THE DERIVE - NEWSLETTER #127

ISSN 1990-7079

THE BULLETIN OF THE

L THON /N
LT WIVL_/

USER GROUP

4

Contents:

CAS-TI

14

15

27

Letter of the Editor
Editorial - Preview

Michel Beaudin
Exercises for Résumé 1

Memories

Felipe de Jests Martinez Vargas

Polygons 2

Bhuvanesh Bhatt & Josef Bo6hm
Sparse Matrices

October 2022

DNL 127 DERIVE & CAS-TI User Forum DNL 127

Fred Tydeman sent the following mail

Von: DERIVE computer algebra system DERIVE-NEWS@JISCMAIL.AC.UK
Im Auftrag von Fred J. Tydeman

Gesendet: Donnerstag, 13. Oktober 2022 15:34

An: DERIVE-NEWS@JISCMAIL.AC.UK

Betreft: Integral with STEP()

Given:

0.0<=2<=0.5
0.0<=y<=0.5
0.0<=x<=0.5
0.5<=w<=1.0

| am trying to find what percentage of the time is the sum w+x+y+z greater than 1.5

It seems to me that the Derive expression:
INT(INT(INT(INT(STEP(W+x+y+z-1.5),2,0,0.5),y,0,0.5),x,0,0.5),w,0.5,1)
would find that.

Since, if each of the four variables is in the middle of their domain, the sum is the cutoff
point | care about, it seems to me that the answer should be around 50%. Also, 1.5 is
the middle of the range of possible sums, e.g., 0.5 <= sum <= 2.5

However, if | have Derive simplify the above expression, it gets 1/32.
Can someone see a flaw in my logic or my Derive expression?

--- Fred J. Tydeman Tydeman Consulting

Michel Beaudin gave an answer within a few hours:

If you divide your integral by the one of the "total 1
) 0.5

volume" which is the integral with the same bounds 0.5
but with 1 as integrand instead of the step function, 0.5
. . I f dx dy dz dw
you get Y5 as expected. Is this too simple? 0
0
J 0
0.5 1
1 2
) 0.5
0.5
0.5
J | 1 dx dy dz dw
0
0
0

0.5

mailto:DERIVE-NEWS@JISCMAIL.AC.UK

DNL 127 Letter of the Editor pl

Dear DUG-Members,
Yes, | know, this issue of our newsletter is very late this time. All what | can do is apologizing and
trying to explain the reason(s):
(1) We had much work in house and garden during summer and fall. So, | started producing DNL#127
very (too) late.

(2) It needed some communication with the authors of the contributions. Communication with Michel
Beaudin works perfectly but communication with Felipe (Mexico) was difficult because his internet
connection was out of order for some time caused by tropical storms in his region.

(3) We spent two — great weeks — in Sicily. | must admit that we enjoyed travelling again after Covid-
Lockdown (two pictures are below).

e R R

Concordia temple in Agrigento Aetna (view from Taormina)

(4) And last, but not least, the contribution on Sparse Matrices needed much more work and time as
expected.

| thought that it would be easy work to transfer Bhuvanesh Bhatt’s TI-92 functions to TI-Nspire and
DERIVE: my first problem was that | didn’t know anything about treating sparse matrices — and to my
surprise | found rich resources in the web. So, as many times before, the contribution received its mo-
mentum.

And, moreover, when | checked the TI-functions with some matrices | found out that they didn’t work
correctly — and it was not so easy for me to improve the code. | am quite sure that my code can be
improved. | let two functions as a programming exercise for our members:

LIL-format of sparse matrices and SparseRnd for Nspire are not included (this might be a challenge for
the Nspire-programmers!).

Many websites treat the sparse matrices based on PYTHON. Dear PYTHON users, it would be very wel-
come if you would demonstrate the functions written in PYTHON. You can find a rich selection of web-
sites on the last page.

| was very much impressed by Felipe’s the technical drawings produced with DERIVE.
Dear members, | hope that next the DNL will be in time and remain until December

Always Yours, Josef

p 2 E D I T O R I A L DNL 127

The DERIVE-NEWSLETTER is the Bulletin of the
DERIVE & CAS-TI User Group. 1t is published at
least four times a year with a content of 40 pages
minimum. The goals of the DNL are to enable the
exchange of experiences made with DERIVE, TI-
CAS and other CAS as well to create a group to
discuss the possibilities of new methodical and di-
dactical manners in teaching mathematics.

Editor: Mag. Josef Bohm

D’Lust 1, A-3042 Wiirmla, Austria
Phone: ++43-(0)660 31 36 365
e-mail: nojo.boehm@pgv.at

Preview: Contributions waiting to be published

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to write
their contributions in English to reinforce the
international touch of the DNL. It must be
said, though, that non-English articles will be
warmly welcomed nonetheless. Your contri-
butions will be edited but not assessed. By
submitting articles, the author gives his con-
sent for reprinting it in the DNL. The more
contributions you will send, the more lively
and richer in contents the DERIVE & CAS-TI
Newsletter will be.

Next issue: December 2022

Some simulations of Random Experiments, J. Béhm, AUT, Lorenz Kopp, GER
Wonderful World of Pedal Curves, J. Bohm, AUT

Simulating a Graphing Calculator in DERIVE, J. Béhm, AUT

Cubics, Quartics — Interesting features, T. Koller & J. Béhm, AUT

Logos of Companies as an Inspiration for Math Teaching

Exciting Surfaces in the FAZ, BooleanPlots.mth, P. Schofield, UK

Old traditional examples for a CAS — What’'s new? J. Bohm, AUT

Mandelbrot and Newton with DERIVE, Roman HaSek, CZ

Tutorials for the NSpireCAS, G. Herweyers, BEL

Dirac Algebra, Clifford Algebra, Vector-Matrix-Extension, D. R. Lunsford, USA
Another Approach to Taylor Series, D. Oertel, GER

Charge in a Magnetic Field, H. Ludwig, GER

More Applications of Tl-Innovator™ Hub and TI-Innovator™ Rover

Surfaces and their Duals, Cayley Symmetroid, J. Bohm, AUT

A Collection of Special Problems, W. Alvermann, GER

DERIVE Bugs? D. Welz, GER

Tweening & Morphing with TI-NspireCX-1I-T, J. B6hm. AUT
The Gap between Poor and Rich, J. Bohm, AUT
More functions from M. Myers and from Bhuvanesh’s Mathtools-library

TaxiCab Conics, Two alternate Approaches to Conics, R. Haas, USA
QR-Code light, Random numbers following a given distribution

Properties of Polygons, Quartiles, F. de Jesus Martinez Vargas, Mexico
Penalty shootout mathematics, B. Grabinger, GER
153 is another Special Number, and others

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wiirmla, D'Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag. Josef Bohm

DNL 127 Michel Beaudin: Exercises for Résumé 1 p 3

In the last issues of our DNL | was pleased to present Michel Beaudin's Résumé 1 in
five parts. Michel provided his students with a bundle of exercises. He sent this list to-
gether with some of the problems solved. (I allowed myself to add DERIVE-solutions.)

Exercise list for Summary 1

Problems 1 Solving an equation by the fixed-point method and by Newton's method

a) Use the fixed-point method to solve the following equation: xcosh(x)=1. What happens with the

“similar" equation xcosh(3x)=1? Resolve each of these two equations using Newton's method.

b) Use the fixed-point method to find the smallest positive solution of the following equation: x = tan(x).
We'll rewrite the equation in the form x = arctan(x) + 7 (why by the way?).

¢) Use the fixed-point method to find the only real solution to the equation X +6x-3=0 (give a simple
reason why there cannot be more than one real solution here). Resume with Newton's method.

d) Use the fixed-point method to find the only real solution to the equation 2 arcsin(x) = arccos(3x) .
Then find the exact solution, too!

e) Use Newton’s method to find one of the six solutions of the polynomial equation
p(2)=z°+z" 1227 +282° —48z+161=0.

Use the 3D graph of | p(z)|2 or the 2D graphs of the implicit equations u(x, y) =0 and v(x, y) = 0 where
p(x+iy)=u(x,y)+iv(x,y) to find a starting point for the procedure.

f) Consider the equation x® = a.n—.

i) Find the smallest real solution of the above equation by the fixed-point method. Make sure that

the assumptions of the theorem are satisfied.

ii) Also find a complex solution in the neighborhood of the origin using Newton's method (one
variable with complex starting point). To find this starting point, consider the curves of the real
and imaginary parts of the equation (implicit 2D graphics required!).

Solution of Problem 1a)

Use the fixed-point method to solve the following equation: xcosh(x)=1. What happens with the
“similar" equation xcosh(3x) =1? Resolve each of these two equations using Newton's method.

At the beginning recall that the fixed-point method is suitable for an equation of the form x = g(x). If we
have verified that the continuous function g sends a closed interval / into itself, then there exists at least
one solution r of the equation g(x) = x. If moreover g is derivable on the interior of / and there exists a

constant K such that 0 < | g'(x)| < K <1, then this solution is unique and can be obtained by iteration using

the sequence defined by x, , = g(x,). This sequence converges whatever the starting point xo chosen in

I might be.
As for Newton's method, it is used to solve an equation of the form f{x) = 0 where function fis sufficiently
derivable. Assumptions such as that | f '(x)| is minorized and that | f "(x)| is majorized on an interval con-

/(%)
/(%)

taining the root » we are looking for assure us that the sequence defined by x,,, = x, — converges

tor.

p 4 Michel Beaudin: Exercises for Résumé 1 DNL 127

A graph, on same axes, of the curves y = xcosh(x) and y =1 shows an intersection in the neighborhood
of x = 0.75. And for the curves y =xcosh(3x)and y = 1, a graph on same axes shows an intersection

around x = 0.45. See figure 1:

2.64 1V
y=r cosh(,\') y=x- cosh(J' .l')
0.7 r1 r-1
0.5
X X
-3.94353 0.7 3.94353|-1.96 05 1.96
2.62902 2.64

Figure 1

On the other hand, the fixed-point method does not seem to work for the second equation, but it does for
the first one. Newton's method will work for both equations.

