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DNL 118 Information DNL 118

Hello Josef,
| just learned about
http://www.ibiblio.org/technicalc/packages/mathtools/MathTools. pdf

which you might already know about.

It certainly deserves publicity in your next newsletter if you haadr@ady done so.
-- best wishes for you and your family.

david stoutemyer

This is the TechniCalc website:

http://www.ibiblio.org/technicalc/

Techni AL

Handheld computing in Math, Science, and Engineering

TechniCalc is an alliance of sites devoted to the use of handheld computers and calculators in industry and academics.

Member sites:

TI-89/T1-92+ Examples

Andrew Cacovean's site contains several tutorials designed to illustrate the use of the TI-89 or TI-92+ calculators in solving various mathematical engineering problems

T\ Geaghang Caloukator FAQ

Ray Kremer's FAQ covers all popular models of TI graphing calculators with information on math tasks. games, and more.

FRANK P. WESTLAKE

This archives programs made by Frank Westlake for the TI-89 family of graphing calculators.

Bhuvanesh Bhatt's TI-89/T1-92 Plus/Voyage 200 page
Bhuvanesh Bhatt's page has many resources for the TI-68k family of graphing calculators, including the MathTools package and the free EQW equation writer.

r
TI-TipList

Doug Burkett's Tip List is the largest single collection of tips, tricks and helpful examples for the TI-89, TI-92 and Vovage 200 calculator families.

TechniCalc Forums

Discuss TechniCalec member sites here

Other forums we like: ilnre !mks.
N - Texas Instruments calculators
TT's discussion groups -
5 — ticalc.org
United-TT's forum —
comp svs. hpd8 Hewlett-Packard calculators
SO e anet hpeale org

I downloaded Mathtools.pdf and the respective TI-92/V200 grouped file and sent a mail to
Bhuvanesh Bhatt that | would like to prepare his library (347 functions from agm to zetaprim !!!)
for the TI-NspireCAS platform. He replied very friendly:

Dear Professor Boehm,

Please feel free to port any of pgogramstothe TINs pi r e . I myself donoét
ing the operating system is similar to the6Bk series (T-B9, TI89 Titanium, T192/92+, V200) | might
be able to help with the port.

Regards,
Bhuvanesh

See the first function of the TI-NspireCAS mathtool-library on page 48.

have


http://www.ibiblio.org/technicalc/packages/mathtools/MathTools.pdf
http://www.ibiblio.org/technicalc/

DNL 118 Letter of the Editor pl

Dear DUG Members, DUG-Mitglieder,

This was indeed a memorable and Wir haben doch ein denk - und
strange spring time. A wee bite changed merkwirdiges Frihjahr hinte r uns. Ein
our all Tives. 0CO6 f i ndwinzigesEtwasxhat unses allerbagbenium- t hi s
DNL, of course. SebastigeenstRduleds <«iCoulfa-ndet a
tion of the spread and my modelling the seinen Niederschlag. Sebastian Rauhs Si-
development of the infection in Austria is mulation und meine Modellierung de r Ent-
our respective contribution. Seba  stian was wicklung der Infektion in der ersten Zeit
very productive a nd provided tools for ist unser Beitrag. Sebastian war sehr  pro-
capturing data fromthe TI  -Nspire Graphs duktiv und hat Werkzeuge zur Datener-
application. fassung aus dem Grafikfenster des Tl -

Wolfgang Alvermann sent his math- Nspire geschaffen.

ematics final exam from 1968 together Wolfgang Alvermann hat uns sein
with his treatment how it has been usual in M-Abitur aus dem Jahr 1968 mit  seiner
that times. | could not resist to add the fur damals dblichen Bearbeitung ge-
Tl -Nspire solutions wit h a few add -ons. schickt. Die T | -Nspire -Ausarbeitung mit
| sent my solution to Wolfgang and he an- kleinen Zusatzen habe ich dann drange-
swered: 0l nspecting your Nshangt Es waré dobhaaizaoll, wenn einige
tion | am very happy that we in that time von Euch auch ihr altes Abitur (Matura in

had to work manually . 6 Osterreich) finden und uns schicken kénn-

ten. Vielleicht gibt es da noch etwas? Eine
aktuelle Abiturangabe steht bereit fr
den DNL#1109.

