tangent to the circular arc. This force can be calculated according fig. 12 and be-

cause the gravity force G can be substituted by m- g, itresultsin
Ra®)=-m-g-sin(a(t)), (8)
where m is the mass of the body and g the acceleration of gravity. In the following « is always a(t).

From equation (8) Thus, it can be seen that there is no proportional relation between repulsive force
and the displaced angle. Hence, the swing of the pendulum is not harmonic oscillation.

The respective differential equation can be derived from the above law of force. Due to Newton’s
2" axiom the left side of (8) is replaced by m - a.. The acceleration a; of a body moving along a circle
with the radius | is | - &. Division (8) by I-m results in

i =—Igsin(a). 9)
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By introduction of an additional variable — angle velocity @ =a — the system of two 1% order differen-
tial equations can be deduced from the 2" order differential equation:

& =wand & = —Igsin(a). (10)
Using the syntax of the calculator this must be entered as:
yl'=y2and y2'= —Igsin(yl). (11)

rad?
SZ

For convenience Ig:l is chosen and the initial velocity is set to 0.1,
s

In order to provide variable initial conditions for y1, a slider is used to vary the values of y1(0) from
the interval [0; «].

System (11) is entered in the calculator. Both displacement (black) and angle velocity (red) as well are
displayed dependent on time.

The following figures 13 and 14 give a first impression of the run of displacement and velocity depend-
ent on the respective initial value of the displacement. The scales on the axes remain unchanged in or-
der that changes in the magnitude of displacement, velocity and frequency become clear.

*pendulum ! X B . *pendulum B . *pendulum

Fig. 13:  10°~0.175rad 45° ~0.785 rad 90° ~ 1.57 rad

*pendulum

Fig. 14:  135°~2.36 rad 170° ~2.79 rad 179.90° ~ 3.14 rad

As long as displacement at the beginning is small (see 1% picture in fig. 13), the graphs of y1 and y2 are
sinusoidal. In this range the motion shows all indications of a harmonic oscillation. If the displacement
increases, the deviation from harmonic oscillation becomes more and more significant. Moreover, the
frequency of the oscillation changes with the magnitude of the initial displacement of the pendulum.

The acting forces, causing the pendulum motion are described by equation (8). In contrary to the linear
motion law (3) the forces are restricted by the factor sin(a). This enforces a slowdown of the motion
and an enlargement of the oscillation time. Because in particular the repulsive forces at angles above
90° decrease — instead of increasing like in undamped oscillations — there are significant deviations
from sinusoidal graphs.
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Instead of investigating the temporal behavior of y1 and y2
it is also possible to look at the phase diagram.
Fig. 15 shows the graph of y2 dependent on y1 for an initial
e displacement of 179.9° (fig. 14, last screen). In the presen-
~ gl tation motion starts at the red point (maximum displace-
N ' ment). The direction arrows indicate that the curve is run
“Grpen). ~="_""" | through clockwise. Comparison with fig. 11 shows clearly
S PEPEPE e iy the difference to a harmonic (undamped) oscillation).

Fig. 15: Phase diagram;
initial value 179.9° ~ 3.14 rad

3.2 Damped and Enforced Oscillations

The following investigation shall help to understand the process of the Tacoma-Bridge collapse. Obvi-
ously, the bridge executes vibrations under influence of the wind. It is proposed to investigate enforced
oscillations on a simple model at first. It makes sense to watch and study motions in reality before
mathematical modelling the procedures.

As a simple experiment a cart on a track? has been ¢
which is fixed between two springs. When periodical
caused by rotation of the eccentric wheel are acting

cart then it performs enforced oscillations. After own
iments the students will find out:

Fig. 16: Experiment to investigate
damped and enforced oscillations

1. After response time the cart moves in the rhythm of the acting force.

2. For arelatively small frequency range of the excitation the displacement of the cart exceeds sig-
nificantly the displacement of the excitation.

Damped Oscillations

For simulating the experiment knowledge of the forces acting on the cart is necessary. At first, the re-
pulsive force of the springs — given in equation (2) —f(x) = — k - x acts on the cart.

It is known that the amplitude of real oscillations decreases over time. So, besides the repulsive force

another force, the friction, acts in the same direction, which is in general proportional to the velocity v
of the oscillating body:

Fi=—r-v=-r-%
where r is a measure for the strength of damping.

Thus, the law for the damped oscillation of the cart results in:

F(x(t)) =—k - x(t) —r- x(t) = m- X(t). (12)
In analogy to the procedure presented in paragraph 2.2 one obtains the following system of 1% order
differential equations:

%(t) = v(t) and V(t) = —% X(t) —% X(Y),

22013, MEKRUPHY, Mechanik 6, Erzwungene Schwingungen, p 24
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which is written in the syntax of the calculator as follows:
yl'=y2and y2'=—£-y1—L-y2. (13)
m m
For calculating a special solution values of the constants m, k and r are needed. The students know
from physics lessons that k =} is the resonance frequency. Oscillation time of the eigenfrequency
m

(fig. 16) can be measured and the angular velocity wo can be determined from it. Alternatively, wo can
be determined from the spring constant k and the mass m of the cart.

2
LY L
m S

Parameter L, which describes the damping cannot be taken from the experimental set-up in such an
m

easy way. Therefore, a slider b is introduced for T It was set such that the time flow of the numeri-
m

cally calculated oscillation matches with the time flow of the displacement of the cart (fig. 16) in the

best possible way. Comparison lead to b = 0.25. It will be defined later on.

Taking the given parameters both differential equations
are entered in respective menu in the Graphs-applica-
tion. The result is displayed in fig. 17.
The calculated damped oscillation is described by a co-
sine-function with obviously exponential decreasing
amplitudes. In order to confirm this, the graph of f1
was additionally plotted. The slider for variable a was

| adjusted so, that the graph of f1 touches and enclosed
-1I.J09 i the relative maxima of the graph of the numerical solu-
tion. This is the case fora~0.13 s™%.

Fig. 17: Damped oscillation and exponential
function

From these observations can be concluded that the time flow of the oscillation is given by:

™" c0s(v/6.75™ - X). (14)

In fig. 18 the numerical solution (red) and the graph
according to expression (14) (blue and dotted) is mod-
elled. The algebraic model (equation 14) and the nu-

- .sﬂ ! merical approximation match excellently for

11 f ﬂ A B a=0.13st

Ty VY The numerical solution can be described algebraically —
in the notation used in physics —by the following func-
tional equation

X(t)=e™'-cos(\/67s*t).  (15)

o
y
lep1_1) <> b =25

Fig. 18: Modelling the graph by function 2

Yet the relationship between the parameters a and b, which both describe the strength of damping, is to
find out. The example above shows that the value of b is approximately twice the value of a. This rela-
tion is valid for any other parameter a and b. Using the exact solution of the differential equation one

1r

can see that the decay of the oscillations is determined by the factor e 2m"  With students one can only
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. With this assumption one can model the numerical solution by a func-

X(t) = eé‘%’t : cos(\/K : t]. (16)
m

i Gy : : Finally, the phase diagram of the damped oscillation is
- «.s—,:‘\\ ©© | displayed (fig. 19), which presents the velocity of the
. // /‘.":#-_;"‘\;\ \\\ | || swinging cartas function of its displacement. It shows
,:' [ { / 77 “\\ N '1,'. lo I3 clearly the exponential decrease of the oscillations.

1 1
suppose that a==-bh=="
PP 2 2

tion.

Fig. 19: Phase diagram of a damped
oscillation

Enforced Oscillations
After the detailed investigations of damped oscillations of the cart the differential equation for the mo-
tion of the cart (fig. 16) under influence of a periodical external force can be set up.