To apply the fixed point method, it is natural and easy to isolate the "x" in the right side of the function

equation: x = T This is all the more justified since the cosh function never will become zero:
cosh(x

x —-Xx

e +e . . .
cosh(x) = T Here is a table of iterations of the sequence x, , = g(xn) : we see a convergence for

1

the sequence x, , = ——
h cosh(x,)

, X, =0.76 and the "cobweb" confirms that also starting from xo = 0.5: see

figure 2.

1 0.982H95—__
—x,0.76,15 \

kit_ets_mb\fived_point
cos (1}

0.76
0.767477 |
0.763794 \
0.765609
0.764715
0.765155
0.764938
0.765045
0.764993
0.765019
0.765006
0.765012| | 0.1
0.765009 X
0.76501 0.108947 0.5 1.09895
0.76501
0.76501 1

-0.348158

Figure 2

DNL 127 Michel Beaudin: Exercises for Résumé 1 P 5

This is not surprising since we can easily verify by graphs that the function g(x)= sends the

cosh(x)

interval [0, 1] into itself and that the absolute value of its derivative is always less than a constant
K < 1. Therefore, whatever the starting point in the interval [0, 1], the sequence would have converged
to 0.76501.

On the other hand, the function g(x)= h;(.%) also sends the interval [0, 1] into itself but the derivative
cosh(3x

1

of its absolute value is above 1. The cobweb shows that the sequence x,,, = ———,
cosh(3x,)

x, = 0.45 oscil-
lates between two values: see figure 3.

/0.97 v

/

/

112(n+1]=

N S
cosh(.’r 112(?1)]

0.05

0.45 -0.071 1 0.05

Figure 3

Finally, Newton's method converges very quickly for both equations: Figure 4 (left part) shows how the
S (x)

method can be applied by calculating the function x—) , while the right part shows the use of a
X

home-made function from the kit ets mb library, where one does not necessarily have to define "f" as a
function: an expression is sufficient:

f{l]::,l" cosh{,r)—l Done | | g:=t cosh(} f)—l e L. (t' bl 5 o3 IH]
M 2
a ‘)} h!fe!sfmblnewfon[g,f,().3,6) 0.3
A dx 0.541869
2 ({ﬁ-l}' | 1 0.4768
(- ‘ - Fx—1 0.466135
(e+1)- lle+1)- 2 *ﬁl} ’ 0.465886
0.465886
nly) = ((ﬁl}. ehld} | 0.465886
(v+1 [(_wl}- =t 1+1} il |
Done
n(0.7) 0.767956
nl0.7679561182873) 0.765016
n(0.7650159194805) 0.76501
n(0.7650099545752) 0.76501
n(0.7650099545507) 0.76501

Figure 4

p 6 Michel Beaudin: Exercises for Résumé 1 DNL 127

How to treat problem 1a with DERIVE:

[1
ITERATES[—————————, x, 0.76, 15]]1
| COSH(x)

0.76
0.7674765988
0.7637942932
0.7656087904
0.7647148964
0.7651553182
0.7649383353
0.7650452396
0.7649925701
0.7650185194
0.7650057347
0.7650120335
0.7650089302
0.7650104591

0.7650097059

| 0.7650100770 |

Cobweb(g,x,a,n) produces a set of matrices which will plot a cobweb diagram for
the fixpoint iterative scheme x=g(x).

Ensure that in the plot window you set Set > Coordinate System > Rectangular and
Option > Display > Points > Connected & Small

rd W W ™ 7]
r r+1
W 0
1 W W
COBWEB_AUX(v, g, x, n) = |x, g, . YECTOR r+ 1 r+1 |, r, 1, n-1
Y
1 2 W W
W[r+1 r+ 2 | A

COBWEB(g, %, a, n) := COBWEB_AUX(ITERATES(g, %, a, n), g, %, nJ

1
COBNEB[» x, 0.5, 20]
COSH(x)
1
COBWEB , x, 0.45, 200
COSH(3 %)

DNL 127

Michel Beaudin: Exercises for Résumé 1

7

'_.Iu

It

[NEWTON(t.COSH(3.t) - 1, t, 0.3, &)]°

0.3

0.5418692532

0.4767998584

0.4661350255

0.4658864571

0.4658863258

| 0.4658863258 |

1
%) = x«QOSH(x) - 1
f(x)
nix) = x - ————
' (x)
ni0.7) = 0.7679561182

n(0.7679561182) = 0.7650159194

n(0.7650159194) = 0.7650099545

n(0.7650099545) = 0.7650099545

p 8 Michel Beaudin: Exercises for Résumé 1 DNL 127

Problems 2 Solving third degree polynomial equations. Cardan's formula.

a) Take the equation x° +6x—3=0 (problem Ic) and show that its exact solution is

(4\/ﬁ+12)l/3 (4\/5—12)1/3

2 2

b) Show that the three solutions of the equation x* +6x —3 = 0 obtained by simply changing the sign of
the coefficient of the linear term in the previous question are given by

e | 5
sin™ sin™ sin™
22 sin| ——2 L o [sin| —— 2 L 57 cos| ——2 LT

3 3 3 3 6

¢) Find, using the Cardan formula (after getting rid of the quadratic term) the real solution of the equation

3 15 _
2x +5x —4x+10=0.

d) Find, using an appropriate trigonometric substitution (after getting rid of the quadratic term) the three

real solutions of the equation 2x° +x° —4x—1=0.

e) It can be difficult to simplify nested radicals. Test this by using the Cardan formula to find the real

root of the equation x°+6x—20=0. A moment of attention shows that this solution is however
x =2. Moreover, one could (quite quickly) find x = 2 using the rational roots theorem by considering
the divisors of 1 and -20.

Solution of Problem 2c¢)

Find, using the Cardan formula (after getting rid of the quadratic term) the real solution of the equation

1
2x° +—x* —4x+10=0.
2
1
Note that the graph of the polynomial 2x° + Exz —4x+10 =0 shows a single real root but the presence

of two critical points. Indeed, the derivative 6x” +x—4 has two zeros. Also, the equation is equivalent

to 4x° +x° —8x+20 = 0and if there is a rational zero p/q, then p must be a divisor of 20 and ¢ a divisor
of 4. The possibilities are thus for p: +1, £2, +4, +£5, £10 and 20 and for ¢: £1, £2 and +4. So this rational
number would be found among the following numbers: +1, £1/2, £1/4, £2, +4, £5, £5/2, £5/4, +£10 and
+20. As the direct calculation shows, none of these numbers is a zero of the given polynomial:

Done

32

11 55 67 145 275 155
poll{ 1,——,2,4,5,——,10,20 17,—,— 40,260,505, ——,—— 4040,32260
2'4 2'4 | 4’8 48
-1 -1 5 -5 95 -65 95
poll{-1,—,— -2,-4,-5— — -10,-20 25,—,22,8,-188,-415,—,—,-3800,-31420
2’4 2’4 4 44

Figure 5

DNL 127 Michel Beaudin: Exercises for Résumé 1 P 9

To apply the Cardan formula, we will get rid of the quadratic term in the polynomial

1
poly(x) = 2x° + E x* —4x+10. Then we will consider the polynomial resulting in the variable "y" of the

form y’ +3py—2¢ (so its dominant coefficient will have been made equal to 1, which is allowed since

the expression is 0). We will see that the expression q2 + p3 is positive.

On the other hand, one must be careful when calculating the "cubic root" of g + afqz + p° since if p is

negative, it is then possible that ¢ + «[qZ + p° is negative. And this is precisely the case in our problem
as shown in figure 6 below where we see that it is about —0.059838. And the "cubic root" of a negative

number is a complex number (since the software works with the "main branch": in Nspire, the "settings"

had to be changed). We will have to choose the real solution of the equation w = g+ \fqz + p3. This

1/3 A
can also be done by calculating (q g +p’) and multiplying by ¢**’*. By posing u this result, we

know that then y = u — £ and we derive the value of "x" from it. Figure 6 shows a session of Nspire with
u

all the calculations to get there. Obviously, the answer obtained is approximated in 2.18667 which is the
solution returned by a numerical solver.