It might be charming if some of you
would also find their examination tasks
from more or less time ago. We could com-
pare with recent task with or without Als ich Wolfgang meine Losun gen
technology use permitted. geschickt habe, hat er nur geantwortet:

Iét\/%egn ic@ geling Nspire Version sehe , bin
ich ja im Nachhinein noch froh, dass wir
damal s h2ndisch arbeiter

Enjoy likeme Ri ck Nungest e
ourful tubes and his function to produce
them. This is a significant improvement

compared with the SPACE_TUBE-function Der Aufsatz von K.H. Keunecke (Ta-

provided i n Df W5Hilé s aorhai Brucke) yst in deutscher Sprache in

GRAPH.MTH. His function could easily be MTH118.zip enthalten .

ported to the TI -Nspire platform. Erfreut Euch so wie ich an den
Many thanks for your mails, ideas schonen Rohrflachen von Rick Nungester

and cooperation and until next time und seiner Fassung der entsprechenden

Funktion, die sich leicht von DERIVE auf

with my best regards _ _
den TI -Nspire tUbertragen lief3.

Yours Josef ]
Mit beste m Dank fiur Eure Zu-

schriften , ldeen und Mitarbeit und bis
zum nachsten Mal

Euer Josef
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The DERIVENEWSLETTERS the Bulletin of the
DERIVE& CAS-TI User Group It is published at

least four times a year with a content of 40 pages

minimum. The goals of thBNL are to enald the
exchange of experiences made WitBERIVE, TI-

CAS and other CA%s well to create a group to

discuss the possibilities of new methodiaat di-
dactical manners in teaching mathematics.

Editor: Mag. Josef B6hm

D’Lust 1, A3042 Wirmla, Austria
Phone: ++43-(0)660 3136 365
e-mail: nojo.boehm@pgv.at

Preview:

Contributions waiting to be published

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to write
their contributions in English to reinforce the
international touch of th&®NL. It must be
said, thouf, that norEnglish articles will be
warmly welcomed nonetheles¥our contri-
butions will be edited but not assessed. By
submitting articles, the author gives his con-
sent for reprinting it in thdNL. The more
contributions you will send, the more lively
and richer in contents thRERIVE& CAS-TI
Newslettemwill be.
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Karl-HeinzKeunecke
What caused the Collapse of the TacombBlarrows-Bridge?
or
Solving Motion Problems numerically applyng
Newtonds Fundament al Law of N

Fig. 1: The carriage way of the bridge is excited to torsional vibration

1. Introduction

I't is one task of physics teaching toculatmpart t
movement processes. This axiom, also cdleadamental Law of Motion says:

If a force is acting on an object then this object is acceleiraididection of the force. The
acceleration is proportional to the force F and inversely proportiotia tmass m of the
object.

This relation is often described by F = m - a, where a is the acceleration. However, from this expres-
sion one cannot recogrizhe importance of this law. For students F = m - a is one of many other for-
mulae which they know fromhysics teaching. Not before acceleration is replaced by the second deriv-
ative of the position with respect to time it becomes clear that this eqisafia@tfferential equation,

F(X(1) =m &9, @

which allows to predict the motion of a meaolel system, if the law of force and the initial values of
the motion are known.

In class the general form (1) of the fundamental law can beamdgdh a few special cases, because
when treating mechanics in secondary Il the necessary knowledge dfisatcwork with differential
equations is generally missed.

In order to demonstrate nevertheless the universal validity of equati@ol{i)pns can be calculated
numerically and then graphically represented. This needs only basic knowledge of diffpretients,
limits and derivatives.

1 https://sitesda.umich.edu/ksmoore/research/tacaraerowsbridge/
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The following wild|l describe a teaching course f@ANu
lations weregperformed using a TNspire CX CAS, which was used in class, too.

I't i s wanted to pr ovok e |sslutiondfediifdrent@l equations.iISeat f or t h
movie free avail abl e TheColtapse of thenTee®marNartoBsdged most i vat i o
chosen.

https://www.youtube.com/watch?vzgzJIXSxnw
https://www.youtube.com/watch?v=mXTSnZgrfxM

Then the quehset iroenas oinWhfaotré st hti s cat astrophe?0 can |

The movie shows that the bridge vibrates heavily, and this leads finakydollapse. Obviously, a
strong wind was responsible for this disaster.