The external force for a continuous rotation of the crank is Fo sin(w ¢), where o the frequency of the
exciting force and Fo the amplitude of the force. Then the occurrent forces are given by:

m-X=—k-x(t) —r - x(t) + F, - sin(wt). a7
The respective inhomogeneous 2™ order differential equation result in:

g =— K xt)y =L x(t) + 2 sin(at). (18)
m m m

For the numerical solution of equation (18) again a system of two 1% order differential equations — for
the position and the velocity — is needed. Using the syntax of the calculator one obtains:

yl'=y2and y2'=—£-yl—L-y2+5-sin(a)x). (19)
m m m

Following parameters are taken:

2
£=67rad , L:o.z-l,angularfrequency 0.1-@§ws4-@.The time interval is set on 40 s.

m  s2'm s s s

the amplitude of the acceleration forced by the hank is given by R_ O.Si2 . The initial values then are
m S

y1(0) = 0.2, y2(0) = 0.

In the following presentations the angular frequency is varied using a slider (variable w). Scaling of the
axes is kept constant so that the differences in size of the amplitudes and frequencies are recognizable.
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*enforced D > B *enfarced

NAAA 3| A~ x A A ANA A A A AN
.05 5 6 s 5 N Sy RtV RV AR AR Y AR VARV AY
£/ > b (NS ] <> lb
1 -1 1
Fig. 20: Period T = 63s T =84s T =425

At the beginning of the excitation of the oscillation the displacement of the cart is displaced by the mo-
tion of the crank. As a result the cart is excited to damped oscillation with the natural frequency of the
system. These oscillations are superimposed with the periodical excitation. This can be seen in fig. 20.
After a transient phase of approximately 20s the damped oscillation is decayed and after that follows a
stationary oscillation of the cart with the frequency of the excitation. For very small frequencies the
amplitude of the cart is just as great as the displacement by the eccentric.

1 *enforced K Cemtizrmad
B v

€] > |lw =285 <2 lw =4,

_1_;:[\\}!\ il ﬂ AL [\,-0 bl I ﬂ /\ (\ ﬂ ﬂ M M M 1A Ao AR Ao
P R

<l2lp =2 <> lv =2 [N T
-1 -1 -1

Fig. 21: Period T = 2.62s T = 2.46s T = 1.57s

As soon as the excitation frequency approaches the resonance frequency of the clamped cart

(fig. 21, pictures 1 and 2) the amplitude of the motion of the cart grows up to nearly the twentyfold of
the excitation displacement. After this state of resonance, the oscillation decreases again and its ampli-
tude tends towards zero for high frequencies.

This qualitative evaluation of the numerical solution offers the students a physical explanation of the

vibrations of the bridge and its collapse. From the point of physics, it is more satisfying if a quantita-

tive statement for enforced oscillations is also possible. From the graphic representations of the solu-

tions for various frequencies of excitation one can determine the amplitude of the stationary displace-
ments of the cart after transient effects have been disappeared.

*enforced 4 . [ [ *enforced

fllx)=a 1(x)=a
0., T o |
‘Hll’\uﬂJ]ﬂunvﬂJ\J\vﬂﬂﬂﬂvﬂﬂﬂl\nﬂﬂﬂﬂﬂf\ﬂﬂﬂ w IJ! t}
R AT AR RT A AT A A AT A AR A AR AR R RS .ILUEWU\‘
<] > b =.14 > b =.14
0.7 0.7

Fig. 22: Plotting f1(x) passing the maximum values of the displacements
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In graphical displays of the application Diff Eq one cannot display the coordinates of points of graphs.
In order to find the coordinates of the maxima during the steady state, the graph to f1(x) = a is plotted.
Parameter a is ruled by a slider. The graph of f1 is parallel to the x-axis. The value of a can adjust so,

that the line touches and enclose the displayed maxima as shown in fig 22.

. *enforced ran I X

The frequencies and the respective amplitudes are

A freq B amplit [SIEEN measured and transferred to the TI-Nspire spreadsheet
= =capture(w,0|=capture(|=amplit/0.035) X application. The measured values are divided by the
1 2.55 0.59 16.8571 value of the amplitude of the periodic excitation of the
12 26 0.65 18.5714 eccentric and displayed then in the third column. (This
13 2.65 0.5 14.2857 standardization makes the comparison of different sys-
14 27 0.35 10. tems possible.).

15 2.75 0.26 7.42857,
4 3

Fig. 23: Frequencies and amplitudes

Now the relative amplitudes can be plotted versus the frequencies (fig. 24). The graph shows very clear
the resonance magnification when excitation acts with resonance frequency. In this case the amplitude
of oscillation of the cart is almost twenty times greater than the maximum displacement of the excita-

tion.

{ Resonance Curve

|
|

|
]
1

.

X
5 \ (freq,relamp)

B \L\\‘__ )

——
o
—_—
- = L <O

=05 1

Fig. 24: Resonance curve of the model for enforced oscillation

Calculations can be continued for other values of damping, to understand the phenomenon of enforced
oscillations under other conditions, too.
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With this investigated model for enforced oscillations it was not possible to increase the energy input
so far, that a resonance catastrophe occurs. As a little candy for holding on so long one should as a
teacher let an empty wine glass split using a loudspeaker with the appropriate resonance frequency and
enough sound volume. Finally, the definition of the concept “resonance catastrophe” found by Wik-
ipedia is presented to the students and discussed with them:

In mechanics and construction, a resonance disaster describes the destruction of a building or a tech-
nical mechanism by induced vibrations at a system's resonance frequency, which causes it to oscillate.
Periodic excitation optimally transfers to the system the energy of the vibration and stores it there. Be-
cause of this repeated storage and additional energy input the system swings ever more strongly, until

its load limit is exceeded.

4. Conclusion

The functional description of the resonance curve can only be deduced from the exact solution
of the corresponding differential equation. Students lack of the considerable skills in mathe-
matics for such calculation.

This article on numerical solutions of differential equations has shown, that students have the
ability to determine the resonance curve point by point (fig. 24) This result demonstrates, that
the numerical solving of differential equations could be very helpful in physics lessons.

Rideger Baumann

Wolfgang Ludwicki informed me end of March that our
member for many years, Riideger Baumann, passed
away 10 July 2019. Rldeger was a pioneer in didactics
of teaching information technology and combining it
with mathematics education from the very beginning.
He was author of numerous books and contributions in
journals (LOG IN a.o.). He could finish his last work
“Object Oriented Modelling with SAMLLTALK/
Squeak” in the LOG In journal.

I remember his passionate presentations at the Vienna
Conference VISIT-ME in 200211, Although he was an
expert in computer assisted math teaching, he preferred sending his contributions in “old-fash-
ioned” letters.

Rideger contributed many articles for our newsletter (13). His contributions and his — some-
times controversial opinions - are his legacy for the DUG-Community.

You can find an obituary and appreciation of his work at
https://www.log-in-verlag.de/digitale-bildung/

[T His lecture given at VISIT-ME 2002 is part of MTH118.zip.
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Tacoma-Collapse treated with DERIVE

The Euler-method for numerically solving DEs is not implemented in DERIVE - so Help Yourself:

Euler Method: )
0 1 0
ode2(x0, v0, dt, n, t0, xn, vn, spr, 1, rn) := 0.1 1 0.1
Prog ’ '
t0 =0 0.2 0.99 -0.2
spr:= [[t0, x0, w0]]
1:=1 0.3 0.97 -0.299
Loop )
If i > n 0.4 0.9401 -0.396
#1: RETURN spr #3: 0.5 0.9005 -0.49001
t0 == t0 + dt
vn = v0 - x0-dt 0.6 0.851499 -0.58006
xn = x0 + v0-dt
spr := APPEND(spr, [[t0, xn, wvn]]) 0.7 0.793493 -0.6652098999
x0 = xn
V0 = vn 0.8 0.7269720099 -0.7445591999
1=1+1 0.9 0.6525160899 -0.8172564009
#2: ode2(1, 0, 0.1, 10) 1  0.5707904499 -0.8825080099 |
#4: {ode2(1, 0, 0.1, 200)) COL [1, 2]
#5: {ode2(1, 0, 0.1, 200)) COL [1, 3]
#6: COS(x)