2 Done
3 X
poiy{,\'}:=2-,\' +Tf4- 1+10
1 97y 4465
‘ L g3 2Ly 4465
2 . 24 432
ST
1 97y 4465 97y 4465
propFrac|—- 2.},3__y+_ 3 20y, 2205
2 24 432 48 864
ivel3 -97 d-2 4465 {p } -97 d 4465
solve|3- p=— and -2- g=——,p, =" and g=
’ 48 E 864 1 P 144 E 1728
-97 4465 4465
=g
144 1728 1728
2
qqd_'_ppJ 11009

1728

2,3 -0.059838
qq+igq~+pp

1 1 1
laq+ qqzwp}]} (4465-24- [33027) 2 }(4465724- 33027)° 3 ;
24 24
1 .
L 2 b 2
(a465-24- [33027)° laa65-24 [33027)° 3 | -(a465-24- [33027)3
| 24 ' 24 e 12
1 1
(4465-24- [33027) (4465-24- [33027)°
i 12 T
1'"[7‘E l l
utt 4465-24- [33027) (24 [33027 +4465)
12 12
1 1
3

{ad65-24- [33027) [24- [33027 +4d65)3 1

12 12 12 A4

p 10 Michel Beaudin: Exercises for Résumé 1

DNL 127

"H*IE - l
it ad65-24- [33027)% (24 [33027 +4465)°
12 12
1 1
(a465-24- [33027)> (24 [33027+4465)> 1
12 12 12
1 1
(a465-24- [33027)> (24 [33027+ad65)° 1
12 12 12
l l -2.19667
-(a65-24- [33027)° (24 [33027 +4465)° 1) Decimal
\ 12 12 2] e
zems{ua{v(l),\) {’2.19667}
| -
Figure 6
This is the solution procedure using DERIVE:
2
3 X
#1: poly(x) = 2:x + — 4.x + 10
2
s ; 2 2
1 3 X 3 X
#2: EXPAND| — | 2:x + - 4.x + 10 =% + — 2%+ 5
\ 2 “ 2 4
' ' 1
#3: 2 3 97 .y 4465
EXPAND| polyly - —— || = 2.y - +
\ \ 3.2 24 432
T 97 .y 4465 3 97y 4465
#4: EXPAND| —-| 2.y - + -y - +
L2 L 24 432 48 864
97 4465 a7
#5: SOLUTIONS||3.p = - —., - 2:.q = . [p. al] = |- :
48 864 144
97 4465
#6: pp = - ——, qq = -
144 1728
2 3 11009
#7: qq + pp = ——
1728
2 3 33027 4465
#8: qq + /(ag +pp) = -
72 1728
1/3
2 3 1/3 (4465 - 24..33027)

4465 ”
1728

1/3

L+(13395.3 - 216.,/11009)

#9: (gg + (gqg +pp)) =
24

24

DNL 127 Michel Beaudin: Exercises for Résumé 1 p 11
) 1/3 ') 1/3
(4465 - 24.,/33027) L+(13395../3 - 216..,/11009) 2emeL/3
#10: wu = + e
24 24
) 1/3
(4465 - 24.,/33027)
#11: wuu = -
12
) 1/3) 1/3
pp (4465 - 24.,/33027) (24.,/33027 + 4465)
#12: uu - = - -
L 12 12
, 1/3) 1/3
pp 1 (4465 - 24..,/33027) (24.,/33027 + 4465) 1
#13: uu - - = - - -
L 12 12 12 12
pp 1
#14:- uu - - —— = -2.196666328
L 12
2z
3 X
#15: SOLUTIONS| 2-.% + — 4.x + 10 = 0, %, Real
P
) 1/3) 1/3
(4465 — 24.,/33027) (24.,/33027 + 4465) 1
#16: - - -
12 12 12

AR 2. 196666328]

Solution of Problem 2d)

Find, using an appropriate trigonometric substitution (after getting rid of the quadratic term) the three

real solutions of the equation 2x° +x* —4x—1=0.

Note that the polynomial p(x)=2x" +x* —4x—1=0.changes sign between 2 and —1, between —1 and 0

and between 1 and 2
p(-2)==5<p(-1)=2, p(~1) =2> p(0) = -1 and p(1) =2 < p(2) = 11.

By continuity, p thus has three real roots. The Nspire session in Figure 7 gives the solution (the polyno-
mial p is called f7 here). We observe the elimination of the quadratic term, which introduces the polyno-
mial po. We perform the trigonometric substitution and then choose to take the "5/3"). After the figure

we will explain how to solve a trigonometric equation "by hand" in order to understand what the software

has done.

p 12 Michel Beaudin: Exercises for Résumé 1 DNL 127

e
fl{r} -,1:3+,1'2—4-,1'—1

f,(y_; -

3.2 6 54
2By 17 Do

PO()’)??'}'LT}’—Q "

po(a' sin(ﬁ’)} 2o {sin(ﬁ}}jf 25-a Sin(ﬁ} 17

6 54

tCollect|2- @3- (Sin(g}}S_zf"“'TSi“@_%) -(27- a3 (sin(3 6)-3-sin(g))}+225- a- <in(6)+17)

54

‘ -(27- a3 (sin(3- 0)-3- sin(o)225- a- sin{ﬂ}ﬂ?]
| 54

propFrac

'aS-Sin(J-B}IJ-aj-Sin(B} 25-a- Sin(ﬁ} 17
2 2 6 54

3 -
solve| a —25. a =0.a a=— or a=0 or a=—
3

v

e -(125- sin(3-g}+17) °
tCollect{propFrac|po|— Sln(ﬂ} —_—
‘ 13 54
{125 sin(3-6)+17) | = = . AT EL
zeros| ———————— 0| —<B<— sin”|—|-n -sin”|—| sin”|——+=n

54 2 2 2 125 125
3 3 3
. A7
sin™ —n -sin” sin”|—Hr

5 2 125 2 1

—-sin \ \ ——

3 3 3 | 6

: a7)] .
sin”|— sin’|— sin”[——
2 T i 125 i 2 b4
-5 cos! t 5- sin 5-sin +—
6 1 I 3l 1
3 6 3 6 3 6
. 17 .
sin”|— sin”|— sin”|—
T . 125 . 2 T
-5- cosl +— 5-sin 5-sin t
I 1. 3l :
»Decimal
3 6 3 6 3
{-1.57067,-0.242431,1.3131} .
Figure 7

—(1255in(36) +17) 09

Remark: on the interval —n/2 < < /2 how to solve the equation <

. . . 17
This is equivalent to solving the equation sin(36) = —E . Now we know that, for real x and a between

—1 and 1, all solutions of the equation sin(x) = a are given by

arcsin(a) + 2kz, m—arcsin(a)+2kr (keZ .

. . . 17 :
The arcsine function being odd, all solutions of the equation sm(3¢9):—E are given by

—sin”! [17)+2k7r 7 +sin” (17)+2kﬂ
125 125
and

. We must not forget that —/2 < 8 < 77/2. This keeps

3 3
. 17 . 17
1 17 T+ s E s E /A
the following three values: —— sin”! [—j, and
3 125 3 3

DNL 127

Michel Beaudin: Exercises for Résumé 1

13

Again, the DERIVE solution:
#19: Problems 2d)

3 2
#20: fl(x) =2x +x —4x -1

1 3 25.y 17
#21- ExPAND|f1|y - —— || = 2.y - -

3.2 6 54

3 5.y 17
#22: poly) = 2.y -

6 54
3 3 25.a.5IN(B) 17
#23: po(a-SINCE)) = 2.2 SINCB) - -
6 54
#24: Trigonometry := Collect
3 3
a «S5IN(3.8) 3:a 25+a 17
#25: pola-SINCB)) = - + - SSINCA) - ——
2 2 6 54
3
3.a 25+a 5 5
#26: S0LVE - ,al=laz=-—wvaz=z=—wvacz2~0
2 6 3 3
5 125.5IN(3.8) 17
#27: po| —SIN(B)| = - -
3 54 54
125.5IN(3.8) 17
#28: SOLUTIONS| - - =0, 8
54 54
[17../426 17../426 17../426
ATAN| — ATAN| — ATAN
#29: \ 2556 m 2556 m 2556
+ 1 = T -
3 3 3 3 3
f 17-./426 17-./426
ATAN ATAN
#30: 5 1 2556 m 2556
VECTOR| — -SIN(t) - —, t, + —
\ 3 6 3 3 3
(17./426
ATAN| ——
\ 2556
3
(17-./426 17-./426
ATAN| —8— ACOT| -
2556 m 2556
#31: 5.SIN + — 5.C0S
\ 3 3 1
3 6
17./426
ATAN| —M8M8—
2556
5.SIN
3 1
3 6

CEVHEN (1 .313099034, -1.570668057, -0.2424309764]

p 14 Memories (are made of this?) DNL 127

Dr. Hepperle provided a time list of most of the DERIVE for DOS versions (will possibly appear in
next DNL). Here are screen shots of his first and his last DERIVE version for DOS

" DOSBox-X 0.84.0: 3000 cycles/ms, DERIVE _ ol x|
Main CPU Video Sound | DOS Capture Drive Debug Help

Der ive
A Mathematical Assistant
Version 1.02

Copyright (C) 1988 by Soft Warehouse, Inc.
Honolulu, Hawaii, USA

Press H for help

DISPLAY: Mode: K344 Graphics Resolution: Medium(High)
MDA(CGA)EGA VGA Hercules AT&T PCjr
Select sc)

Free:100% Derive Algebra

"< DOSBox-X 0.84.0: 100%, DERIVE — O] x|
Main CPU Video Sound DOS Capture Drive Debug Help

DERIVE for DOS
A Mathematical Assistant
Version 4.11
rumning in 3Z2-bit mode

Copyright (C) 1988 through 1996 by
Soft Warehouse, Inc.
3660 Waialae Avenue, Suite 304
Honolulu, Hawaii, 96816-3236, USA

Please do not make illegal copies of DERIVE! This software is not shareware or
freeware. It is not to be published on bulletin boards or distributed by any
other means without written permission from Soft Warehouse, Inc.

For techmical support or if you know of any person or company distributing
DERIVE as shareware or freeware, please write us at the above address or send a
fax to (B0B) 7?35-1105.