First of all, the students should investigate eforced osilations of a springmasssystem. By this

simple model they collected experimental experiences, how and under which csnditge oscilla-

tions can result from small exciting forces. Then they could set up the respective equations of motion
and finallysolve them numerically.

At the end of this project the students were aldbased on their resulisto interpret the collagsof
the Tacom&Bridge as a resonance catastrophe.

2. Methods for numerically solving of Differential Equations
This paragraph describes how to solve differential equations of order 2 numerically.

Most of the dynamic processes like motion, growth and decgychange of state etc. can be de-

scribed as a mathematical model using a differential equation. As it is ndilpassill cases to find

an analytical solution, one has to apply a numerical approximation method. In doing so, motion is only
calculatedstepwise in defined time intervals. The result can be given in a table and/or as a graph.

An undamped oscillation @ spring is chosen as introductory example. The students should know this
from earlier lessons. They expect as result a sinusoidal dscillaith constant amplitude. So, they
can judge the quality of the numerical approximation.

Starting with initial vdues t and x% the position coordinatea f t er ti me step ot shall
Velocity v can be approximated b;y~%v . The firstiixandu=wvhichleads px = X

immediately to
=% # @ (2)
In order to calculate the next coordinade= x +;, ¢ from the previous one iteratively, it needs the

value ofvi. This can be achieved applying the law of force for the undamped oscillation.

There is a linearalationship between the force acting on a body of mreasd the excursior of the
oscillator during the oscillation

F(x)= k X 3)
where k is the spring hardness.

Because o fYadibmW®i)aan desreplaced bya. Introducing the approximatioa~%

givesDv = X x Ot
m


https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=mXTSnZgrfxM
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Using the initial values ainvggivesépuyat i on (3) and
K .
W=V 0 4)

For calculating xand v it only needs to increase the cougtiariables in equations (2) and (3) by
one:

x,=x # Gandv,=v Tl:] )p t %)

Further calculations can be done in the appropriate way.
This iteration is called Euler Method.

2.1Using a Spreadsheet

The method described the paragraph above shall be performed using the spreadsheet application of
theTINs pi re CX CAS. However, the paragEmed=@anss must

K =1 are set. Afer inserting the Lists & Spreadsheet apmtlien three columns as time, position and
m

velocare defined. Then the initial values are entered in the first row. Cell a2 becomes cell content of al
increased by 0.1.

%l ) *ODE2_u..ped rap [l X . *ODE2_u..ped rap [I] X
A time E position Cweloc D Atime E position Cwveloc D
1 0 1 0 1 0 1 0
3 3
4 4
5 - -
=a2’+0.1 1 4«
™

Fig. 2: Entering the initial values; Fig. 3: Iterative @lculation of position anc
incremasing time by ot = velocity

This iteration is performed for 200 rows resulting in
thecoordinates for position and velocity for thesfir
20 seconds. An upper bound is only limited by the
hardware resources.

Fig. 4 shows the numerical approximation of the pc
tion of the oscillating mass (blue) and its velocity
(red) dependent on time.

. ] % i 2 As expected, sinusoidal shaped curves appear. Bu
e Vi amplitude increases by time. This is not realistittie
to the method applied for the approximation. Fig. 5
will explain this.

Fig. 4: Approximation of displacement anc
velocity of the oscillations of a spring usin
the Euler method
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In Fig. 5 the exact solution of the differential equati
(red) of an undamped oscillation f1(x) = cosi&plot-
ted. The coordinates obtained by the Eutethod are
marked by blue crosses. Compared with figi4vas
changed to 0.25.
Calculation starts with initial values, and  which
give the ordinate of the next poirt = Xo + Vo L t.(

|{time,p osition)
-1.64

"

e

=

S

-0.181 5.5
\\fl (;c)=cos(;;,'l/

x

Fig. 5: Comparison of the exact sotriand

the approximated one

In the following tle values at the right borders.{,vi-1) of the respective intervals are calculated from
the values at the left bordens, (). This leads taiscrepancies compared with the exact solution. At

Since the changef the position in the first interval i
" Vo L t =D, x1 does not changex; = Xo.

the beginning are the calculated ordinates greater thaa tidhe exact solution. And this leads conse-
guently to higher velocities, too. The next consequence is that the displacements become laeger by t

time, which can be observed in fig. 5.