Fig. 4 from above

-2

#8: (RK([y2, =y11, [t, yl1, y21, [0, 1,

#9: (RK([y2, =y1]1, [t, y1, y21, [0, 1,

Fig. 10 from above

0], 0.1, 200)) CoL [1, 2]

0], 0.1, 200)) CoL [1, 3]
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#10: (RK([y2

[t, yl, y2]

Collapse of the Tacoma-Narrows-Bridge with DERIVE
. =yll, , [0, 1, 0],

DNL 118

Fig. 11 from above

#13: (RK([y2,

#14:  (RK([y2

Fig. 13-3 from above

- SIN(y1)]

. = SINCyl)]

2

. [T, vl y2]

. [T, yl1, y2]

. [0, 1.57, 0],

0.1, 200)) CoL [2, 3]

Ty
o

—a,

-
o]

. [0, 1.57, 0], 0.1, 250)) COL [1, 2]

0.1, 250)) COL [1, 3]

/AN

8 Thi10

#15: (RK([y2, - SINCy1}1, [t, y1, y2]
#16: (RK([y2, - SINCy1)]1, [t, v1, yz]
Fig. 14 from above
-1
-2
-3
#17: (RK([y2, - SINCy1)], [t, yl1, y2]
#18: (RK([y2, - SINCy1)], [t, yl, y2]
Fig. 14-3 from above

3

. [0, 2.79, 0]

[0, 2.79, 0],

14 16 1 2 22@ 2€

, 0.1, 250)) CoL [1, 2]

0.1, 250)) CoL [1, 3]

A/

. [0, 3.14, 0],

. [0, 3.14, 0],

/

20

22

24

26

i w

0.1, 250)) CoL [1, 2]

0.1, 250)) CoL [1, 3]
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Comparing the graphs one can notice a significant difference in the period length. What is cor-
rect? TI-Nspire or DERIVE? | asked Autograph (see below) and then MATHEMATICA.

Autograph

MATHEMATICA

NDSolve[{yl'[x]==y2[x],y2'[x]==-Sin
[yl[x]],y1[0]==3.14,y2[0]==0},{yl,y2},{x,0,25}]

{{yl->InterpolatingFunction[{{0.,25.}},<>],y2->InterpolatingFunc-
tion[{{0.,25.}},<>1}}

-Graphics-

Plot[{Evaluate[y2[x]/.%10] ,Evaluate[yl[x]/.%10]},{x,0,25}]

=Graphics-=

It seems to be that close to 1 TI-NspireCAS gives a wrong approximation.

#21: (RK([y2, - SINCy1)], [t, y1, y21, [0, 3.14, 0], 0.1, 400)) COL [2, 3]

Fig. 15 from above
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#22: (RK([y2, - 6.7-yl = 0.25-y2], [t, y1, y2], [0, 1, 0], 0.05, 500)) COL [1, 2]

- 0.13-x

#23: e

#24: TABLE(e

Fig. 17 & 18

- 0.13-x
-C05(/6.7-x), x, 0, 25, 0.05)

Compare with the

exact solution:

#25:

#26: - x/8 J10695 - x
e -1 COS +

#27:

DSOLVEZ2_IV(0.25, 6.7, 0, x, 0, 1, 0)

e

J10695 - x J

J10695-5IN[
40

40 2139

- 0.125-x
-(C0S(2.585415827-x) + 0.04834812206-SIN(2.585415827-x))

+

-Sﬂﬂﬂﬂﬁnnnhﬂ

v \f/ v 1Uv12 uti 1‘?6- }S, 2-[?-’ 22v24 26

-1
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Figure 19

We cannot vary the angular frequency using a slider, so it is necessary to plot the single
curves and find the maximum amplitude, which can be done using the trace-tool.

Figures 20-1, 21-2 and 22-2:

#28: (RK([y2, - 6.7-y1 - 0.2-y2 + 0.5-C05(0.1-t)]1, [t, yl1, y21, [0, 0.2, 0], 0.1, 400)) COoL [1, 2]

#29: (RK([y2, - 6.7-y1 - 0.2-y2 + 0.5-C0S(2.65-t)], [t, yl1, y2], [0, 0.2, 0], 0.1, 400)) COL [1, 2]

#30: (RK([y2, - 6.7-yl - 0.14-y2 + 0.25-C0S(2.6-t}], [t, y1, y2]1, [0, 0.2, 0], 0.1, 800)) COL [1, 2]

0.2
NAAA
V2 s s 8 10 12

-0.1

14 24 26 28 30 32 34 36 38 40

Maximum ~ 0.82

Maximum ~ 0.66
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Introducing a slider for w is possible when DSOLVE2-function is applied:
Sliderbar for 0.1 <= w <= 4

DSOLVE2_IV(0.2, 6.7, 0.5.C0S(w.x), x, 0, 0.2, 0)

Reproducing Karl-Heinz’ project it was too boring for me to plot each RK-approximation and
finding its maximum amplitude. So, | remembered my favorite DERIVE-function: VECTOR:

MAXC(RK([y2, - 6.7-yl = 0.14-y2 + 0.25-C0S(2.6-t)], [t, y1, y21, [0, 0.2, 0], 0.2, 400)) CoL [2]' )
#31: 1

#32: 0.6693017476

#31 returns the maximum amplitude for w = 2.6 without plotting. Wrap this function into a
VECTOR-construction for 2 <w < 3.5 and collect the points [w, resp. Max]:

VECTOR| | w,
MAX((RK([y2, — 6.7.yl - 0.14.y2 + 0.25.C0S(w-t)], [t, yl, y2], [0, 0.2, 0], 0.2, 400)) C~
[ [20, ..., 400] ~
0.035 ~
oL [27" ]
1
}, w, 2, 3.5, 0.05] reflamp |= 20
[y =4, y =20, y = 20] f\
Plotting the expression (without / \
evaluating) we get in one step
the resonance curve. / \
/ e
Karl-Heinz was not very happy .
with this curve, because it .y -
looks a bit different. [ relamn 4
| didn’t like to cheat, this is
the DERIVE-product.
freq
(RK-based)
2.1 22 2,3 2{4 2i5 2/6 2|7 2{8 2,9 311 332 33 34 35
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3D Lissajous Tubes
by Rick Nungester, 4/23/20

| am a retired electrical/software engineer and Derive enthusiast since 1993. In 2002 | became inter-
ested in 3D Lissajous parametric curves, for example x = SIN(3*t), y = SIN(4*t), z = COS(5*t),

— pi <=t <=pi. Using COS for the z equation instead of SIN avoids the curve intersecting itself. To turn
the curves into tubes | found GRAPHICS.MTH function SPACE_TUBE but didn't like that its tubes ap-
pear to be non-circular as they go around tight corners. Function CURVE_TO_TUBE improves this
problem by keeping the tube circle perpendicular to the curve. Details are in file 3DLissajous.dfw.
The images look particularly nice using "Rotate Plots" in Derive as demonstrated in video file 3DLissa-
jous.mp4.

(Editor: Rick sent his great 102MB-file. | cannot add it to the files in MTH118.zip.)

#1: Lissajous 3D Space Tubes by Rick Nungester Dec 27, 2002. Last modified Apr

29, 2020.

#2: CURVE_TO_TUBE() moves a circle of radius r along the space curve v =

[x(t), y(t), z(t)], 1n a plane perpendicular to the curve (perpendicular

to [x'(t), y'(t), z'(©) D).

d d
#3: CURVE_TO_TUBE(v, r) = v + ROTATE_Z[ATAN[—— v, —

dt 2 dt

d

— Vv

dt 3

v JJ-ROTATE_Y ACOS| ——— [ |- [r.COS(s), r:SIN(s), 0]
1 d
— Vv
dt

#4: In LISSAJOUS_3D_TUBE(a,b,c,r), a,b,c = x,y,z sine wave cycles at t goes
from —pi to pi, and r = tube radius. A1l generated figures fit in a

5x5x5 box centered at the origin.

