
THE DERIVE - NEWSLETTER #55

T H E B U L L E T I N O F T H E

U S E R G R O U P

 C o n t e n t s:

 1 Letter of the Editor 2 Editorial - Preview 3 User Forum
 Franklin Demana & Bert K- Waits
 7 The Modulo Surface
 Gerhard Hagen
 15 Piecewise linear functions in FUZZY Logic
 MacDonald Phillips
 18 Financial Mathematics II
 Heinz Rainer Geyer
 29 Der Roboter / The Robot
 Tania Koller
 33 Modelling with Functions
 Johann Wiesenbauer
 35 Titbits from Algebra and Number Theory (28)
 39 Calculation Time in the Output
 40 ACDC Steven´s email

September 2004

 D-N-L#55

I N F O R M A T I O N

 D-N-L#55

Derive User Group Meeting 2004

We used the occasion of TIME 2004 in Montréal to have our User Group Meet-
ing. We had an intensive exchange of information and proposals between the
program developers (Albert Rich & Theresa Shelby), the sellers (Bernhard
Kutzler & Lana Moore) and the members of our group.
In the next DNL I´ll give an extended report of our meeting.

Cvetka Rojko, Clouds in Fort Chambly, Montréal

Recommended Websites:

Marlene Torres-Skoumal´s website: www.cas-time.com

Fernando Sivit's site: www.fermatsi.org

 D-N-L#55

L E T T E R O F T H E E D I T O R

 p 1

Dear DUG Members,

First of all I have to apologize for being late with this issue of our newsletter. My excuse is that I had
so many duties for CAS-related tasks in the last weeks. But fortunately all of them are coming to an
end. I am happy to announce that the TIME 2004-Conference CD is ready and will be available very
soon (bk-teachware). TIME 2004 was one more highlight in the long row of our DERIVE/TI and
ACDCA-Conferences. Michel Beaudin and his team did a perfect job, all our congratulations and
thanks to all of you.

In the very next time you can download the revised version of DNL#4 (Dec. 1991). In this newsletter I
announced the first Derive Spring School in Krems, Lower Austria for March 1992. And this was the
conference where all has begun. All of us who participated remember the "Spirit of Krems" and we are
still inspired by the atmosphere of our first meeting and became close friends for years. And we were
moved again by the "Spirit of Krems" in Canada this summer – although some of us (only the male, of
course) – have more grey hairs,

I hope that I can offer a striking mixture of contributions in this issue: Frank and Bert´s paper demon-
strate that ideas born years ago are still demanding using the latest technology, Gerhard Hagen pre-
sents an easy to understand first introduction in FUZZY Logic, Don Phillips provides the second part
of his Financial Mathematics for Derive (- a competition between him and me!), and finally Tania
Koller gives once more an excellent example how to transfer educational ideas from one platform to
the other. Many thanks to all of you. Not to forget our Mr. Titbits, who after Stephan Welke also ac-
cepted the challenge of Rüdeger Baumann´s "Josephus Problem".

Johann proposed to publish problems for our members on our website monthly. So let´s have a test
and wait how many of you will treat Steven´s problem which you can find on the last page.

With my best regards

Josef

Download all DNL-DERIVE- and TI-files from
New: http://www.austromath.at/dug

http://www.bk-teachware.com/main.asp?session=375059

 p 2

E D I T O R I A L

 D-N-L#55

The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It is published at least four times a year.
The goals of the DNL are to enable the
exchange of experiences made with
DERIVE and the TI-89/92/Voyage 200 as
well as to create a group to discuss the
possibilities of new methodical and didac-
tical manners in teaching mathematics.