It is obviousthat the approximation goes worse when a larger tirte & r tis@Hosewmp significant
reduction of the time step interval leads at one hand to an improved approximation but at the other

hand to darger amount of data. It is also possible to calculate the slope for calculation of the next point
not at thebegin of the respective interval but in its mid. This yields an enhanced approxiriatoa.

arenumerousther methods whickead to sufficienaipproximatios. average velocity in the intervals.
A description of more methods for numerical solutiondifiErential equations would go too far in our

teaching unit intended for secondary Il students.

Paragraph 2.ihtroduces thoroughly to the simple Eultarationsby means of spreadsheets. Here the

students have the chance to learn the use the iteratudation of displacement and velocity by

means of spreadsheets from scratch.

2.2 Application of the menu-controlled TI-Nspire CAS-tool

TI-Nspire CX CAS enables to perform the calculations presented in section 2.1 by means of a menu
driven application Mat application needs simply the differential equations of the displacement and the

velocity, their i

is acceptable, because the underlying concept has been workethahevgtudents in the section be-

fore).

ni ti

a l

condi ti

ons

and

t he

par ame

Here again undamped oscillations shallripeestigated first, in order to compare with the result shown

in2.1.

Firstly, the ' order differential equation for the position yields:

X=

V.

(6)

Secondly, anothet® order differential equatiofor velocity v can be deriveérom the law of force

mx =k- x considering that = V:

v:—kx('
m

(7)
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Equations (6) and (7) are the basetf@rapproximation of the difference quotients, which are used like

in paragraph 2.1 for calculating tables iterativ@lige differential equations can be entered directly.
However, the naes for theoccurringvariablesare predefined. They differ from the notation known

from physics but they must be used. So, renaming is necessary. Position xasabdaced byl
and velocityv by y2. Additionally, timet is namedk and the derivatie with respect to timemust ke

written asipEand notasp.Par amet er

b *ODE2_u.. ped

ran [l] X

oy Tp2
dl:
(o, 1 )

o]

[ETRTH

-10 1

“b.67

Fig. 6: Entering differential equation d1

Differential Equation

Solution I;1-'.-th--=:|:| Runge-Kutta

Error Tolerance: | 0.0017

Field: | None

LR
T

Default (x and )

Z-Zt—| *®

e | y

QK

Cancel

Fig. 7: Setting theparameters for the ap-

proximation

*ODEZ2_u..ped

rap [l] X

V2 '=|‘_}'!
(o2 (0,0

y &8

-1.59

\ /N
AVARV

2.2

\
\J

7

Fig. 8: Entering he DE d2 and the
representation of theisplacement

val ues taalem:d,hoec@:mdkza.s
m

For entering thelifferential equatiorthe Graph En-
try/Edit Menu in a Graph#épplication is chosen and
the option Diff Eq. is selected. Now equation (5) ant
theinitial conditions for y1 can be entered using the
syntax of the calculator (see fig. 6).

Afterwards the 2 differential equatior{6) and its ini-
tial conditions are entered (see fig. 7). The paramet
for the numerical procedure must be entered as shc
in fig. 7. Asseenrearlier that the Newton method is tc
inaccurate, the much more acderungeKutta
methodis taken Fordisplayingthedisplacemenas a
function of time, as axeare chosen x (time) and y
(displacement). Further down in this menu the tem-
poral interval for the numerical approximation must
defined

Fig. 8 presents the result of this approximation. In ¢
trary to theresultof the Euler methodhe amplitude of
this graph again sinusoidal seems to be constant.

abov
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*0DE2_u..ped ran [l X Fig. 9demonstrateto students, thahe menucon-
fay x  DEly.~ *| trolledprocedure generates wellat firstalist of val-
interpolat.. uesof time, displacemenand velocityby iterations.

vi_1

N These data are displayed thereyidress Ctrl + Tis-
A ==
2
3

plays both, graph and ligsee fig. 9).

| / . -0.4157.. ) T _
N fo-d 0.8870 The resulting graphs in fig. 8 afig.10 can be modele:
4' _0'6501”' by trigonometric functionsWhenfor instance cos is
B oo |- drawnin the same graplboth graphgoincide exatly
2.2 0520956724995 4 »

Fig. 9: Table for the positions and its grapt

+ODE2_u. ped P4 Both the displacement y1 and the velocity y2éha
2y been calculateds it is seen ind. 10. Due to the initial
v1 1 conditions and the assumptien p, what means

amplitudesappear

\ ffl% \ /7(\\ [\ 1 p— , two phaseshiftedsine waves with equal
! / L
Ty Ir \ \ .