Press H for help

OMMAND : Build Calculus Declare Expand Factor Help Jump soluve Manage
Options Plot Quit Remove Simplify Transfer Unremove moVe Window approX
Enter option

DNL 127 Felipe de Jestis Martinez Vargas: Polygons — Part 2 p 15

Polygons — Part 2

Felipe de Jésus Martinez Vargas, Mexico

Notice: 0 is angle of anticlockwise rotation in all functions.
6 = 0 by default, i.e. 6 must only be entered as last parameter if it differs from O.

e Function Triangle
Generates triangles. \
Syntax: Triangle(b,h,a,8) \

b: x-base, h: y-displacement of upper vertex, a: x-displacement of upper vertex
The triangle 1s defined by the points [(0,0), (b.0),{a,h)]; rotation center 1s origin.

0 0 i
B 0
triangleCh, h, a, 8 := 0) == Roti8) 10
a h
0 0
triangle(15, 10, -10)
M 10
m
triangle| 15, 10, -10, — -5
3

e Function rTriangle
Generates right triangles.
Syntax: rTriangle(b,h,8)

b: x-base, h: y-displacement of the upper vertex
Right angle 1s in the origin; triangle 1s defined by [({0,0), (b,0), (0,a)].

15

0 0

B 0
rTrianglelb, h, 8 := 0) == «Rot(8)
h

rTriangle(15, 10)

m
VECTOR[rTriang1e[15, 10, 8), 8, 0, 2.m, ———]
3

e Function iTriangle
Generates i1sosceles triangles.

Syntax: 1Triangle(b,h,8)
b: base length, h: y-displacement of the upper vertex (altitude)
Left vertex of the bease 1s the origin; triangle 1s defined by [(0,0), (b,0), (b/2,h)].

1Triangle(15, 10)

D D - L] . . y - ZU . n
b 0 10
5 <
iTrianglelb, h, 8 = 0) == b] Rot(8) % 15 10 5 T 10 15 ;
2 ~10-
_15 .
0 0] -20

p 16 F. de Jestis Martinez Vargas: Polygons — Part 2

DNL 127

m
VECFGR[iTPiang]e[lE, H, —], H, 0, 20, 2]

e Function eTriangle
Generates equilateral triangles.

Syntax: eTriangle(a,f)
a: side length
Left base wvertex 1s the origin; base on the x-axis

0 0
a 0
eTriangle(a, 6 = 0) = a JB Rot(8)
2 2
0 0

eTriangle(15)

m
VECTOR[eTriang1e(15, 8y, 8, 0, 2.m, ———]

3

n . . . -ZU . . . L]

y

.15 .

..1[] .

..5 x.
20 -15 <10 -5 | .5 10 15 2

.._1[].

.._15.
L U T

® Function Rhombus
Generates a rhombus.

Syntax: Rhombus(p, g, @)
p: horizontal diagonal; g: vertical diagonal
Center of the rhombus 1s the origin.

DNL 127

F. de Jesus Martinez Vargas: Polygons — Part 2

p
— 0
2
0 - 125
2
p "2[]
Rhombus(p, g, B :=0) =| - — 0 «Rot(8)
2
11
q
0 -
2 =10
p
— 0
2
Rhombus (10, 20) ' ' ' '
-10 10 15 20
2em
Rhombus| 10, 20, -~
3
2.7 {10
Trans late| Rhombus| 10, 20, , 10, 20
3
e Function Square
Generates squares.
Syntax: Square(a, 8)
a: side
0 0
a 0
Square(a, B:=0)=| a a |-Rot(B)
0 a 10
0 0
Square(15)
Translate(Square(15), 10, 0) 10 20
m
Translate| Square| 15, - — |, 10, 0
4 -10
m
Rotate| Translate(Square(15), 10, 0), - —
4

e Function Rectangle
Generates rectangles.

Syntax: Rectangle(b,h,8)
b: horizontal base, h: alt
Left vertex 15 1in the orig

1tude
.

p 18 F. de Jesus Martinez Vargas: Polygons — Part 2 DNL 127
»] ‘:U - -1
¥
D [] T 15
16
b 0
5 %
Rectangle(h, h, 8:=0):=| b h [.Rot(8) » : : : : , .
0 h 20 15 -10 -5 g 5 10 15 2
0 0 r—10-
L _15.
Rectangle(15, 10, 0)
- s —jn -
e Function goldenRect
Generates "Golden rectangles"; sides 1in golden section ratio 4
Syntax: goldenRect(b,8) KX/K fﬁ
b: base (longer side horizontal with left vertex in the origin) [
goldenRect(b, 8 := 0, &, h) ==
PFCIg L . . . L NI L]
6= (1 +45)/2 Y e
h = b/8
[0, 0; b, D; b, h; 0, h; 0, 0]-Roti{8) : : : : 10 -
. . lg .
goldenRect(15) i f
2015 -10 5 | 5 10 15 2
._1[].
._15.
. =20
Next one is more interesting:
e Function roundedRect
Generates rectangles with rounded vertices
Syntax: roundedRectCh, b, r, 8)
h: outside vertical length; b: outside horizontal length;
r: radius of the corner
m
roundedRect(20, 10, 1), roundedRect|20, 10, 5, —
4 |
S—

e Function Parallelogram
Generates parallelograms.

Syntax:Parallelogramm(b,a,h)
b: base side Chorizontal starting in origin);

a: x-displacement of the upper side; h:

altitude of the p.

(3

10

DNL 127 F. de Jesus Martinez Vargas: Polygons — Part 2 p 19

0 0
+10

b 0
Parallelogram(b, a, h, 8:=0):=| b + a h |-Rot(8) lg

a h

0 0 ' ‘

5 10 1% 20 25

Parallelogram(15, 10, 10)

e Function Trapezoid
Generates trapezoids.

Syntax: Trapezoid(a,b,c,h,8)

a: top side; b: base side;

c: x—displacement of the top side (= x-coordinate of endpoint of left leg);
h: altitude

Trapezoid(a, b, ¢, h, 8:=0) =] c +a h [-Rot(8)

Trapezoid(5, 25, 15, 15)

m
VECTOR[Trapezoid[S, 25, c, 15, ———], c, -25, 25, 5]
4

115

10

e Function rTrapezoid
Generates right trapezoids.

Syntax: rTrapezoid(a,b,h,8)
a: top side; b: base side; h: altitude
The right angle 1s in the origin and the trapezoids 1is directed to the right

p 20 F. de Jesus Martinez Vargas: Polygons — Part 2 DNL 127
L] ..zu . -. . . . L}
¥
35
"0 0
+10
b 0 lg -
rTrapezoid(a, b, h, 8:=0):=| a h |+Rot(8) m— } " " ' —1
-5 5 10 15 20 25 30
D h . -_5
| 0 0 | 10
L _15.
T 1di{15, 25, 15, 0
rTrapezoid()] 0. _]
e Function iTrapezoid
Generates 1sosceles trapezoids.
Sytax: 1Trapezoid(a,b,h,8)
a: top side; b: base side; h: altitude
Left bottom edge in the origin.
0 0]
b 0 120
b -a
a + h 11
iTrapezoid(a, b, h, B := 0) := 2 «Rot(8)
b -a
h t
2 20
0 0 J
1Trapezo1d(15, 25, 15)
e Function L
Generates polygons in form of an L.
Syntax: L(a,b,c,h,8)
a: top side; b: base side; c: altitude of upper step
h: total altitude
[0 0
b 0
b h -c
Lia, b, ¢, h, 8 =0):=| a h - ¢ |Rot(B) “n
a h
0 h +10
L 0 0

L(10, 25, 5, 20)

20

DNL 127 F. de Jesus Martinez Vargas: Polygons — Part 2 p 21

e Function T
Generates polygons in form of a T.

Syntax: T(a,b,c,h,8)

a: top side; b: base side; c: upper altitode; h: total altitude

T 1s symmetric wrt y-axis with abse on the x-axis.

T(a, b, ¢, h, 8 :=0, out_) =

Prog
out_ == [a/2, h; a/2, h —c; b/2, h — c; b/2, 0]
out_ := APPEND{out_, REVERSE(out_.[-1, 0; 0, 11))
out_ := APPEND{out_, [FIRST(out_)])
out_ = out_-Rot(B)
out_

[T{10, 20, 10, 25), T(30, 10, 5, 15)]

)

120

110

+10

=20 20

e Function circle
Generates circles with center 1in origin.
(needs function pgon)

Syntax: circle(d)
d: diameter

D
circle(D) := pgon[lﬂﬂ, S D]

circle(25)

e Function semicircle
Generates semicircles & diameter.

Syntax: semicircle(d,B)

d: diameter of the semicircle

semicircle(d, 8 := 0, out_, pts_) :=
Prog

pts_ := 100

out_ =

out_ := APPEND(out_, [FIRST{out_)1)
out_ := out_.Rot(®)

out_

semicircle(25, 0)

20

110

VECTOR([d/2.C0S(m-k/pts_), d/2.-SIN(m-k/pts_)], k, 0, pts_)

110

10 20

p 22 F. de Jesus Martinez Vargas: Polygons — Part 2 DNL 127

kem
VECTOR[TransTate[semicirc1e[25,], 5.k, D], k., 0, 12]
[

-10

e Function arch

Generates arches of a circular ring.
Syntax: arch(re,r1, w, B)
re: outer radius; ri1: inner radius; w:

: aperture angle

2

mik
VECTOR[Trans1ate[arch[20, 15, 30°,], 20, 20], k, 0, ?]