As many of the DERIVE Users are also
using the CAS-TIs the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef Böhm
A-3042 Würmla
D´Lust 1
Austria
Phone/FAX: 43-(0)2275/8207
e-mail: nojo.boehm@pgv.at

Contributions:
Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

Next issue: December 2004
Deadline: 15 November 2004

Preview: Contributions waiting to be published

 Finite continued fractions St. Welke, GER
 Some simulations of Random Experiments, J. Böhm, AUT
 Wonderful World of Pedal Curves, J. Böhm
 Another Task for End Examination, J. Lechner, AUT
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER
 ANOVA with DERIVE & TI, M. R. Phillips, USA
 Hill-Encription, J. Böhm
 CAD-Design with DERIVE and the TI, J. Böhm
 Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL
 Farey Sequences on the TI, M. Lesmes-Acosta, COL
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT
 Henon & Co, J. Böhm
 Pringles, B. Grabinger, GER
 Quadratic Approximation for Integration, G. Mann & N. Zehavi, ISR
 Quadratic Optimization & Challenges from Fermat, Bj. Felsager, DEN
 Applications of Moore Penrose Inverses, K. Schmidt, GER
 and

 Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,
 Keunecke, GER, Alm, SWE.........and others

Impressum:
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA
Richtung: Fachzeitschrift
Herausgeber: Mag.Josef Böhm
Herstellung: Selbstverlag

 D-N-L#55

D E R I V E - a n d CAS-TI - U s e r F o r u m

 p 3

Discussion about sign(0)
In May and June we had a very emotional discussion about the TI´s and Derive´s interpretation of
sign(0).

The first message delivered by an Austrian user (forwarded by Kim Hendrickx, TI-Europe) was:

"The sign-function is programmed false, sign(0) = 0 and not ±1 which is given by the Voy-
age 200"
This remark was confirmed by a German user. He says that

"the definition of sign(x) = x / |x| is valid world wide either for real or for complex numbers.
For sign(0) doesn´t exist a common definition, so sign(0) is considered undefined. For com-
plex numbers sign(0) is uniformly undefined and as the real numbers are a subset of the
complex numbers it seems to be reasonable to accept this also for real numbers.
Often for real numbers sign(0) is defined as 0 which is practicable for many applications –
even Mathematica 5 – does it. TI has programmed an unacceptable definition, because
sign(0) is not well-defined. Or is there a special motivation for TI to define sign(0) as ±1?"
My answer was

Dear Kim,

sign(0) is obviously a "question of belief". The TI is programmed like Derive. Among the real num-
bers sign(0) is ±1, among complex numbers sign(z) simplifies to the point on the unit circle in the
complex plane that has the same phase angle as z . As 0 has no phase angle Derive returns also ±1.

I am convinced of the mathematical competence of Albert Rich and David Stoutemyer and I follow
their definition. The fact that Mathematica does this in another way is no "sufficient condition" that
sign(0) = 0.

To overcome problems with the jump for x = 0 one can redefine sign(0) = 0 to make it well-defined
for certain special needs.

This was not a "good" answer, because a very emotional mail came back.

"sign(0) seems to be a "question of belief". This sentence irritates my mind. Mathematics is
not a question of belief. I would like to compare this with our traffic rules:
If a driver in England will drive on the right side because he is believing that he has to drive
right, he will not get far. One has to know that by definition it is a must to drive at the left in
England and to drive at the right in Germany.

And it is the same with the sign-function. In all books I know I can find:

the right sided limit of sign(x) with x tending to 0 is +1 and
the left sided limit of sign(x) with x tending to 0 is –1.
sign(0) = 0 or sign(0) is not defined.

I am only talking about the real numbers, for complex numbers we have other rules.

I repeat that we had to change our math education because a multivalued assigment is not a
function. And the concept of a function cannot be changed. I´d like to explain this with
another example:

 P 4

D E R I V E - a n d CAS-TI - U s e r F o r u m

 D-N-L#55

Driving a curve is a unique function of movement of the steering wheel:

right steering angle→ right-hand bend, left steering angle → left-hand bend
steering angle 0 → we cannot let the car go anywhere!!

Turning on the headlight is a multivalued assigment:

2. switch full beam → full beam, 2. switch passing beam → passing beam.