Fig. 10: Displacement and velocity

Phase relation of both graphs can be recognized in a phase diagrani) (fidhekey? is drawnas
function ofyl. The phase diagram gives a circle amhenthe amplitudes of both waves are equal and

the phaseshift between both iﬁg.

Students can reprodusach diagrams, when they dre
two sinefunctionsagainst each other and vary the ph
shift between 0 and 2°

. This diagram shows the direction vectors of the mo
«| in several points. We can recognize that the diagrai
"?ll  passed through clockwise startiaigpoint (0]1).

b *ODE2_u.ped rap [l X
Toraepy e s A

" b

RN

-1 5

e -1

Fig. 11: Phase diagram y2 vs y1
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3. Examples from Physics Lessons

Paragraphs 2.1 and 2.2 served as introduction into computer assisted numerical solution of differential
equations. This procedure is an important tool in physics. As ddrasnstrated before, this tool can

also easily used in physics lessons. The procedures enable to answers questions, which cannot be
treated without computer assistance. Among others éxésephysical problems without analytic solu-
tions in closed formoproblems which cannot be solved with the mathematical knowledge of second-
ary Il level.

Students should proceed as follows:

1 Atfirst, they develop the law of force of a motion atetluce then the respectiv¥ @rder dif-
ferential equation.

1 Thereafter theyeplace this differential equation by tw® drder differential equations for po-
sition and velocity which enable a numerical solution.

1 They enter the differential equations inbe@ tCAScalculator and obtain the graphic representa-
tion of position and velcity as function of time.

1 They have also access to the calculated values given in a table.

Two examples shall be demonstrated in the next section.

3.1 Pendulum Swinging

Gravity pendul ums qedangpeda(hat
monic) oscillations. Only for small swings the motion can
consideredpproximativelyas an undamped oscillation.

In order towork outthe acting forces, an idealized model is
sumed, the scalled mathematical pendulum. It consists c
‘ point-shapednass fixed on a massless rod moving without f
Va A tion on a pivot (fig. 12).

Fig. 12: Forces acting on a rod
pendulum

For a rotation around the pivot point after being displayed bgriget) repulsive forceéft are act-
ing which are directed tangent to tbiecular arc.Thisforce can be calculated according fig.akibe-
causehegravity fore "®can be substituted by JQ, it results in

R@®)= m gsineA(y), (8)
wheremis the mass of thbodyandg the acceleration of gravity. In the follovgtis always(t).

From equation (8 hus,it canbeseae that there is no proportional relation between repulsive force
andthe displaced anglélence, the swing of the pendulum is hatmonicoscillation.

The respective differential equatioan be dévedf r om t he above | aw of forc
2" axiom the left side of (85 replacedy m - a. The acceleratiog; of a body movinglonga circle
with theradiusl is | Gi. Division (8) byl-mresults in

4= —Igsin( a. (9)
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By introduction of an additional variableangle velocityw= ai the system of two*lorder differen-
tial equations can be deduced from 2ffeorder differential equatian

4= vand 'vzlgsin( 3 (10)
Using the syntax of the calculatitris must be entered:as

yrzyzanolyz'zl9 sing 1 (11)
2
Forconveniencelg =1 8‘9— is chosen and the initial velocity is setagd".
S s

In order to provide variable initial conditions for y1, a slider is used to vary the values of y1(0) from
the interval O ; "]

System (11) is entered in the calculator. Both displacement (black) and angle velocity (red) as well are
displayed dependent dime.

The following figures 13 and 14 give a first impression of the run of displacement and velocity depend-
ent on theespective initial value of the displacement. The scales on theearasunchangedn or-
derthat changes in the magnitudedifplacenent, velocity and frequency become clear.