#5: LISSAJOUS_3D_TUBE(a, b, ¢, r) := CURVE_TO_TUBE([(5 - r)-SIN(a-t), (5 -
r)+-SIN(hb-t), (5 - r).C0S(c-t)], r)
#6: Plot with factory defaults + Approximate Before Plotting + Plot Color to

Rainbow + 3D Axes, Box, and Legend all off + s and t ranges —pi to pi.

#7: 16 s panels, 300 t panels (my favorite):

#8: LISSAJOUS_3D_TUBE(3, 4, 5, 0.7)
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#9: This one intersects itself:

#10: LISSAJOUS_3D_TUBE(4, 5, 6, 0.5)

#11: 16 s panels, 400 t panels:

#12: LISSAJOUS_3D_TUBE(S5, 6, 7, 0.4)
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#13: 10 s panels, 600 t panels:

#14: LISSAJOUS_3D_TUBE(7, 8, 9, 0.2)

\
I

o
B

#15: 8 s panels, 800 t panels:

#16: LISSAJOUS_3D_TUBE(9, 10, 11, 0.15)

NS\ P
p e

#17: Graphics.mth function SPACE_TUBE makes a different result, with the tube

rings not perpendicular to the curve being tubed. But the Tlines inline

with the tube look better, not being 'twisted’ around tight turns.

#18: LOAD(DfwMath\Graphics.mth)

#19: LISSAJOUS_3D_TUBE2(a, b, c, r) := SPACE_TUBE([(5 - r).SIN(a-t), (5 -

r)«SIN(hb.t), (5 - r).COS(c-t)], t, r, ¢)

#20: LISSAJOUS_3D_TUBE2(3, 4, 5, 0.7)
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Editor’s Comments:

There are more problems with SPACE_TUBE from GRAPHICS.MTH: Inspecting the plot above you

might recognize a minor irregularity in the part right above. | tried d to produce a cylinder as a tube
based on a straight line:

t
SPACE_TUBE[[Z-T: +1, 3 - —, t], t, 3, 5]
2

t
[Z-t +1, 3 - —, t] + (3.005(s) + 3.5IN(s)).SIGNC[D, 0, 0])
2

This does not work! Now let’s apply Rick’s function:

t
CURVE_TD_TUBE[[E-t +1, 3 - —, t], 3]

2
t
VECTOR| ]2t + 1, 3 - —, t||, t. -5, 5, 0.01
2

The VECTOR-command generates the “core” of
the tube as a thick line. 1t works properly.

N
a8
=
iy
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And here is another example to compare both methods:

3
2 t

spc = |2t +1, - 2.t, —
2

SPACE_TUBE(spc, t, 1.5, s)

VECTOR([spc], t, -5, 5, 0.01)

CURVE_TO_TUBE(spc, 1.5)

I can imagine that Nspire users would like to present tubes on a 3D-Graphing screen in the Graphs &
Geometry application.

I start with Rick’s version. DERIVE’s ATAN(y,x)-function is not available on the Nspire, so it must be
written in an extended form (argument in rotate_z()). Parameters are t and u by default.

Functions ported from DERIVE:

1‘0tate_z(a):= Z:);E;; :;:((;)) g‘ * Done rotate _yLB):= CO; ) [1] sinﬂ W » Done
0 0 1 sin(f) 0 cos(p)

d d 1

| | =(v[1 1)) LU |

c_t_t(v’r)::v'ﬁ‘omte—z .E'Sig“ i{("r[z 1]) —tan™ 4 - rotate_y|cos™ A - — |- {: Zz?(::)
2 (_d ) norm :("")_] |

* Done
d d
— ,T 2 1 —
w2 1)) (d 0
3 ’ 3
spei={2-12+41 -2-¢ rl2:4241 208 —
2 2
. 18‘13‘005(51) : ?‘sin(u] r2e 1241
Jar241)- (- 14+64-2+16)  [4-£2+1
c_t_t(spc,?)) N . '9':2'005(:1) : 6*r'si11(u} _aeg &

(a-1241)- (0 4464-12+16)  [a-12+1
ﬁ_ 3- Jlﬁ‘ (4*12+1) *cos(u]

2 J9-r4+64-12+16
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The components of the result must be transferred to the 3D Graph Entry/Edit > Parametric xp, yp, zp-
entries. Then adjust the range and use the attributes as you like.

The second figure is the cylinder from above. It is no problem to introduce sliders for one or more pa-
rameters of the cylinder. Be aware to simplify the function first before setting the sliders in the 3D-Gra-
phing screen.

L \f = L L LN J o

Cylinder:
cyl(z,;z):=c_t_t({2- t =2 3—%},1) » Done

1 -.JI'E'COS(IE) -.}T-sin(ss)

o 105 5
cyl(.f,u) e J105 -cos(ss) . 2.5 -sin(rs} =

“ 105 5 :

2 fﬁ cos(ss) 43
2 21

Cylinder with variables (Sliders):

t
c_t_t( a‘t -2 3—— ,1')
2

The Lissajous—Tubes:

liss_tube(a,b,c,r):=c_t_t((5—r)'[sin(a'!) cos(b'!) cos(C't)],r) » Done

liss_tube (5 ,6,7,4/10)

Plot of the tube around space curve spc from above (left) and of the cylinder with sliders for a and ra-
diusr.

Now let’s try to create Rick’s the Lissajous tube on the Nspire screen.
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As maximum resolution for t is 50 we receive a not really nice plot (left). We can improve the figure
by splitting it into four parts with t from -x to -n/2, from -n/2 to 0 etc. This will give the plot on the
right-hand side. | used different colors for the single parts in order to show the single parts.

Finally, I wanted to define the original DfWS5 space_tube function for the TI-Nspire. DERIVE’s SIGN-
function does not only return the sign of a number, but the normalized vector for a vector. sg(v_) is my

respective Nspire-function.

You can see that it not possible to create a cylinder as the tube of a straight line

Original space_tube—function from DERIVE:

v—_),sign (v_)) » Done

sg(v_) : =when(getType(v_)="MAT "
norm(v_

a2

a a2
e (v_),

dt di 2

normal_ vector (v_,f_) 1=sg

(v_)) » Done binormal(v_,f_):='sg(crossP

space_tube(v,r) =+ sin(u) -normal_vector (v',f)+r' cos (u) - binormal (v',f) » Done

-l Bege A
4.5-¢ cos(u) : 6. sm(u) 121241

lo-d+9-12+16  [o-12+16

-

3 252

I3 4.5
SPace_tube( 21241 201 —],1.5) . 4.5 2 cosl)
2 J9‘r4+9‘r2+16

6"005(::) +4‘5‘!'

lo-4+9-2+16  [9-¢2

i undef
3-1—1 E 1-¢ ,2 " u11def
undef’

space_tube(

This is the same strange space tube as above.
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Mein Mathematik-Abitur
Wolfgang Alvermann, GER

Bei einem Klassentreffen 2013, 45 Jahre nach unserem Abitur 1968, brachte uns unser geschétzter Ma-
thematiklehrer die damalige Abitur-Klausur mit, die wir, die Klasse 13m des mathematisch-naturwis-
senschaftlichen Zweigs des NEUEN GYMNASIUMS OLDENBURG zu schreiben hatten.

Ein DIN-A4-Blatt reichte aus, um uns 5 Stunden zu beschéftigen und inhaltlich zu fordern.

Hilfsmittel: Formelsammlung, Geo-Dreieck, Zirkel, Bleistift

Aufgaben:

(1) Ein Sektkelch (ohne Fulteller) entsteht durch Rotation einer Hyperbel mit den Asymptoten um die
x-Achse. Die Kelchtffnung hat einen dueren Durchmesser von 6cm. Die Gesamthohe des Kel-
ches betragt 18cm, der Hohlraum ist 12cm tief.