I wrote to Albert Rich:

Dear Albert,

just recently I received some requests why Derive returns ±1 for sign(0) in contrary to most of the
textbooks and other CAS-programs which return sign(0)=0. We know that it makes a difference if
working with real or complex numbers.

Teachers - and students are sometimes confused about ±1.

Many thanks for your answer in advance.

Reliable as ever Albert answered immediately:

Hello Josef,

Good question. If Derive were just a numerical calculator, SIGN(0) could be arbitrarily as-
signed. I believe some of Derive's competitors allow users to make that assignment. How-
ever, since Derive is a symbolic math system that at least attempts to be internally consis-
tent, the value of SIGN(0) can not be so arbitrarily assigned.

In order to simplify mathematical expressions involving not only SIGN but also the much
more commonly used function ABS, the most powerful and generally applicable transforma-
tion rules possible must be available for use.

The three obvious choices for the value of SIGN(0) are 0, 1, and ±1 (plus-or-minus one).
Derive needs to be able to simplify expressions of the form

 SIGN(u)^(2*n)

to 1, if u is real-valued expression and n is an integer. This rule would be invalid if SIGN(0)
simplified to 0. In Derive, ABS(u) is transformed internally to u/SIGN(u) and then trans-
formed back to ABS(u) for output. If SIGN(0) simplified to 0, then ABS(0) would be trans-
formed to 0/0 which is indeterminate. So 0 is out.

On the other hand, if SIGN(0) simplified to 1, the above two problems would be resolved but
the very essential rule SIGN(-u) simplifies to -SIGN(u) would be invalid when u=0. So 1 is
out.

Happily, assigning SIGN(0) the value ±1 (plus-or-minus one) resolves all these problems,
and really captures the essence of what SIGN of 0 should mean. Think of it as a real-valued
quantity whose magnitude is 1, but whose sign is unknown.

 D-N-L#55

D E R I V E - a n d CAS-TI - U s e r F o r u m

 p 5

Analogously, the Derive "constant" for an arbitrary point on the unit circle named unit_circle
is a complex-valued quantity whose magnitude is 1, but whose phase angle is unknown.
Note that unit_circle is the result Derive gives as the solution of ABS(z) = 1.

I do not think ±1 (plus-or-minus one) is really all that mysterious a beast. After all, it ap-
pears front and center as the coefficient of the radical term in the solution of the quadratic
equation. Also it is tantalizingly like the indeterminacy that underlies quantum physics...
Anyway, I hope this long-winded explanation helps.

Aloha,
Albert D. Rich
Co-author of Derive

Both colleagues which raised the question were not satisfied. I collected their concerns and wrote an-
other message to Albert Rich:

Dear Albert,
the sign(0) discussion is very interresting. I sent your comments to Prof. Paditz and Mr. Siedler.
Prof. Paditz claims that the two-valued arithmetic causes some inconsistencies - see below.
So for example: sign0)+sign(0) = undef, but 2*sign(0) = ± 2

You can see other examples below. I translate Prof. Paditz´s mail. My comments are in blue.

1. expand((a + sign(0)*b)^2) = a^2 ± 2*a*b + b^2 would be correct .
but TI-89/voy200 (expand((a + sign(0)*b)^2) = a^2 ± 2*a*b ± b^2
That´s only valid for the TIs, Derive returns a "?" The other results are the same in Derive

2. sign(0) - sign(0) = 0 would be correct .
Derive: sign(0) - sign(0) = undef

3. (sign(0)) * (-sign(0)) = -1 would be correct
Derive: sign(0) * (-sign(0)) = ±1

4. (sign(0)) * (sign(0)) = 1 would be correct
Derive: (sign(0)) * (-sign(0)) = ±1

 but (sign(0))^2 = 1

5. (sign(0)) + (sign(0)) = ±2 would be correct
Derive: (sign(0)) + (sign(0)) = undef
but (sign(0))*2 = ±2

Albert Rich again:

It is important to note that the value of each SIGN(0) (that is plus-or-minus one) in an ex-
pression is independent of the other occurrences of SIGN(0). Therefore, Derive simplifies

 SIGN(0) + SIGN(0)

to ? since the value could be 2, 0, or -2 and Derive has no way of representing three value
objects. Similar remarks apply to the other examples given below.