*pendulum ! X R . *pendulum % > R . *pendulum

Fig. 13: 10°~0.175ad 45° ~ 0.7& rad 90° ~1.57 rad

*pendulum

Fig. 14:  135° ~ 2.3Gad 170 ~2.79rad 179.90° ~ 3.14 rad

As long as displacement at the beginning is small (8@écture in fig. 13), the graphs gl andy2 are
sinusoidal. In this range the motion shows ali¢gations of a harmonic oscillation. If the displacement
increases, the deviation from harmonic oscillation becomes more and more significant. Moreover, the
frequency of the oscillation changes with the magnitude of the initial displacement of the pendulum

The acting forces, causing the pendulum motion are described by equation (8). In contrary to the linear
motion law (3) the forces are restricted by the fadtaits. This enforces a slowdown of the motion

and an enlargement of the oscillation time. Biseain particular the repulsive forces at angles above

90° decreask instead of increasing like in undamped oscillatibtisere are significant deviations

from sinusoidal graphs.
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Instead of investigating the temporal behavioybfindy2

it is alsopossible tdook atthe plase diagram.

Fig. 15 shows the graph g2 dependent onl for an initial
e displacement of 179.9° (fig4llast screen). In the presen
~ gl tation motion startatthe red point (maximum displace-

' ment). The direction arrows indicate that the curve is rur
throughclockwise. Canparison with fig. 11 shows clearly
the difference to a harmonic (undamped) oscillgtion

: b1 121 . -
. _2:9. e e

Fig. 15: Phase diagram;
initial value 179.9° ~ 3.14 rad

3.2 Damped and Enforced Oscillations

The following investigation shall help to understand the process of the Td&rnge collapse. Obvi-
ously, the bidge executesibrations under influence of the wind. It is proposed to investigate enforced
oscillations on a simple model at first. It makes sense to watch and study motions in reality before
mathematical modelling the procedures.
7 As a simpleexperiment aarton a track hasbeenc

which is fixed between two springs. When perioc

caused by rotation of the eccentric wheel are a

cartthen it performs enforceakcillations. After owtr

B » iments the students will find out:
= .

Fig. 16: Experimento investigate
damped and enforced oscillations

1. After response time the cartoves in the rhythm of the acting force.

2. For arelatively small frequency range of the excitation the displacement of the cart exceeds sig-
nificantly the dsplacement of the excitation.

Damped Oscillations

For simulating the experiment knowledge of thecés acting on the cart is necessary. At first, the re-
pulsive force of the springsgiven in equation (2) f(x) =7 k - x acts on the cart.

It is known thathe amplitude of real oscillations decreases over time. So, besides the repulsive force
another force, the friction, acts in the same direction, which is in general proportional to the velocity
of the oscillating body:

F.= 1 vO r=x
wherer is a measure for the strength of damping.

Thus, the law for the damped oscillation of the cart results in:

Fx(®)= &k x@ r () Om X3 (12)
In analogy to the procedure presented in paragraph 2.2 one obtains the following systenderf 1
differentialequations:

(1) = V() and v ¢) =% x(€) %q (1),

22013, MEKRUPHY, Mechanik 6, Erzwungene Schwingunge?v
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which is written in the syntax of trealculator as follows:
yl'=y2andy 2' = K yI")L -y (13)
m m
For calculating a special solution values of the constants m, k and r are needed. The students know
from physics lessons th§ =v 2is theresonancérequency. Oscillation time of the eigenfrequency
m
(fig. 16) can baneasured and the angr velocity¥o can be determined from it. Alternativefy, can
be determined from the spring constaand the masm of the cart.
k rad”

—=6.7 .
m g

Parameteli, which describes theamnping cannot be taken from the experimentalipah such an
m

easy way. Therefore, a slideis introduced for. It was ®t such that the time flow of the numeri-
m

cally calculated oscillation matches with the time flow of theldisement of the cart (fig. 16) in the
best posible way. Comparison lead to= 0.25. It will be defined later on.

Taking the given parameters both differential equati
are entered in respective menu in the Graggica-
tion. The results disphyedin fig. 17.