T

110

T
[arch(ED, 15, 45°), arch[ZD, 15, 45°, ———]]

RN
3

~
e\

—%Ef&-iu 10

1-10

[E

40

e Function ellipse
Generates ellipses (center 1n origin, axes || x-— and y-axis)

Syntax: ellipse(p,q.8)
p: horizontal axis; g: vertical axis

ellipse(p, q, 8 := 0, pts_, k, a_, b_, out_) ==

Prog
[a_ = p/2, b_=q/2, out_ =[], pts_ = 40, k := 0]
Loop
out_ := INSERT([p/pts_+k — a_, b_./(1 - ((p/pts_-k — a_)/a_)"2)], out_, k + 1)
If k = pts_
exit
k =+ 1
out_ := APPEND({out_, REVERSE{out_.[1, 0; 0, -11)) 110
out_+Rot(B)

lellipse(25. 107, ellipse(5, 3071

20 20

)

DNL 127 F. de Jesis Martinez Vargas: Polygons — Part 2 p 23

te: wall thickness; re: outside corner radius (typical = 2te);
ri: inner corner radius (typical = te)

e Function HS5S_beam

Generates polygons of square and rectangular cross-section tubes.
Syntax: HS55_beamCh,b,te,re,r1,8)

h: outside vertical length; b: outside horizontal length;

H55_beam(h, b, te, re, r1, 8 =0, out_) =

Prog
out_ := APPEND{roundedRect(h, b, re, 0), REVERSE(roundedRect(h - 2.te, b — 2.te, ri1, 0)))
out_ := APPEND{out_, [FIRST(out_)])-Rot(8)
out_

H55_beam(25, 15, 3, 2, 1)
130
m
Trans late| H55_beam| 25, 15, 3, 2, 1, — |, 20, 20
4 120
- :I__I"/_-

—mL 10 20 30
+=10

e Function CHS_beam

Generates cross sections of circular pipes as polygons.
Syntax: CHS_beam(de,te)

de: outer diameter; te: wall width

de
CH5_beam(de, te) := thcn[TS, , te, D]

CHS_beam(25, 5)

Trans late(CH5_beam(50, 2), -10, 0)

e Function EHS_beam
Generates cross sections of elliptical pipes.

Syntax: EH5_beam(p,q,te,8)

p: horizontal width of outside ellipse;
q: vertical width of outside ellipse,
te: wall width

EHS_beam{p, q, te, 8 := 0, out_) ==
Prog
out_ := APPEND(el11pse(p, q, 0), REVERSE(ellipse(p - 2+te, g — 2:te, 0)))
out_ := APPEND(out_, [FIRST(out_)]).Rot(8)
out_

p 24 F. de Jesus Martinez Vargas: Polygons — Part 2 DNL 127

kemm
VECTOR[EHS_beam[ZE, 10, 1,], k, 0, 3]
4

15 0

e Function I_beam
Generates European I-profile polygons (EU: IPE / HE / HL / HD / HP;
UK: UB / UC / UBP; US: W / HP; RU: HG; JIP: H).

Syntax: I_beam(h,b,tw,tf,r,8) . Flange width (w) _
h: beam height; b: flange width;

tw: web thickness; tf: flange thickness; [}
r: radius of the web—flange connection
MNote: r=0 gives an I-heam with straight edges
. Web
https://commons.wikimedia.org/w/index.php?curid=10305422) Ve
= 7
L
I_heam{80, 46, 3.8, 5.2, 5, 0) -%
=
m % Web thickness (b)
I_beam| 80, 46, 5.2, 3.8, 0, — m [
4
— i — 40 Flange
7120 20 1
Flange thickness (1)
=20 20 40 =20 20 40
=20 =20
— | .

e Function L_beam
Generates poligons in form of L-shaped angle beams.

Syntax: 1_beam(h,b,te,rl,r2,8)

h: wvertical leg; b: horizontal leg;

te: thickness of the Tlegs;

rl: radius at the end of the legs

r2: radius of the connection of the Tegs

https://commons.wikimedia.org/w/index.php?curid=10305422

DNL 127

F. de Jesus Martinez Vargas: Polygons — Part 2

P 25

[L_beam(203, 102, 11.1, 10, 10), Translate(L_beam(203, 102, 11.1, 0, 0), 150, 0)]

[L_beam(203, 102, 11.1,

1, 10), Translate(lL_beam(203, 102, 11.1, 10, 1), 150, 0)]

200] 200 T
+150 +150
+100 +100
30 10
\ % .] , / ,)
50 100 150 200 250 50 100 150 200 250
e Function U_beam
Generates poligons 1n form of U-shaped beams.
EU [DIN 1026-1: 2000] (UPN) or parallel flanged channels (UPE / PFC).
Syntax: U_beamCh,b,tw,tf,r1,r2,8)
h: height of the cant [mm]; b: Tlength of the legs;
tw: cant thickness; tf: legs’ thickness;
rl: radius at the end of the legs (UPE / PFC when r1 = @);
r2: radius of the interior edges;
[U_beam{80, 50, 5, 7, 3, 3), U_beam(80, 50, 5, 7, 0, 0, m)]
4i_f_J
40
-0 -40 =20 20 40 5]
=20
P —
Ejemplo/Example: v, % i
TR
Representar las secciones transversales compuesta de 2 40 3 f?, z}
un angular de alas desiguales N® 14/90 (GOST 8510-72) S /H"Mf'g

Represent the composite cross sections of an angular
with unequal wings N® 14/90 (GDST 8510-72)
and a channel N® 24 (GDST 8240-72) .

y un canal N® 24 (GOST 8240-72). 7,001 5
%

Konstruktionszeichnung

p 26 F. de Jesus Martinez Vargas: Polygons — Part 2 DNL 127

& ANGULAR N7 14/90 (GOST 8&510-72)
#67: polygonl := L_beam{140, 90, 10, 12, 4, 90°).mm_

1

#68: polygonl.
cm_

o CANAL N° 24 (GDST 8240-72)

#69: polygon2 = U_beam(240, 90, 5.6, 10, 10.5, 4, 0).mm_

1
#70: polygon2.
cm_
110
5 10
—L ' ' + "% !
=15 =10 -5 5

e SECCION TRANSVERSAL COMPUESTA
e (OMPOSITE CROS55 SECTION

1 1
[Trans?ate[po?ygonl- , 14, 12], polygon2.
cm_ cm_
1 1
APPEND| polygon2 - . REVERSE| Translate| palygonl. , 14, 12
cm_ cm_
120
120
115
115 : : : L

T

..“lg___;h_h_hﬁ . . ":lg__ﬂ_;__h___\

DNL 127

Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices

Sparse Matrices (Diinn besetzte Matrizen)
Joset Bohm, inspired by Bhuvanesh Bhatt (and many web sites)

When [worked through Bhuvanesh’s Mathtools (see earlier DNLs) I came across three functions ad-

dressing “Sparse Matrices”.

Fi T Fzv TrszruvT FE T FE™
- E Control [I-0ar[Find.. MDI:‘IE'T]

tLosparseimat.pal?

fFuRC

iEToSparseimat, pat? converts mat to a C5
R _sparse arrag (CSE = Compressed Sparse
Row format) with default element patid
Bhuvanesh Bhatt L

tLocal rowp,cols,wals.ii, jda.kk, tops I8+
pr=1?kk=d1m(ma£)+tmp_

fFor ii,1 tmpllliFor jj,1,tmpl2]18If when
(hathtunikmatchqimat i1 ﬂﬂ],pat}!falge,
tirue, thue ThEH:J%+GDlSi limat[ii, i1+
walsTkkit kk+13kki ndIf:EndFor: kk—1+rowp

Fi T Fzv TrszruvT FE T FE™
- E Control |[I-0)ar|Find.. HDdE‘T ;

Fow format?) with defaull element palsx

Ehvanesh Bhat L
iLocal rowp,cols.vals,ii,
nup:l?kk:d1mtma£)+tng_
fFor ii.1l tmpllliFor 4ij,1,
¢ mathtoai- .
true, brue Then:4é+c015
valzTkklf kk+1+kki
[1i+1]:EndFar

tEndFunc

matchymat. 1ltﬂﬂ%,patbqfalae,
nd I+ EndFor: kk—1+roup

tsparseidinicols?, tmp,rowp, cols, wals, pat.

J.kk, tmps {03+
trpl2]12 If when

tmatlii,jjl+

MATHTOOL KRD ERACT FUMC

MATHTOOL ERD EXACT

FUWC

I must admit that I didn’t have any idea about their purpose.

Explication from the web:

A sparse matrix is a special case of a matrix in which the number of zero elements is much
higher than the number of non-zero elements. As a rule of thumb, if 2/3 of the total elements
in @ matrix are zeros, it can be called a sparse matrix. Using a sparse matrix representation
— where only the non-zero values are stored — the space used for representing data and the
time for scanning the matrix are reduced significantly.

The compressed sparse row (CSR) or compressed row storage (CRS) or Yale format repre-
sents a matrix M by three (one-dimensional) arrays, that respectively contain nonzero
values, the extents of rows, and column indices. It is similar to COO, but compresses the

row indices, hence the name.

So, I tried the first two TI-92-functions referring to an example from one of the many web resources:

CSR format

In the CSR format all column indices for each nonzero are stored row after row in a single buffer.

Similarly, all nonzero values are stored row after row in a single buffer. The entry points denoting

the beginning of each row are stored in a third buffer, where the end of the i-th row is implicitly

given by the start of the i+1-th row.