This was followed by another mail containing some objections to Albert´s arguments. What
is your opinion?

 P 6

D E R I V E - a n d CAS-TI - U s e r F o r u m

 D-N-L#55

MacDonald Phillips phillipsm@GAO.GOV

I just got a USB flash memory device (256 MB) and was wondering if I could run Derive 6 from it. The
answer is yes. So, if you can't take your computer with you but will have access to a computer where
ever you're going, you can take Derive and all your files along with you.
All you have to do is run the install font program from the Control Panel and install the Derive fonts
first.

I installed my entire Derive 6 directory onto the USB flash memory and I can now run my copy of Deri-
ve with all my files on any compatable computer.

Regards,
Don

"There are only 10 types of people in the world: Those who understand binary and those who don't."

Marlene Torres-Skoumal marlenes@aon.at

Hello (CAS) friends,

I would greatly appreciate your having a look at my new website,

www.cas-time.com

and especially at the menu CAS FRIENDS where I have provided links to your websites. Any feed-
back you can offer for my next update to improve the quality of what we're collectively offering the
educational world would be much appreciated.

Lynda Ball lball@unimelb.edu.au

Dear CAS-CAT interest group,

You may be interested to visit our newly updated CAS-CAT website. The CAS-CAT website now in-
corporates all of the technology research that we are doing in the Department of Science and Mathe-
matics Education at the University of Melbourne as well as infomration about the research project that
we affectionately referred to as "The CAS-CAT project".
The website will be updated regularly with our current research on CAS and other technologies. If you
haven't yet visited the RITEMATHS website then you might want to follow the link to this site from
CAS-CAT.

CAS mini conference

We are running a mini conference on CAS from 24-26 November, 2004. You will be
able to access details directly from the CAS-CAT website in the next day or so, or else
you can email me for further details.

Looking forward to catching up with many of you soon and hearing about your work with CAS.
Kind regards,
Lynda

Department of Science and Mathematics Education
University of Melbourne
Victoria 3010

CAS CAT Project: www.edfac.unimelb.edu.au/DSME/CAS-CAT/

 D-N-L#55

F. Demana & B. Waits: The Modulo Surface

 p 7

Complex Zeros Graphically. The Modulus Surface
Franklin Demana and Bert Waits

There is an important and well-known connection between real zeros of functions of a single

variable x and the x-intercepts of the graph of the function. That is, r is a real solution to the equation
f(x) = 0 if and only if r is an x-intercept of the graph of f. This is a natural geometric connection. Most
teachers are not aware of a geometric connection for the complex solutions to the equation f(x) = 0. In
this article we will show there is a very useful geometric connection between the complex zeros of a
function and points on a 3-dimensional graph.

First, we introduce the modulus surface of a function f of a single variable. It turns out that any
function of one variable can be used to define a surface in 3-space that provides an important and use-
ful geometric representation of the complex zeros of the function.

Recall that the absolute value or modulus |u| of the complex number u = a + bi is defined to be

the real number 2 2u a b= + . Let f be any function of one variable. The modulus surface of f is the

surface defined by (,) ()z g x y f u= = , where u is the complex number x + yi. The function g is called
the modulus function of f.

The value of z in z = |f(u)| is a non-
negative real number for every complex
number x + yi. If we interpret the xy-plane as
the complex plane, then we can think of

()z f u= as a function of the two variables
x and y where u = x + yi (Figure 1). The
point (x, y, 0) corresponds to to the complex
number x + yi. The horizontal axis of the
xy-plane is the real axis and the vertical axis
is the imaginary axis.