Konstruieren Sie zwei Hyperbelpunkte mit ;=1 bzw. r1,=6,
g ).

m3

Wie viel wiegt der leere Kelch? (o, =2,5
c

Wie viel Liter fasst das Glas, wenn es
a) randvoll,
b) bis 3cm unterhalb des Kelchrandes (auf der Kelchachse gemessen) gefullt ist?

Wie viel mm betrégt die Wandstarke des Glases an der Kelchéffnung?

(2) Fur welchen Punkt P der Kurve y =In(x) nimmt das Subnormalendreieck einen extremalen Fl&-

cheninhalt an? (Unter dem Subnormalendreieck versteht man dasjenige Dreieck, das von der x-
Achse, der Kurvennormalen und dem Lot vom Kurvenpunkt auf die x-Achse begrenzt wird.)

Stellen Sie zunéchst eine VVorbetrachtung an.

Gegen welchen Grenzwert strebt der Flacheninhalt des Dreiecks, wenn die Abszisse des Kur-

venpunktes X; — 0 strebt? (Wahlen Sie dazu eine geeignete Substitution X; = g(zl))

(3) Welche Parabel mit dem Scheitelpunkt B(a/0) schneidet die gegebene Parabel
y? =2pX +2pa senkrecht?

Bestimmen Sie die Koordinaten des Schnittpunktes und die Lage der beiden Parabelbrenn-
punkte.

Auf welcher Kurve bewegt sich der Schnittpunkt der Parabeln, wenn sich der Parameter p &n-
dert, die Scheitelpunkte der Parabel jedoch festbleiben.

Zeichen Sie ein Parabelpaar fur a=2 und p=2 sowie die gefundene Ortslinie.
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My Mathematics Final Exam (Abitur)

At a class reunion in 2013, 45 years after our final exam (Abitur) in 1968, our high appreciated mathe-
matics teacher brought our mathematics written exam to us, which we, class 13m of the mathematical-
scientific branch of the NEUEN GYMNASIUM OLDENBURG had to write.

One DIN-A4 sheet was sufficient to keep us busy for demanding five hours.

Permitted tools: formulary, Geo-triangle, compass, pencil

The Tasks:

(1) A champagne cup (without foot plate) is formed by a rotation of a hyperbola together with its
asymptotes about the x-axis. The outer diameter of the cup opening is 6 cm, the total height of
the cup is 18 cm and its hollow is 12 cm deep.

- Construct two points of the hyperbola with ry = 1, resp. r; = 6.
- What is the weight of the cup (pgiass = 2.5g/cm?3)?

- How many liters does the glass hold, when it is
a) half full,
b) filled until 3 cm below the cup rim (measured on the axis)?

- How thick is the glass at the cup opening?

(2)  For which point on the graph of y = In(x) gives the subnormal-triangle the maximum area? (The
subnormal triangle is formed by the x-axis, the normal of the curve and the vertical line through
the point.)

- Make a preliminary observation.

- What is the limit of the area of this triangle when the x-value of the point x; tends to «?
(Choose an appropriate substitution x; = g(z1).)

(3)  Which parabola with its vertex B(a/0) intersects the given parabola y? = 2px + 2pa vertically?

- Find the coordinates of the intersection point of the two parabolas and the position of their
foci.

- What is the locus of the intersection points of the parabolas if parameter p changes, but their
vertices remain fixed?

- Draw one pair of parabolas for a = 2 and p = 2 together with the locus.
Editor's Comment:

On the next pages you will find Wolfgang’s treatment of the tasks with paper and pencil how it
was done “several”’ years ago. | leave the German version because | believe that you can fol-
low his procedure.

| thought that it might be interesting to tackle the problems with TI-Nspire (or DERIVE or any
other technology). This is done with English comments beginning on page 36.
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Losung Aufgabe 1:
Bestimmung der Hyperbelgleichung

2 2
Die Hyperbel hat die Gleichung X__Y__1 mitden Asymptoten y =+—-x

a b

o |T

Mit a = 6 und dem geg. Punkt P = (18;3) errechnet man b: 3 = 2-18 b=1

Die Hyperbel hat also die Form Z__y?2=1 bzw. y2="—-1

Zeichnungl: Konstruktion der Punkte

Mit e =+a’ +b? = /37 erhalt man die Brenn- y

punkte:

- (7

F, =(—EJO) - ‘,;;_'-:4. ‘

T 7 \
F2 .

und konstruiert mit Kreisen um Fy mit r; =1 und
Fo> mit r, =13 bzw. um FL mitry = 6 und F> mitr;
=18 die gesuchten Punkte.

Zeichnung 2: Die Hyperbel mit den Asymptoten

P =(1813)

Masse des leeren Kelches.

Berechnet werden zunéachst die Rotationsvolumina der Asymptote Vi und der Hyperbel Vs.
[Ergebnisse in cm?® bzw. Gramm]:

18 2
1 X
V,==.-7-3°.18=54-7 V2=7Z'-I —-1|dx=40-7
3 s \ 36
Masse: M =V * Poias =(V1 _Vz)'pelas =14.7-2.5 m :357Z'zllog
Fullmengen.

18 2
Vollstandig gefllt = V2: V, = 7 - j(% —1} dx =407 V, 125 cm’

6
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3

15 2
3 cm unterhalb des Randes: V,=7- J.(% —1)dx = %1-” V, ~63.6cm’

6

Wandstarke:

2
x=18in yz = X__; einsetzen ergibt:y = 2-«@ 2 s~0.172cm
36 EE—

Lésung Aufgabe 2:

Zeichnung:

Y

Py = (zy,In(ay))

J(z) = Infx)

Bestimmung der Normalen im Punkt P; und von Xo.

: . , 1 , 1
Steigung der Tangente im Punkt P;: f'(x) = ” —->m =f(x))= =
1
Steigung der Normalen im Punkt Pa: m, =—-X;
y=m-x+b

Gerade durch P und Pg
In(x,) =—-X,- X, +b

Y ==X - X+X; +In(x,)

: In(x,)
Mit y = O folgt: Xy =X, +
Xl
R ) 1 In*(x,)
Fur die Dreiecksflache folgt: A(X) ==~
2 X
, 1 2:-In(x,)-In*(x,)
A (Xl) = E ) X2
Diese Flache soll extremal werden: 5 '
, In*(x,)-3-In(x,)+1
A (Xl) - 3
Xl
Daraus folgt: P, = (e2 /2) A= % Maximum weil A“(e?) <0

e

}—) b=x+In(x,)
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Grenzwert des Flacheninhalts
limA(x,)=0!
. . L. z |n2 (eZI) 22
Begriindung: Betrachtet wird mit der Substitution X, =€ der Term A(z,)=——~ =%
es e”
Da die Exponentialfunktion schneller wéchst als jede andere Funktion, ergibt sich die Behauptung.

Anderer Weg: Regel von de L’Hospital

|imM =lim g'(x) —lim g"(x)
h(x) h'(x) h"(x)

X—0 X—0 X—>0
In(x,) 1
A(X,) = E lnz(xl) : g'(xl) — ' Xy — |I’I(Xl) g”(xl) _ ﬁ _ i
Y2 x, h'(x,) 1 X, h'(x) 1 x,
L6sung Aufgabe 3:
\ Die Parabelgleichungen:
I'n%
P
S, = (-al0) / S, =(al0)
Q
Py’ =2-p-(x+a) +/2p-(x+a)

X y =
P, y*=-2-q-(x-a) y =+,-2q-(x-a)

Im Schnittpunkt P = (x1/y1) der beiden Parabeln sind die Steigungen orthogonal.