Example: CSR Storage

1050
2300

02467
| L

Row Start

4001

|0 2 0 1 0 3 2] Column Indices

0020

152341 2] vewes

,
]
ol
ol

0

(%]
)

o
q
o
J
[

Here is a short explication of the CSR-format. You can see that the matrix is described by three arrays:
{0,2,4,6,7}, {0,2,0,1,0,3,2}, {1,5,2,3,4,1,2}. Learn more on page 30.

p 28 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices DNL 127

Let’s see how tosparse(mat, pat) performs.(pat is the element filling the “empty” cells of the

matrix, which is usually 0).
I’Fi"mT Fev T rsvT Fuw T FE T FE* T]
~ §—|Alacsbra|Calc|0ther |PramlI0{Clean Up

B tosparse e

1850
2300
4 @0 1
0@z a
sparse(T, {4 4%, {0 2 4 & Vi, {1l W
wed 1 4,33 .41,5,2,3,.4,.1.2%,0>

MATHTOOL EAD EHACT FUHC 1/%0

The complete output reads as follows:
sparse(7,{4,4},{9,2,4,6,7},{1,3,1,2,1,4,3},{1,5,2,3,4,1,2},0).
We have 7 elements # pat distributed in a 4x4-matrix. RowStart-array and Values-array are the same
as given in the example from above. ColumnIndices-array is shifted by 1. This is because Bhuvanesh
starts column indexing with 1. I will explain how to interpret the output later. Let’s first try the reverse
action: how to come back to the original matrix from its CSR-notation:

N comirol [Ton| a1 rd. [Fode| | Y) A T A |

tLodensetarr)] 1h+tmp

tFunc H
t@Tobensefarr? converts a C5E_sparse arr EpaPt{aPP,4}+tmp2=part(aPP,3b+tmp3

aE tC5FE = Compressed Sparse Row format) : .
o a "regular" matrixz3EBhuvanesh Bhatt fishiftitmp3, 1i+tnp3iReturn arri partlar

o P,53?9515=1+%%
fLocal 11,% sLmp, tmp2, tmp3; vals tFor ii,l.dimitmpd? .
tpartiare, +tm§=§art{arr ﬁb+tmp2=59qﬁtm walslill+tmp i, tmp2liill
pril,1,tmp2[210+ mp:seqiimp,11,1,tmp2[1 PIf ii=tmp3Lidliii+lsgd
]5+tmp tndFDP
H e [=
tpartiarr,42+tmp2: part.Care, 32 +tmp3 tEndFuncl
MATHTOOL ERD ERALT FUHL MATHTOOL RHD ERACT FUHC

O T et 3| ate [t her Pranio|cleon Us| |
le o 2 o

sparselr,t4 43,40 2 4 & TiI. L1 B
B todenselsparsel7, 44 4X,{0 2 4 &

[R e B B |
o~ 0 cw

1 o
2 3
4 0
@ 0
2

> 032

w2.1,4,3%,.41,5,2,3,4,.1,

MATHTOOL KAD ERACT FUMC 2/50

Seemed to work! I was happy and “translated” both functions into DERIVE- and TI-Nspire-Code.

tosparse||2 0 1,0'] sparse(2,{2,3}1,10,2.2},{1,3},{21},0)
o 0 0
todenselsparse(2,{2,3},10,2,2},{1,3},{2,1},0) [2 0 1}
000
1t v 5 x| | sparsel7,{4,.4},{024,67},{1,31,21,4,3},{1,5234,1,2} 1)
tosparsel|2 3 ¥ x|,
4 x x 1

lx x 2 x

todenselsparse(7,{4,4},10,24,67},{1,31,21,4,3},{1,52,3,4,1,2} 1))

= L2 =
Lo
»
»

DNL 127 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices P 29

10 0 0 12 0

0 011 0 13
fosparse|l o o o0 0 0 0

0 011 0 13

00 0 0 0]

sparsel6,{5,5},{0,2.4,4,6,6 },{1,4,3,5,3,5},{10,12,11,13,11,13 },0)
todenselsparsel6,{5,5},{0,2,4,4,6,6},{1,4,3,5,3,5},{10,12,11,13,11,13 },0))

10 0 0 12 0
0 0 11 0 13
0 0 11 0 13
00 0 0 O
00 0 0 0

That was the disappointment and bad surprise. I thought that I had made a mistake in the TI-Nspire-
coding and tried the same matrix with Bhuvanesh’s tool on the Voyage 200.

I‘Fi T Fev ‘l’rsvTr-«v‘l’ FE T FE™ T
- E AlgebralCalc|0ther|PrgmId|Clean Up
[0 o z a

B todenselsparsel&, {3 SX,L0 2 4 4 p
1l o @ 12 07

@ o 11 @ 13
B o 11 8 13
B o8 @ @
008 @ 0|
w3 0, 410,42, 49 43,441,433 ,.03>

FATHTOOL EAD EHACT FUHC /30

Wrong again! Same happened in DERIVE. I found out, that this function works for matrices containing
“zero rows” in one direction (tosparse), but does not work in reverse direction (todense).

I revised my DERIVE code and tried to improve the function. Since there are some other formats to
record sparse matrices, I call the functions as to_csr and todense_csr.

This is my reference matrix from above and its treatment:

105 0
2 3 00
to_csr
4 0 0 1
00 2 0
[[4, 4], [0, 2, 4, 6, 7], [0, 2, O, 1, O, 3, 2], [1, 5, 2, 3, 4, 1, 2], 0]
todense_csr([4, 4], [0, 2, 4, &, 7], [0, 2, 0, 1, 0, 3, 2], [1, 5, 2, 3, 4, 1, 2])
1 0 5 0
2 3 00
4 0 0 1

00 2 0

Inspecting the input and the output you will find some differences to the TI-results:
e [don’t enter the variable pat = 0 because it is 0 by default (see next example with another pat).

e The number of elements # pat does not appear in the output because it is the dimension of the last
array.

p 30 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices DNL 127

e Both arrays rowp and cols start with 0, because almost all references use 0-indexing (Bhuvanesh
applies 1-indexing). See also Walter Wegscheider’s comment next page.

See now my example applying the improved CSR-function (taking “x” to mark the “empty” cells of the
matrix):

T &8 = 2 x x |

to_csr X X X X X |, X

X X X X X

Wox o x o ox 9 x| J
7z, s1, o, 2, 3, 3, 3, 6, 6, 71, [0, 2, 2, 2, 3, 4, 3], [8, 2,5, 7.1, 2, 9], x]
todense_csri([7, 5], [0, 2, 3, 3, 3, 6, &, 7], [0, 2, 2, 2, 3, 4, 3], [8, 2,5, 7,1, 2, 9], x)
[8 x 2 x x]
¥ x 5 x x
X X X X X
X X X X X
x x 7 1 2

X X X X X

l ¥ x x 9 x |

I try to explain how to read the output. It might be a bit confusing, because rows and columns have
numbers starting with 0 (their indices):

The sparse matrix described by [[7,5], ..,x] is a 7x5 matrix containing the elements # pat (= X) in
the last array [8,2,5,7,1,2,9]. The first array is the row pointer (rowp) and the second one gives the
columns (cols).

row 1: until 2" element in cols (0,2) which are cols 1 and 3 elements 8 and 2, else x: [8,x,2,x,x]
row 2: until 3" element in cols (2), which is col 3 take 5, else x: [0,0,5,0,0]

row 3: until 3™ element in cols (no new element in this row): [x,x,x, X, x]

row 4: again until 3™ element in cols (no new element in this row, t00): [x,X, X, X, x]

row 5: until 6" element in cols (2,3,4) which are cols (3,4,5) take the next 3 elements :[x,x,7,1,2]
row 6: until 6" elementin cols, which gives no element in this row: [x,x, X, X, x]

row 7: last element (9) is in col 4 (index = 3): [x,x,X,9,x]

Now we have reconstructed the matrix. Function todense_csr does the job. I must admit that it took
me long time and much thinking to find a solution how to improve Bhuvanesh’s function. It’s a pity
but I have to realize that my gray cells are becoming older. This is one of the reasons for the delay of
publication of DNL#127.

I am quite sure that my solution of this problem is not the most elegant one. I saw that repeating num-
bers in the first array indicate empty rows. This helped. It would be great if anybody could provide a
tighter code for todense!

DNL 127

Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices

I found another nice illustration for the CSR-format of a sparse matrix (among the references):

rowptr:

colind:

7.5 29 28 27 0O
6.8 57 38 0 0
24 6.2 32 0 0
97 0 0 23 0

(0 4 7 10 12 14 16)
(012301201\2534545]

val: (75 2.9 28 2.7 6.8 5.7 3.8 24 6.2 32 9.7 2.3 58 50 6.6 8.1)

One obtains the CSC-format of a sparse matrix by interchanging rows and columns in the procedure.

See my DERIVE solution:

M & = 2 x

to_csc X X X X

X X X X

\[L ¥ x x 9

(fz, 51, fo, 1, 1, 4, 6, 71, [0, O, 1, 4, 4, 6, 4], [8, 2,5, 7, 1, 9, 2], x]

todense_csc([7, 51.

¥

x|, =
2
X
x 7

[n! 1! 1! 4! 6! ?]! [n! U! 1! 4! 4! 6! 4]! [8! 2! 5! ?! 1! 9! 2]! x)

(Walter Wegscheider told me that 0-indexing has been very common for many programming
languages (C/C++, Java, ..). Just PASCAL and BASIC were “outliers”. Many thanks Walter

p 32 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices DNL 127

It took me much time again and many failing attempts to convert the DERIVE code of todense_csr
for TI-Nspire. I missed some helpful DERIVE commands. This is one reason. The other one might be
that my gray cells are not in the shape as they were some time ago ...

However, but finally — after two weeks vacation in Sicily — the cells worked and I am happy to present

todense for TI-Nspire, too.