Figure 1

Figure 2 3() 4f x x x= −
[-5,5] by [-10,10]

Figure 3

3() 4z f x x x= = −

The trace of ()z f u= in the xz-plane (y = 0) is the graph of (0) ()z f x i f x= + ⋅ = . Let
3() 4f x x x= − . The graph of f in the viewing rectangle determined by –5 ≤ x ≤ 5 and –10 ≤ y ≤ 10

(denoted by [–5,5] by [–10,10]) is given in Figure 2. The trace of ()z f u= in the xz-plane is the

graph of 3 4z x x= − (Figure 3). The real zeros of f show up as the x-intercepts of the trace of the

modulus function ()z f u= in the xz-plane. These are points on the x-axis where the modulus

 P 8

F. Demana & B. Waits: The Modulo Surface

 D-N-L#55

function ()z f u= of 3() 4f x x x= − touches the xy-plane. This observation is a special case of the
more general result.

Theorem. Let u = x + yi and let f be a function with domain and range that are subsets of the com-
plex numbers. The complex number a + bi is a zero of f if and only if the modulus surface

(,) ()z g x y f u= = touches the complex plane at a + bi. That is, a + bi is a zero of f if and only if

(a, b, 0) is a point on the graph of (,) ()z g x y f u= = .

Proof. Assume a + bi is a zero of f. Then f(a + bi) = 0. It follows that (,) () 0z g a b f a bi= = + = .

Thus, the modulus surface (,) ()z g x y f u= = touches the xy-plane at (a, b, 0), or at a + bi when the
xy-plane is considered the complex plane. Notice that (a, b, 0) is a point on the graph of

(,) ()z g x y f u= = in this case. Moreover, the modulus surface never goes through the xy-plane

(complex plane) because () 0z f u= ≥ for all x and y.

Now, assume the modulus surface (,) ()z g x y f u= = touches the complex plane at a + bi. That

is, assume that (a, b, 0) is a point of the graph of ()z f u= . This means that z = 0 at u = a + bi. Thus,

() 0f a bi+ = . It follows that () 0f a bi+ = because the modulus of a complex number is zero if and
only if the complex number is zero.

The key to apply this theorem to visualize the complex zeros of a function is the ability to
easily graph a function of two variables. We now determine a geometric representation of the zeros of

2() 1f x x= + – that is, draw a graph that shows all points where the modulus surface of f touches the
xy-plane.

The modulus surface of f is the graph of (,) ()z g x y f u= = where u = x + yi.

2

2 2 2

2 2

2 2 2 2

()

()

() 1

2 1

1 2

(1) (2) (Why?)

z f u

f x y i

x y i

x x y i y i

x y x y i

x y x y

=

= +

= + +

= + + +

= − + +

= − + +

A graph of the modulus surface of f in the viewing box determined by –2 ≤ x ≤ 2, –2 ≤ y ≤ 2, and
–5 ≤ z ≤ 5 (denoted by [–2,2] × [–2,2] × [–5,5] is given in Figure 4. The surface appears to touch the
xy-plane at (0, 1, 0) and (0, –1, 0). We have added the coordinate axes and the lines y = 1 and y = –1 in
the xy-plane to the graph in Figure 4 to help locate the coordinates of these points. Master Grapher
[Waits and Demana, 1989] will overlay lines and the coordinate axes on a graph. Of course, we know
that 2() 1f x x= + has exactly two zeros, namely ±i. Thus Figure 4 provides a geometric representa-

tion of the zeros of 2() 1f x x= + . Notice the zeros are the minimum points of the modulus surface.

Now we can see the complex zeros!

 D-N-L#55

F. Demana & B. Waits: The Modulo Surface

 p 9

 Derive Master Grapher

 DPGraph Voyage 200

Figure 4, 2 2 2 2 2(1) 4z x y x y= − + +

The graphs of x = a and y = b in 3-space are planes. However, in this article, when we refer to
the lines x = a and y = b we mean the lines x = a and y = b in the xy-plane.

Can you predict what the geometric representation of the zeros of 2() 1f x x= − will look like?
You will find that the modulus surface of this function is the surface of the previous example rotated
90° about the z-axis. (Why?) The two minimum points where the modulus surface of 2() 1f x x= −
touches the xy-plane are on the x-axis. Of course, this means the zeros of f are real.