Betrachtet werden die oberen Teilstiicke der Parabeln mit ihren Ableitungen:

! p p
Py = ———="
' 2p-(x+a) Y
pz:y,: _ :ﬂ

2p-(x-a) Y
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Steigungen:
=L
Yy mity, =y, folgtaus m,-m, =-1: p-q=y> bzw. p-q=y?
m, =—
Y,
J=2R(X,+a
Py =-29(x-a)

Schnittpunkt der beiden Parabeln
2-p-(x+a)=-2-q-(x—a) P:(a—g/ p-(4a—p)j

Parabelbrennpunkte:
Fur Parabeln gilt:
Abstand des Punktes S zur Leitlinie = Abstand von S zu F = p/2

Flz(E—alo) F, :(—ﬂ+a)=(—4a_p+a/0j:[E—a/Oj F=F
2 2 2 2

Ortslinie der Schnittpunkte mit festem a

Aus dem Schnittpunkt muss p eliminiert werden; mit X =a —g (x-Wert des SP) folgt

p =2-(a—X) Eingesetzt in den y-Wert des Schnittpunktes errechnet man die Ortslinie.

y =\j2-(a—x)-(4a—2a+2x)
y =\j2-(a—x)~2~(a+x)

Sly=2-\a®-x*

Umgeformt erhalt man eine Ellipse der Form
X2 y2
— +
a~ 4a

> = 1 mit den Halbachsen aund 2a.

s, =(-al)
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A possible TI-Nspire treatment of the problems:

Task 1:

Construction of the points (blue and red) and sketch of the complete figure in one

graph:

Problem 1: Axes of the hyperbola (centre = (0,0))|
a=6"6 solve(£=£,b) *b=1 b:=1"+1
3 b

Hyperbola: x"2/36 - y"2 = 1
.1_2

: 2

——y4=1

3% yo=ly

1x2-36 5 -x2-36 5
and ¥=-36=0 or y=T and x<-36=0

6
1236

g(_r):=i-_r » Done l’l(.‘l'):= P » Done

solve

2 y=

Thickness of the glass:
g(18)-h(18) > 3-2- [2 =0.17 cm

18
18 18
Weight of the empty champagne flute: = (g(l))z dy— (ih(_r))2 dx|-2.5 » 35- g
0 6
18 15
m | (h(x))? dx > 40' % = 125.66 cm*3 n | (h(x)? dx > 814'“ =63.62 cm"3
6 6 '
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Task 2:
Construction of the points (blue and red) and sketch of the complete figure in one
graph:
525 ty
»=0.29x+0. 24
f1 (_r)=ln (1)
0.5 0.223 122
| *
-1.88 12.08
-4.04
You can follow the procedure in the Notes:
Normal: norml: =y—ln(t)=-t- (_r—t) > y—In(t)=t- (r-x) -
N, L2
solve(y=0 and norml,{_r,y }) s = ln(f)_ﬁ and >0 and y=0
()42 2
a(t):=i- ln(t)- ln(.r)+.r —t| » Done a(t) " (ln(r))
2 f 2-t
_ 2
solve(%(_a(t))=0,t) » t=1 or =2 —o(a(t))h:{ l,ez} - {1, e 6 }&
dr

Maximum for x = e"2. Point{eg,ln(eg)} - {eg,z}

Maximum Area: a(eg) ~2e = =0.27
Limit  lim (a(s)) > 0
t—co
Reasoning: In(t) grows slower than all other functions — a(t) tends to 0-

or: Substitution

2.,z 2
< e z

a(r)|r=ez . e’z grows faster than all other functions — g(z) tends to 0.

& 2- eZ
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Task 2:

This is the final graphic representation (with some extras added).

| added the tangents in one intersection point (perpendicular) and could not resist to

install sliders for parameters a, p and pp.

p1: p1:=y2=2-p_- (_r—i—a_) - y2=2-p_- (_r+(1_)

p2:p2=y2=2-pp_- (x-a_) » y2=2-pp_- (v-a )

_a (v e -a_ (p_+pp_) . p_
A rrmrag

. ) p_pp_
d a_ (p_tpp_) pp_
sl2:=—{ /2 - pp_- (_1'—(1__) | — -
d-l'( ) pP_pPp_ o lrasp_pp_ &

pP_PP_

it siz=1 - 2=
4 a_

solve(_(p‘;_ﬂrllpp_) spp_=p_—4a_
‘a_

factor(y2=2- pp_c (.1'-{1_))|pp_=p_—4- a_ - y2=-2- (4 a_—p_)- (_1'—(1_)

solve(pl and p2,{._r,y }) _
o) - 2 Ja_-Jp_- [pp_ AL, 72 = la_-|p_-[pp_
p_pp_ \P_PP_ p_pPp_ \P_—PP_




DNL 118 Wolfgang Alvermann: Mein Mathematik-Abitur p 39

Because of the sliders for a, p and pp it is necessary to work with a_, p_ and pp__in the calcu-
lation. Otherwise the values of the slider variables are taken for the calculations which results
in confusion ...

fact01‘(yg=2- pp_ (_r—a_))|pp_=p_—4- a_ - _}'3=-2- (4 a_—p_ ) -a)
The parameter of the second parabola is 4a—p.
The foci are: F1 = (-a + p/2,0) (given parabola) and F2 = (a - (4a-p/2),0) = (—a+p/2,0) = F1 |
solve(pl and pz,{_r,Ly })[pp_=p_—4- a_
2-a_—p — — 2

. .1'=f and y=-|4 a_-p_" |p_ or _r=% and y=[4-a_-p_- JZ or.

= F-1

-
=

= and y=cI and a_=0 or x=c2 and y=0 and a_=0 and p_=0
3.
2 p_

Intersection points: ((2a-p)/2. ¥ (4a*p—p?))

2-a_—p_

solve(_r=

y={4a_p_ [p_lp=2a_-2x>y=2 [vta_- Ja_—x
(}-'=-2- Jrta_ - Ja_—x )2 v y2=4 (vta ) (- )D

expand(ygrél- (_r+a_)- (.1'-{1_)) . _}'3=4- a_3—4- _r2

2 2 2 2,2 2
yit+d x==4-q_“ *r 4 _1._.+y..:4. a_“

Ellippse: M(0,0); horiz. axis = 2a, vertical axis = 4a

— — p_ [ _-a(ptpp )| A

expand\y~=-4" \x+ta_) \x—a_J] » y"=4a_"-4 x~ a

2 2 2 7. 9 9
yot+d x“=4aq_- r & x"+y"=4a_"

Ellippse: M(0,0); horiz. axis = 2a, vertical axis = 4a

y-|da_-p_- JZ: ,p_i = lp_tpp) ]|pp_=p_—4- a_
5. |Ja_P_pP_ pP_pp_ |
J }()—_Pp— )
— p_\2x2a +p_
“ylda_p_ po/———=A
2 |(4a_p_)p_

The tangents in one intersection point:

f?(_r):=,)4- a_-p_- JZ | =
2. a_p_pp_
p_pp_
» Done

ﬂ;(-r):=m . E = LD . (.r— o (p_wP_) )|PP_=}J_—4- a_and p_=p and a_=a
2

[rap_pp_ ppP_
p_PP_

(o)
p_pp_

lpp_=p_—4a_andp =pand a_=a
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Mail from Rick Nungester (received April 16, 2020)

Josef,
I think we have a Derive defect that existed for many years but was fixed in Derive v6.01. Please an-
swer the two questions below.

INT(ABS( SIN(t) + SIN(2*t - pi/2) ), t, 0, 2*pi)

In Derive for DOS version 3.04 this simplifies to 0 (wrong).
In Derive for Windows v5.06 this simplifies to 0 (wrong).
In Derive for Windows v6.1 this simplifies to 3*sqrt(3). Is this true?

The same waveform shifted in time gives me a different error.
INT(ABS( SIN(t + pi/6) — COS(2*t + pi/3) ), t, 0, 2*pi)

In Derive for DOS version 3.04 this simplifies to 3*sqrt(3)/2 (wrong).
In Derive for Windows v5.06 this simplifies to 3*sqrt(3)/2 (wrong).
In Derive for Windows v6.1 this simplifies to 3*sqrt(3). Is this true?

Thank you,
Rick

For reference, Derive for DOS v3.04 results.