T —
10 » x 12 «x
tosparse| ¥ ¥ 11 1 131y
xr 16 x x «x
xr x 11 x 13
sparsel7,{4,5},{0,24,5,7},{1,4,3,5,2,3,5},{10,12,11,13,16,11,13 } 1

todense 2537

Define todense(arr):

Func

Local ii jjpat,md rowp rowpn,cols vals zz,nz,
pat::part(arr,() :md::part(arr,2}

rowp =part|arr,3 :cols::part(arr,tl}:vals::paﬂ

todense(sparsel7,{4,51,102457} {143,523 5},{10,12,11,13,16,11,13},1)) z={[]
0 r x 12 1 For ii,2,dim(mwp)
o or 11 r 13 If rowp ii}=mwp[ii71]:zz:=augment(zz,{ii*
r 16 x x «x EndFor
T x 11 1 13 am‘::seq[t’, i,l,dim(rowp)}

nz:=matht00ﬂlistsubt(am’,zz
‘ rowpn:={ !
For #i,1,dim nz}

rowpn ::augment(mwpn, { rowp[nz[iiﬂ }}
EndFor
mat:=newMat{md[1}7dim(zz},md[2]}
0 For ii,l,md[lH—dim(zz}

For jj,1,md| 2]
mat|ii,jj | =pat

EndFor:EndFor
rowp::seq{rowpn[f},i,ldim(rowpn}}
Ji=1
| For #i,1,dim coIs}
kparse(7.{12,51,{0,02,3,3,3,3,6,6,67,7,71,{1,3,3,34,54},{8,257,1,29},0) mafbicoffh}—vafs[ﬁ]

If ii=rowp|jj | jj:=i+1

todenselsparse(7,{12,5},{0,0,2.3,3,3,3,6,6,6,7,7.7},{1,3,3,3,4,5,4 }.{8,2,5.7,1,2,9},0)) EndFor
If md[l]:dim(mwp):Retum mat
pats::seqﬁvat,i,l,md[ZD
main:= '_j
.| For ii,1,md| 1] .

oo O OO0 O o o o o wWwo

fosparse|

(= === --E-E - - - -]
S o o o No o oo
O C v O C=O o O C oo
o C ©C O C o © O C oo

(=T - I)

o o o o
L=R %L B O)
o o o o
o o o o

(=]

I must repeat my comment to the DERIVE-function: I am quite sure that there is a tighter code possible
for this function. The problem are the empty rows ...

The CSC-format for TI-Nspire:

00500 005 0 of | fodese 24
00000 0000 0 |Define tod_csclarr)=

m3=g 00 0 0 000 0 0 [Func
00712 00712 Local dims
00000 00000 dims::{paﬂ(ﬂm3}[3],lﬂaﬁ(amz}m} >
00090 00090 ©Return sparse|dims| 1 | dims,partlarr, 3),partlarr,4),partiarr, 5, partiarr, 6))

[fodense{sparse{dims[1 ldt’ms,part(arr, 3},part(arr,4)+ 1 ,part(arr, 5} ,part(arr

sparsel7 {7.51{0.1,1,4,671,10,0,1.4.4.64} (8257102} | EndFune
tod_csclsparsel7,{7,5},{0,1,1,4,67},{0,0,1,4464}{82571,9.2}¢ to_csc 4
80200 Define tofcsc(ma!,pa!):
00500 Func
0000O0TOD Local tmp,dims
00000 tmp::tospame(matTpat)
00712 dims:=part| tmp,z}
0000O0TOD spame{paﬁ(tmp,1),{d1’ms[2],dims[1}},part(tmp,3),part(tmp,4)—1,paﬂ(tmp,5
00090 EndFunc

DNL 127 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices p 33

Bhuvanesh provides one more function in connection with sparse matrices: generate a sparse matrix of
given dimension with given number of elements differing from the empty cells.

From Bhuvansh’s Mathtool-description:

SparsRnd({m.n}.nz) returns an mxn random sparse array with nz nonzero values

Needs: ToSparse

Example: RandSeed 0:SparsRnd({2.3}.2) =
sparse(2,{2,3}.{0,1,2},{2.3},1{0.733812311248,0.405809641769},0)

I‘Fi]’ Fiv TF37T F'Pr]’ FE T FE™ |’F1 T Fiv Trzv*l’r-wT FE T FE™
- E Contiol [I-0War |Find.. HDdE"T 1 - E Control | I-0War|Find. l"h:-deT
fsparsrndidlns, NoONZeros) P onz must be & TEstripngiproductidims)
tFunc fzegiseqirandidims[iil,1i,1,dimidims22
tESparsRndCin, vk, nzy returns an me=n rand %i i;honzeros 1atmpinewfatidins 111, dinst
am sparse artad with about nz nonzero w 5+mat .
alues3BBhuvanesh Bhatt3Can use "L{a,blla tFor ii,l,mnonzerost If whenimat [tmplii, 11
=x and a=4" later ,trfu:::[n)| 1=0,true, false,falsel Thenira
tLocal tmp.mat,ii . Ficd smakTErplii, 11, tmpli1,2112Elserii-1
f nonzeros i productidins)i Return "Error +ii
! nz must be = "kstringlproductidimsl fEndIf
fseqliseyqirandidims (1110, i1, 1, dimtdimsad :EndFor
%i 1, nonzeros»+tmpinewiatidina (11, dins imathtool~tosparseimat, @2
damat :EndFuncl
FIRTHTOOL AL ERACT FUHE & HATATOOL RAD ERACT FUHC &

Testing this function, I came across some problems:

e Generating matrices with dimensions a bit higher (really not much) needs too much time — or the
system hangs up (even with TI-Nspire).

e The function produces nz pairs (i,/) of integer random numbers [1 <7< m, 1 <j < n], which give the
rows and columns of the nz random numbers 0 < 7 < 1. But the function does not consider that ran-
dom generated pairs can appear twice or more often. Then we will not reach the requested number
nz of nonzero values.

o [asked myself, why variable pat is introduced to mark the “zero — positions” in tosparse and in
todense. It is ok, but then it would be consequent to offer this opportunity for the random sparse
matrix, too.

The correct sparsrnd for DERIVE:

sparsrnd_csr(dims, nz, pat := 0, dummy, tmp, mat, 11, outp) =
Prog
dummy := RANDOM(CO)
If nz = M{dims)
RETURN APPEND("nz must be =< ", STRING{TI(dims)))
Loop
tmp = VECTORCVECTOR(CRANDOM(dims ;1) + 1, 1, 2}, 3. nz)
mat := VECTORCVECTORCO, 3, dimsi 2}, 1, dims 1)
'I'I =1
Loop
If 11 » nz exit
k = IF(matyCtmpri111) Cempriiy2) = 0, false, true, true)
If k = false
matyCtmp 11110 Ctmpri12) == RANDOM(CL)
11 :+ 1
If DIM({to_csr(mat))i14) = nz exit
outp := to_csr(mat)
outpl5 = pat
outp

p 34 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices DNL 127

sparsrnd_csr([3, 5], 6, x)
[[3, 5], [0, 2, 4, 6], [1, 4, 2, 4, 1, 2], [0.0351, 0.955, 0.249, 0.824, 0.0731, 0.328], x]
todense_csr([3, 5], [0, 2, 4, 6], [1, 4, 2, 4, 1, 2], [0.0351, 0.955, 0.249, 0.824, 0.0731, 0.328], =x)

0.0351 X x 0.955 x

X 0.249 x 0.824 x

0.0731 0.328 x X X
sparsrnd_csr([4, 4], 6)
[[4, 4], [0, 2, 3, 4, 6], [1, 3, 2, 3, 1, 4], [0.328, 0.840, 0.357, 0.500, 0.376, 0.162], 0]
todense_csr([4, 4], [0, 2, 3, 4, &1, [1, 3, 2, 3, 1, 4], [0.328, 0.84, 0.357, 0.5, 0.376, 0.162])

0.328 0 0.84 0

0 0.357 0 0
0 0 0.5 0
0.376 0 0 0.162

If you would like to generate matrices with random numbers others than elements of (0,1) you had to
extend the function or to process the matrix.

When I informed about sparse matrices, [found out that there are more formats for describing them:

The COO-format:

000300 4 000300 4 "to_coo" erfoly. gespeichert
0500000 05000 0 0 ||Define to_coolm)=
000O0O0OO0OO0 000O0O0OTU Fune
mal=lg 0 5 00 40 005004 0f |Localreijeook
4000001 4000001 0001:{dim(m)[1],dim{m)[[3}],0}
0200300 02003 0 o0 |[r=dimln|[1]:c=dimn2
0000000 000000 of |Forilr
k=0
fo coo(mat} 770 For j,1,c
033 If m[ij]#0 Then
06 4 coo:=augmenr(coo,{i—l,j—l,m[i‘j}}}
115 k=1
000 EndIf
325 EndFor
354 If IFO:coo::augment(coo,{0,0,0})
4 0 4 EndFor
461 list» mat(coo, 3)
5 1 2 EndFunc
54 3
000 "todense_coo" erfolg. gespeichert
Define tndense_coo{m}=
77 0| 0003004 Func
033 0500000 Local m_i
064 0oo0o0000O m7:=newMa.t(mE1,1],m[1,2]}
115 0050040 m:=subMat(m,2
000 4000 0 0 1 ||Forildimm1
todense_coo||3 2 5 0200300 m_{m[i,1[+1,mi,2}+1]):=m[i,3]
35 4 000O0O0OOU EndFor
40 4 m_
4 61 EndFunc
51 2 .

All nonzero elements are noticed as a list (vector) [row-index, col-index, value]. I collect all lists in a
matrix, indicating the “zero-rows” by [0,0,0]. The first row gives the dimension of the given matrix. I
wonder, why indexing starts with 0? It might be the same reason why indexing of lists in PYTHON
also starts with 0.