Next we determine a geometric representation of the complex zeros of 2() 1f x x x= + + .

Using the quadratic formula, the two zeros of f are 1 3
2
i− ± or –0.5 ± 0.87i. First we determine

the modulus function (,) ()z g x y f u= = of f.

2

2 2

2 2 2 2

()

()

() () 1

(1) (2)

(1) (2)

z f u

f x y i

x y i x y i

x y x x y y i

x y x x y y

=

= +

= + + + +

= − + + + +

= − + + + +

This should be a very welcome occasion to use a CAS!!

 p10

F. Demana & B. Waits: The Modulo Surface

 D-N-L#55

A geometric representation of the two complex zeros of f is given by the graph of

2 2 2 2(1) (2)z x y x xy y= − + + + + , the modulus surface of f (Figure 5). We have added the coordi-
nate axes and the lines x = –0.5, y = 0.87 and y = –0.87 to help locate the zeros from the graph. This
graph confirms the zeros we determined algebraically using the quadratic formula. Again, notice the
zeros are the minimum points of the modulus surface and we can see these complex zeros.

Figure 5

As our last example, we determine a geometric representation of the zeros of
3 2() 1f x x x x= − + − . We will use the graph to estimate the zeros of f. This polynomial of degree

three always has at least one real zero. It turns out that f also has two nonreal complex zeros. To obtain
a geometric representation, we determine the modulus function of f. Here a symbolic manipulator
would be useful.

Figure 6 , 3 2 2 2 2 2 3 2(3 1) (3 2)z x xy x y x x y y xy y= − − + + − + − − +

 D-N-L#55

F. Demana & B. Waits: The Modulo Surface

 p11

A geometric representation of the zeros of f is given by the graph of

3 2 2 2 2 2 3 2(3 1) (3 2)z x xy x y x x y y xy y= − − + + − + − − + ,

the modulus surface of f (Figure 6 and Derive-calculation below). It appears that the modulus surface
touches the xy-plane at two points on the y-axis and on one point on the x-axis. By using zoom-in (or
tracing) we can estimate these points to be (1,0,0), (0,1,0) and (0,–1,0). We have added the coordinate
axes and the lines x = 1, y = 1 and y = –1 to help establish these estimates. These points correspond to
the complex numbers 1, i and –i which are good estimates for the zeros of 3 2() 1f x x x x= − + − . In
this case, we can show that 1, i and –i are the exact zeros of f,

We invite you to use a surface grapher such as Master Grapher [Waits and Demana, 1989], to
determine a geometric representation of 4 2() 4 17 14 64f x x x x= + + + and then use the graph to esti-
mate the zeros of f. It turns out these are no real zeros. It turns out then 1 ± 2i and –1 ± 1.5i are good
estimations for the four zeros of f [Demana and Waits, 1990].

In general, considerable experimentation is needed to estimate the coordinates of the points
where a modulo surface touches the xy-plane without prior knowledge of the zeros. The algebraic ma-
nipulations required are tedious and are a good reason to use a CAS system. A graphical method to
determine the real and nonreal complex zeros of a function is powerful because there are no formulas
for the exact zeros of polynomials of degree 5 or higher.

References

[1] Demana Franklin and Bert K. Waits. Precalculs Mathematics, A Graphic Approach. Reading,
MA: Addison-Wesley Publishin Co., 1990

[2] Waits, Bert K. and Franklin Demana, Master Grapher, Computer Software for IBM, Apple II
and MacIntosh. Reading, MA: Addison-Wesley Publishing Co., 1989

2004 Appendix:
As Bert and Frank noted before, a CAS could be very helpful. Let´s see, what DERIVE and Voyage
200 can do for us in 2004.

 p12

F. Demana & B. Waits: The Modulo Surface

 D-N-L#55

We accept Bert and Frank´s invitation and we produce the "four rooted tooth" together with its
contour lines.