Compute time: 2.3 seconds
Simp(#3) Derive Algebra

dt

Derive for Windows v5.06 results. #32: J |SIN(t) + SIN[z-t - %]
a

#33: a

2m
n n
#34: J SIH|t + —| — COS|2-t + —
6 3

dt

#35:
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Hi Rick,

I am quite sure that 3*sqrt(3) is correct.

See my TI-Nspire screen below. TI-Nspire is not able to find the exact value for the integral of

abs(sin(t) ....),

But it can find the exact value for the shifted and split integrals.
The numerical values confirm the correct result of 3*sgrt(3).

Best regards
Josef

Sometimes I use the DOSBox, too. It’s nice to reanimate good old DERIVE.

I like the black screen.
My first version was 1.60!!

.

n n
x+—|-cos|2: x+—

/Ih):=sin

‘ n
M\):=sin —cos|2: x+—

=
=
6

2'=n

-

3 ‘T
Sfilx ) dx— Sfilx) dx
0 =

3
nInt(/.?(J ),.\ -0,2° n)

b
2 =
”)

sin(t}+sin ,1,0,2:

nlnt

5.19616

Done

Done

3

5.19615

5.19615

1.77 0.5

m\l
£3(x)={sin(x)+sin[ 2 x '-]abel
571

m
SINCt) + SIN[Z-t - —]

stepwise simplification:

- |

0

m
SIN(t) + SIN[Z-t - —]

SIN(z) — - SIN(z + m)

2.m

|

0

m
SIN(t) - SIN[Z-t + —]

"
SIN[Z + —] — @5(z)
2

2.m
#: |SINCE) - @os(2.t)] dt
0

dt = 3.3
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Mail from our Australian friend Steve Arnold:

I did one a couple of weeks ago - you may want to have a play
with my latest project:

https://compasstech.com.au/gx/index.html

One | am particularly happy with is my exploration of Farey
Numbers and Ford (“Kissing”) Circles:

https://compasstech.com.au/fareygx/index.html

Use the link, enjoy and admire, Josef

Transferring data from the graphics screen
to the spreadsheet on TI-Nspire

When | wanted to reproduce Karl-Heinz’ experiments | wanted to port the maximum ampli-
tudes of the vibrations to the Lists & Spreadsheet application applying any keypress. | re-
membered that there was a Ctrl+D (??7?) combination with the TI1-92/V200 but | could not find
how to do with TI-Nspire. So, | asked some friends — and very soon | received answers:

Hubert Langlotz gave the advice to use columns in the spreadsheet capture(variable,0) and
then the combination Ctrl + . transfers the values from the Graphs-app into the respective col-
umns of the spreadsheet. Shame on me that | didn’t find this in the manual — and that | didn’t

remember...

7.09 | ¥

-10.68 1

=capture('a,0) |=capture('w,0)

1.6 1.5
3.2 2.3
3.7 4.

il ()] I (o8] (o] —

oy



https://compasstech.com.au/gx/index.html
https://compasstech.com.au/fareygx/index.html

DNL 118 Sebastian Rauh: 2 “C”’s: Capture and Corona p

43

Sebastian’s tool to capture the path of a point:

reset_appl_new.tns

Liebe T3ler,
ich habe etwas niitzliches programmiert, in Basic. Sozusagen capture 2.0 mit Resetknopf.

Ich habe einen Screenshot eines alten Problems von Barbel gefunden. Dabei ging es um die
Basis eines Rechtecks und seine Flache bzw. den Umfang, die gegeneinander aufgetragen
werden.

In dieser Datei kann man den dicken, blauen Punkt bewegen. Im 1x1 Quadrat bildet sich ein
achsparalles Rechteckt mit dem Punkt als rechter, oberer Punkt und 0/0 als unterer, linker
Punkt.

Ich speichere die Koordinaten des blauen Punktes als px und py und libergebe die in einem
Notes—Dokument an das Programm, zusammen mit der reset Variablen.

Das Programm selbst ist hier maximal einfach. Erst wird abgefragt, ob die reset Variable auf
1 steht, wenn das so ist, werden die beiden Listen geléscht UND reset wieder auf 0
gesetzt.

Ist reset=1 werden die aktuellen Werte von px und py in der Liste der x und y —Werte (>o<,yy)
gespeichert.

Das Programm selbst wird in einer Notesumgebung aufgerufen. Das passiert inmer dann,
wenn sich eines der Argumente dndert.

Dear T3lers,
| programmed something useful in Basic. So to speak capture 2.0 with reset button.

| found a screenshot of an old problem of Béarbel. It was about the base of a rectangle and
its area or perimeter, which are plotted against each other.

In this file you can move the thick blue dot. In the 1x1 square an axis—parallel rectangle is
formed with the point as the right, upper point and 0/0 as the lower, left point.

| save the coordinates of the blue point as px and py and pass them in a Notes document to
the program, together with the reset variable.

The program itself is maximally simple here. First | ask if the reset variable is set to 1, if so,
the two lists are cleared AND reset is set to 0 again.

If reset=1, the current values of px and py are stored in the list of x and y values (3x,yy).

'The program itself is called in a Notes environment. This happens whenever one of the
arguments changes.
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You can grab the point and move it around within the square. The slider anzeige is used to
switch between different presentations of the axes: perimeter vs base, area vs base and area vs
perimeter.

1.17 Ty r

2 | aneige =1.

2 | reset =0.

Umfang, Perimeter

point (=)
-

e

(-

0.1

0.32 0.1 Basis, Base 1.68
-0.16

A XX Byy C umfang D flaeche Erx Fry G H
= =(2*rx+2%1 =rx*ry =iffn(>xx<0 =iffn(yy<0
1 0.796173 0.507885 0.377019 0.473539 0.796173
0.459934 0.789383 0.499727 0.363064 0.459934 0.789383
0.448596 0.78712 0.494286 0.353099 0.448596 0.78712
0.437258 0.78033 0.487035 0.341206 0.437258 0.78033
0.434991 0.78033 0.486128 0.339436 0.434991 0.78033

= A ATDA 00 N T7T70O0ACS N ADDCAT A 999 ACH M AT 060 N 77ancec -

4
=0.4735393537836

o]

LV, RN S V%

. i 7
mam(reset,px,py) * Done main

ax:=rx[din1(rx)] » 0.48261 Define main(r:s,pp_r!ppy]=

Prgm
ay:=ry[din1(ry)] » 0.626421 If ¥s=1 Then
aax:=ax * 0.48261 reset:=0
aay:=ay * 0.626421 ”2[1
1 YV
] EndIf

yx:=augmentiyy,) ppx
vy:=augment\yv,| ppy

EndPrgm
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Just move the point and notice its path in the spreadsheet.
Reset_simple_new.tns
—
6.65
i’ Reser Button Ifack(reset) » Done
>
point (=5
. * (xxyy)
X
-10 10
(3.15,1.61)
-6.65
track 17 Y B yy C D -
Define track(r:s)= 1 -
Prgm
If rs=1 Then 1 3.14943 1.61104
_1'_1':=1 J l 2
yy:=yi] 3
reset:=0 4
EndIf
XX =augment {;;, E.T B 3
yy:=augment|yy,{py i 'm
EndPrgm . yy

e

6.65
i’ Reset Button ?:ack(reset) » Done
>
point (=5)
e (Xx,yy
1 A
-10 1 10
(2.05,1.38)
-6.65

track 17 . Byy o 5 a
Define track(r:s]= 1 -
Prgm
If #s=1 Then 1 3.14943 1.61104
_1'_1':=1 1 2 2.96552 1.56434
vy =i 3 2.87356 1.51764
resel:=0

4 . .

EndIf 2.78161 1.51764
_1'_1':=augment{_;;,|£_r B 5 2.73563 1.47095
Yyy:=augment{yy, | py ac i oluleliate sasss o
EndPrgm 1 yy
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This is a presentation of several ways to capture the coordinates of the point (slider capt,
slider tt and moving the point) in one graphs-application.