DNL 127 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices p 35

I had to use the output in form of a matrix, because in TI-Nspire it is not possible to work with lists of
lists. In the first row you can find the dimension of the matrix. In my opinion this is necessary because

in case of a “zero-col” as last column it would not be able to reconstruct the original matrix.

BTW, there was only one example in all the many websites presenting a sparse matrix with an empty
row. I wonder if such matrices really don’t appear in applications?

Linked Lists or in Lists of Lists are used in
LIL-Formats:
Again, we face 0-indexing of rows and columns!

Sparse matrix
Single linked list

| 01 2 3 4
o OTo[s]o]o] —GLEDR—0LEER—0GEH
Ilojolof2]o

2 13]o0flojo]o L-|3|[3|3l..l_,.|_;|3|IH 'I-‘I"I?l

i lojoli]o]7 i_

Figure 1: An example of representing a sparse matrix with a single linked list

https://www.chegg.com/homework-help/questions-and-answers/exercise-1-sparse-matrix-singe-linked-
list-numerical-analysis-sparse-matrix-sparse-array-n-q37289682

LIL

Column
0 1 2 3 4 Rows Data
o 1 -1 0|21 4 g811]-1
| 8 | 2 o 1|2 8 | 2
P 1
s M : 3 i i 2 3
= —
T w2 4 |1 8 1-2 0|12 3|4 2148]-2
w: : 5 8 2| 4 5|8
Fe——t—— -
) 6 P 2 6
| I _——t]
In 2 1il.rows
out[32]
array([list ([0, 2, 4]), list([1l, 2]), list([2]), list ([0, 2, 3, 41)
list({[2, 41), list{[2]1)], dtype=cbhject)
In [33]: lil.datal[:, np.newaxis]
out [33
array([[list([8, 1, -1]1}1,
[list{([8, 21)1,
[1ist([3])1,

https://matteding.github.10/2019/04/25/sparse-matrices/

https://www.chegg.com/homework-help/questions-and-answers/exercise-1-sparse-matrix-singe-linked-list-numerical-analysis-sparse-matrix-sparse-array-n-q37289682
https://www.chegg.com/homework-help/questions-and-answers/exercise-1-sparse-matrix-singe-linked-list-numerical-analysis-sparse-matrix-sparse-array-n-q37289682
https://matteding.github.io/2019/04/25/sparse-matrices/

p 36 Bhuvanesh Bhatt & Josef Bohm : Sparse Matrices DNL 127

to_T11(mat, T1lc, 11le, Te, lc, 1, c, dm) ==
Prog
[Tile = []., Tilc = [1]
dm = [DIM(mat), DIM(mat')]
1:=1
Loop
If 1 = (DIM(mat)))1 exit
le = []
Tc =[]
c=1
Loop
If maty1 = [] exit
If FIRST(maty1) = 0
Prog
le = APPEND(le, [FIRST(maty1)])
lc == APPEND{1c, [c - 1]1)
ca=c+ 1
maty1 := REST(maty1)

T17e = APPEND(T1Te, [lel)
117 = APPEND(T111c, [1c]) This is the DERIVE-code for the LIL-notation of a

[d;; :J{ﬁc; Tile] sparse matrix. | used empty vectors [] to indicate empty
) rows in the given matrix in both lists 11 1r (the rows)
8010 1 and 11i1v (the values) as well.
o8 2 0 0
The first row in the result gives the dimension of the

matrix. Otherwise we could not recognize a “zero-col-

00 3 0 0

T1lmat = 00000 0 umn” as last column.

to_T11(11 Imat)

(7, 5]

([0, 2, 4], [1, 21, [2], [1, [o, 2, 3, 41, [2, 4], [2]1]

[[S! 1! _1]! [S! 2]! [3]! []! [_2! 4! S! _2]! [5! S]! [6‘]]

[7. 5]
todense_111 ([0, 2, 4], [1, 21, [21, [1., [0, 2, 3, 4], [2. 4], [2]]
(s, 1, -11, 8, 21, [3], (], [-2, 4, 8, 2], [5, 8], [6]]
8§ 01 0 -1]

08 2 0 0

003 0 O :
Converting back to the common

000 0 0

form of the matrix.

-2 0 4 8 -2

DNL 127 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices p 37
When I read my contribution, I found out that the COO-format is missing for DERIVE.
Look, here it is:
7 5 0] 5 0
00 8 00 8
02 1 02 1
0 4 -1 0 4 1
8 010 -1 11 8 11 8 8 010 -1
D8 2 0 0 1 2 2 1 2 2 0 8 2 0 0
00 3 0 0 2 2 3 2 2 3 0 0 3 0 0
to_coo 0o 0o o0 ol=1l0o0 o0 todense_coo | 0 0O O = 00 0 0 0
2 0 4 8 =2 4 0 =2 4 0 -2 -2 0 4 8 =2
00D 5 0 8 4 2 4 4 2 4 0 0 5 0 8
00D 6 0 0 4 3 8 4 3 8 0 0 & O 0
4 4 -2 4 4
5 2 5 5 2 5
5 4 8 5 4 8
6 2 6 | 6 2 6

A Challenge for programmers:

Browsing the many resources addressing sparse matrices, I came across that some of them explain how

to operate with them. How to multiply sparse matrices? Here is the answer:

To Multiply the matrices, we first calculate transpose of the second matrix to simplify
our comparisons and maintain the sorted order. So, the resultant matrix is obtained by
traversing through the entire length of both matrices and summing the appropriate mul-
tiplied values.

Any row value equal to x in the first matrix and row value equal to y in the second matrix
(transposed one) will contribute towards result[x][y]. This is obtained by multiplying all
such elements having col value in both matrices and adding only those with the row as x
in first matrix and row as y in the second transposed matrix to get the result[x][y].

https://www.geeksforgeeks.org/operations-sparse-matrices/

Let’s try and multiply two matrices following the “recipe” given above:

25
0 10 12

A= , B=|0 1
1 0 2

8 0

Then we generate the COO-form of matrix 4 and the transpose of Matrix B and remove the first row
containing the dimension of the matrix giving matrices a and b:

https://www.geeksforgeeks.org/operations-sparse-matrices/

p 38 Bhuvanesh Bhatt & Josef Bohm: Sparse Matrices DNL 127

01 10 0 0 2 Consequently, I use 0-indexing. (If you are uncomfortable

0 2 12 0 2 8 with this, then simply add 1 to all values in the first two col-
a= 1 01 /| b= 1 0 5 umns of both matrices.)

1 2 2 1 11

We find the elements of the 2x2 product matrix ab by summing up the multiplied values as follows:
aby,=a,, b, =12-8=96
ab,, =a,, b, =10-1=10 96 10
— ab=
aby=a, by +a, -b,=1-2+2.8=18 18 5
ab,=a,,-b,=1-5=5

No more products are possible!

My Challenge for you is, trying matrix multiplication in this way for

1 0 2
3020 03 0
A=|0 0 1 0}, B= 00 6l Are you able to program the “COO-multiplication™?
51 0 2
4 00

It would be great if there are members providing one or the other function in PYTHON - or improved
versions of my functions?

Last Question: What is “Sparsity”?

This is not too difficult. It is the fraction (number of non-zero elements of a matrix)/(total number of all
elements = n x m. Make your own sparsity-function!

Selection of References:

https://en.wikipedia.org/wiki/Sparse_matrix

https://www.learndatasci.com/glossary/sparse-matrix/

https://www.geeksforgeeks.org/how-to-create-a-sparse-matrix-in-python/

https://www.geeksforgeeks.org/python-program-to-convert-a-matrix-to-sparse-matrix/

https://www.tutorialandexample.com/application-of-2d-array-sparse-matrix

http://www-lmpa.univ-littoral.fr/~jdm/jdmO08/talk/wimereux_saad.pdf

https://www.cise.ufl.edu/~sahni/cop3530/slides/lec1 14.pdf

http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/math_anal/sparse4.html

https://rd.yyrcd.com/CUDA/2021-12-25-GPU%20Accelerated%20Computing/15-Sparse.pdf

https://scikit-learn.org/stable/datasets/real world.html

https://matteding.github.i0/2019/04/25/sparse-matrices/

https://scipy-lectures.org/advanced/scipy sparse/lil matrix.html

https://phys.libretexts.org/Bookshelves/Mathematical Physics_and Pedagogy/Computational Phys-
ics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats

https://en.wikipedia.org/wiki/Sparse_matrix
https://www.learndatasci.com/glossary/sparse-matrix/
https://www.geeksforgeeks.org/how-to-create-a-sparse-matrix-in-python/
https://www.geeksforgeeks.org/python-program-to-convert-a-matrix-to-sparse-matrix/
https://www.tutorialandexample.com/application-of-2d-array-sparse-matrix
http://www-lmpa.univ-littoral.fr/~jdm/jdm08/talk/wimereux_saad.pdf
https://www.cise.ufl.edu/~sahni/cop3530/slides/lec114.pdf
http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/math_anal/sparse4.html
https://rd.yyrcd.com/CUDA/2021-12-25-GPU%20Accelerated%20Computing/15-Sparse.pdf
https://scikit-learn.org/stable/datasets/real_world.html
https://matteding.github.io/2019/04/25/sparse-matrices/
https://scipy-lectures.org/advanced/scipy_sparse/lil_matrix.html
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats
https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/08%3A_Sparse_Matrices/8.02%3A_Sparse_Matrix_Formats