The calculated damped oscillation is described by
sinefunctionwith obviously exponential decreasing

amplitudes. In order to confirm this, the graph of f1

was additionally plotted. The slider for variable a we
adjustedso, that the gaph of fltouches and enclosed
the relative maxima of the grapiithenumericalsdu-

Fig. 17: Damped oscillation and exponent tion. Thisis the case for a~ 0.13's

function

From these observations can be concluded that the time flow of the oscillation is given by:

e os{/ 6.5 0 (14)

In fig. 18 the numerical solution (rednd thegraph
according texpression (14)ofue and dottedis mod-
elled. The algebraic mod@quation 14and the nu-
merical approximation match excellgnfor
4 a=0.13¢.
7“: FAAVA A 5| The numerical solution can be described algebHsi¢
Y . in the notatiorusedin physicsi by thefollowing func-
*J v f2fe)-e ™ *- cosl 6.7 ) tional equation

bepz_1) <l v =25

. x(t)=e*° ése/6. 5 t) (15
Fig. 18: Modelling the graph by function f2

Yet the relationship between the parameseadb, which both describthe strength of damping, is to
find out. The example above shows that the valuei®fapproximately twice the value af This rela-
tion is valid for any other parameter a and b. Using the exact solution of the differential eqoation

1
can see that theeday of the oscillations is determined by the faefér . With students one can only
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suppose thaazé 0] —;:L. With this assumption onean model the numerical solution by a func-
m

tion.

Lhio, A {
x(t)=ezm E % tg (16)
g -

i Gl s Finally, the phase diagram of the damped oscillatiol

L ',,;L'.}-q-.é-—'-.'.H'“'*\\‘ ©© | displayed (fig. 19), which presents the velocity of th
e e oYY . . . . .

//_ 1 \\ Ny \ swingingcar as function of its displacement. It show

/s ' I cleaty the exponential decrease of the oscillations.

N
/_:J/n'
Z

Fig. 19: Phase diagram of a damped
oscillation

Enforced Oscillations

After the detailed investigations of damped oscillations of the cart the differential equation for the mo-
tion of the cart (fig. &) under influence of a periodical external force can be set up.

The external force for a continuous rotation of the crafig 8n(y ), wherey the frequency of the
exciting force andro, the amplitude of the force. Then the occurrent forces are given by

MmOk =k- X r ) G sinw). 17

The respective inhomogeneou$ @der differential equation result in:
o koo R
X= — x@ —-X0)O= siwtX (18
m m m

For the numerical solution of equation (18) again a system ofYwadér differential equatiorisfor
the positim and the velocity is needed. Using the syntax of the calculatoe obtains:

yl'=y2andy2'= K yI")L -y 2 5 SHW X (19)
m m m

Following parameters are taken:

2
K. 6.7rasgl , T =002 :—LCanguIar frequency).ld@ 14 41)3%. The time nterval is set on 40 s.
m m s S S

the anplitude of the acceleration forced by the hank is givenF—Ooy O.Sé . The initial values then are
m

y1(0) = 0.2y2(0) = 0.

In the following presentatiorthie angular frequendyg variedusng a slider(variablew). Scaling of the
axes is kpt constansothat the differences in size of taeplitudesand frequencieare recognizable.
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*enforced D > B *enforced
0.2 0.2 0.2
NANAA 3| N A x AN AT AN AN A A WP ANV A -
.05 5 6 s 5 N Sy RtV RV AR AR Y AR VARV AY
<2 |b <lrlb <lxlb
1 B 1
Fig. 20: Period Tg 63s T @8.4s @l4.2s

At the beginningof the excitation of the oscillation thdisplacementf the cartis displacedy themo-
tion of thecrank. Asaresultthe cartis excited to damped oscillation withe natural frequencgf the
system. These oscillations angperimposgwith the periodical excitatianThiscan be seen infig. 20.
After a transient phase of appiarately 20s the damped osciltan is decayed and after that follows a
stationary oscillatiomf the carwith the frequency of the excitation. For very small frequencies the
amplitude of thesartis just as great as the displacement by the eccentric.

1 *enforced K Cemtizrmad
B v

€] > |lw =285 <2 lw =4,

_1_;:/\\}!\ il ﬂ AL [\,-0 bl I ﬂ /\ [\ ﬂ ﬂ M M M 1A Ao AR Ao
WAUTRRIAR VUUUUUUUUUU UU “””3

< 2 b =2 < >
-1 -1 -1

Fig. 21: Period T@ 2.62s T @2.46s T@l.b7s

As soon as the excitation frequency approaches the resonance frequency of the cdaimpe

(fig. 21, pictures 1 and 2) the amplitude of the motionhef cartgrows up tanearlythe twentyfold of
the excitation displacemenafter this state ofesonancgthe oscillationdecreasgagain andts ampli-
tudetends towards zero for high freencies.

This qualitative evaluation of the num