Capture2_v2.tns

Define capture20=

Prgm
If reser=1 Then
m={[ 1}

If capt=1 Then
ttt:=augment(ttt,{ 1t })

capt:=0
EndIf
xxx:=augment t’;’;, l_r_r ”
yyy:=augment VY
EndPrgm

2 apt = 6.65 “y 2 reset
* 1 X,
100 (-1.76,1.91) 1 =3 10
-6.65 = =
capture2

capturezo * Done

Attt B XX
1 0. -1.75644
2 0. -1.75644
3 0. -1.75644
4 0. -1.75644
5 0. -1.75644
6 -3. -1.75644
7 -3. -1.75644
8 -3. -1.75644
9 -3. -1.75644
)
. IERyyy

Cyyy

.91424
.91424
.91424
.91424
91424
.91424
.91424
.91424
.91424

_— el A A A A A A

D

Modelling the spread of the Corona Virus in Austria from 25 February until begin of April.
With the diagram from ORF (Austrian Broadcasting Corporation) as background and Logistic

regression.
17850 y
,
£2(x) 13280 +-35,9229
1.+1743.48- ¢ 0.238303-x

10k

5k

LS00 g osseeees so ¥
12 )97 292 43 B3 123 163 203. 243 283 14 54 46
-6365.53
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c=6.80 = b=-1.20 =
40— }—— 800 40— b om
a=11.00 =

1.00 7} 12.00

10k

5k

B
252. 282. 23. 53. 83. 113. 143 173. 203. 233. 263. 293. 14

Same with DERIVE (background picture) + data points + regression line (calculated and slider
bar generated). Logistic Regression from Don Phillips, DNL#79.

Simulation of the Corona Epidemic

Sebastian Rauh

German version above

Abstract

An epidemic is to be simulated here. People are walking around in a square, they cannot
leave the square. The persons can be healthy (blue), sick (red) or immune (green).

A healthy person is infected when it meets a sick person. A sick person is contagious for a
certain period of time, after which they automatically become immune.

Overview

On the 3rd page you can see a graphic representation of the simulation, the persons are in
the square and cannot leave it.

On the top right is a calculator, there you can reinitialize the simulation, on the bottom right is
a graph showing how many people are healthy, sick and immune.

Instructions
To (re)start the simulation, call the initialization program on the 3rd page top rightinitO

The simulation is started via the slider on the graph page of the 3rd page, each movement
generates a step which is also displayed graphically. -

The complete English and German instruction is given in the Notes of the InfektV1.6.tns file.

Die vollstandige deutsche und englische Erlauterung findet sich in den Notes der Datei
InfektV1.6.tns
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GréRe des Feldes (Size of the field) 1§

Anzahl der Personen (headcount) Ll_
1 400
dauer =37.

Dauer der Infektion in Zyklen (duration of infection in cycles) _§

1 100.

1
=100, vv =2

Mobilitit% _ §  Geschwindigkeft _ §

100 ) 1

(Mobility) — (Speed)

kranked =2

Anzahl der Kranken zu Beginn (Number of infected at beginning) §—

100.

See the two red points (infected persons) in the start picture followed by the final graph.

]

X - N o e T  sendel) Done
im'!O Done
. bisend‘e(l) Done
° ini![} Done
bisend‘e(l) Done
” im'iO Done
y mm=100.
minf=0
br=0

X

|

¥ N b a
<> H v . . inir[} Done
bisende(l) Done
ini!(} Done
- . bisend‘e(l] Done
. im'!O Done
%
bisend‘e{l} Done
| .
v mm:lOO%
% . *e B minf=0.0§
br=149
\“——
fd_——/r
I
. I T A s P 3
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Here is a second simulation. bisende(1) runs one simulation, bisende(n) runs n simulations
with the same parameters remaining and stores the resulting data in the spreadsheet.
The slider can be used to perform the simulation step by step. (bisende = until end)

-

<5 bisende(l) Done
" . . ini!O Done
. . * . .. ° . g . ' & te blsende(].] Done
e v, . ini!O Done
- * LT . ' bisende(l] Done
. vt N ® LX) - -
toe : e :'m'.(O Done
* L] .. - ) B ° | -
. .‘.. ..., . . St : y mm=100.
. Te .. minf=0
., * * . . : . ’ . - br=0
. S N
X
e ___________________|
<5 ini!O Done
bisende(l] Done
. - ¥ e : B .. e .
L . . .y ini!O Done
- T T . o ° bisende(l) Done
- - L] . -
V. . . . ini!O Done
e e - : bisende|2) Done
S O | ,
. e : . . . . y mm=100.
. C. Tt - i minf=0.275
. e * O br=189
. - L] . - .'
.t - - ~
. o _{_“"‘-‘h\\ T




From agm to zetaprim DNL 118

MathTools from agm to zetaprim

Fi T Few TrszruvT FT T FEw Fi T For TrszruvT FT T FE+

vﬂ Control [I<0Uar|Find.. I“Iu:-deT ] vﬂ Contral [I-0Uar|Find.. P‘IcudeT 1

faamta, b Ehat.t.

tFunc ) . fLocal .tk .

FEAGHCa, by returns the arithmetic—geomet fIF pot mathtool~iscmpl=zngal or not math
ric meandlt returns LalMl1, HXFEBhuvanesh tool~iscrplznibriReturn "Error: invalid
Bhat.t ar-gurent (si'

fLocal q,tmﬁ . fa b dyiida

fIF pot mathtoolwiscmplxngal or not math tWhile absiglll-gl212:1.E-12
tool~iscrplznibriReturn "Error: invalid P12kl -y 210 tmps [l 24 0ql] 14q (2], ¢
ar-gurment st [114g[2 10k +yia+l+a

ffabirqinsa tEndihile

fHhile absog[l]l-gl210:1.-12 ={apEPDx(q[1]),a}

Pl 11—y [ 2103 tmps {120 [] 14 (210, 0 tEndFunc

MATATOOL FAD EWALT FUNL MATATOOL RAD ERALCT FUNL

e |

agm(12,7,10)

© Disp command inactive

agm(12,7,10)

agm(27,7,3)

{9.5,9.16515138991,1. |

{9.33257569496,9. 33107379695, 2.
{9.33182474595,9. 33182471574, 3.
{9.33182473085,9. 331824730854

{ 9.33182473085,9.33182473085,4.

:=J 1|-q|2
{9.33182473085,9.33182473085,4. | gvali g (

{15.3307423465,15.3306817023,3. | n:=n+1

agm(l'?,a,3] "Error: invald argument(s)""

"agm" stored successfully

Define LibPub agm(,r,y,e]=

Func

© Bhuvanesh Bhatt

Local a,g,n,q

q:={_1',y}:n:=l

If not mathtool liscmplm[.l’] or not mathtool\iscmp

While |g[1]-g[2]]>107®

- (i}ral2)

&

| ! o ! !

q:z{a,g
© Disp approx({ a,g,n }]

EndWhile

approx({ approx[a),approx[g),n— 1 })
EndFunc

DERIVE Version:

#1:

#2:
#3:
#4:

#5:

agm(x, y, e, a, g, n, g) =
Prog
If - NUMBER?(x) v - NUMBERZ(y)
RETURN "invalid arguments"

q =[x, y]
na=1
Loop

If AB5(qgl - q2) =< 10%(-e) exit

a = AVERAGE(q1, q12)
g = J(qil-q12)

g = [a, g]

n o+ 1

[APPROX(a), n - 1]
agm(27, 7, 3) = [15.33074234, 3]
agm(12, 7, 10) = [9.331824730, 4]

agm(3 + L, 2 — 7.L, 4) = [3.368064117 - 2.671659005.L, 4]

agm{a, 7, 10) = invalid arguments

Steve Arnold pointed out that there is also a harmonic-geometric mean.

(see next DNL!)

https://en.wikipedia.org/wiki/Arithmetic%E2%80%93geometric mean
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