These are the exact zeros:

Derive offers not only the CAS-manipulations and nice graphic representations, but now Derive 6 of-
fers two more features.

• We can transfer our manipulations to the handheld device and then demonstrate the results.

• We can introduce slider bars to generalize the modulo surfaces and have interesting investi-
gations.

Let´s start with the transfer. We start with the Derive session considering some TI-specials and export
the file to the TI – named modulus – which results in the text file on the TI.

The Derive file looks like as folllows:

 D-N-L#55

F. Demana & B. Waits: The Modulo Surface

 p13

After a successful transfer to the Voyage 200 (or TI-92+) we can open the text file modulus and run
the commands in the Home screen by pressing continuously F4. All steps are performed perfectly and
all modulo surfaces are stored in the Y= Editor (which is a z-Editor in 3D-Mode).

Finally we can plot the surface and the contour
lines – but it takes remarkably more time than on
the PC.

On the next page you can find exciting investiga-
tions using slider bars with Derive 6.

 p14

F. Demana & B. Waits: The Modulo Surface

 D-N-L#55

Slider bar for n (n = 1, n = 5 and n = 10)
Try 1 ≤ n ≤ 2 with 10 intervals!
It´s interesting to follow 2 ≤ n ≤ 3 with 10 intervalls.

Slider bar for c (c = 1, c = 5 and c = 10)

Take a generalized cubic with variable coefficients and investigate its zeros in a 3D-repres-
entation. In the case depicted below we have three real roots – all the peaks are on the
x-axis.

 D-N-L#55

G. Hagen: Piecewiese linear functions in FUZZY Logic

 p15

Stückweise lineare Funktionen in der FUZZY Logik

Piecewise linear functions in FUZZY Logic
Gerhard Hagen, Austria

So-called FUZZY LOGIC provide clear and usefule examples for piecewise linear functions. By
means of FUZZY LOGIC many – especially technical – problems can be modelled in a better way
than by classical methods. Particularly in case if qualitative properties must be quantified we prefer
soft transitions instead of jumps.

Take the following example from medicine:

If we have to decide if a person has fever using the properties "temperature of the body [C°]" the clas-
sical method differs only between "has fever" (starting with how many degrees?) and "has no fever".

We can express this in the following form as a function:

1 for 38.5

()
0 for 38.5

t
z t

t
≥ °

= < °

In FUZZY LOGIC we define a FUZZY-variable body-temperature by expressions raised tem-
perature (erhöhte Temperatur) RT, fever (Fieber) FE and "high temperature" (hohes Fieber) HF.
We create a membership-function for each expression as follows:

 RT(t) = 0 for t < 36 no fever at all

 RT(t) = 1 for 37 ≤ t < 37.5 region for "raised"

 RT(t) = 0 for t ≥ 38 "real" fever or even "high temperature"

Between 36°C and 37°C there is a transition, which can be described in the easiest way by a linear
function.

 RT(t) = t – 36 for 36 ≤ t < 37

In the same way between 37.5° and 38°

 RT(t) = –2t + 76 for 37.5 ≤ t < 38

This results in a typical FUZZY – Membership Graph.

 p16

G. Hagen: Piecewiese linear functions in FUZZY Logic

 D-N-L#55

Now we have to interpret this graph. We can read off that a temperature of 36.8° can be graded as
"raised temp" with 80%, its level of membership is 0.8. 37.2°C is "raised temperature" at a level of
100%.

For both other expressions fever and high temperature analoguous definitions must be generated.
Hence each measured temperature will have three levels of membership (one for each expression). By
using this triple of statements better decisions are possible instead of relying on the 0-1 (YES/NO)
assignment in many cases.

Generally spoken a typical (simple) FUZZY-graph has the form of a trapezium. The important posi-
tions are named as a, b, c and d. We get the conditions for a generalized "membership function" z(x):

0 for

for

() 1 for

for

0 for

x a
x a a x b
b a

z x b x c
x d c x d
c d

x d

<
 − ≤ <

−
= ≤ <
 − ≤ <

−
 ≥

Maximum level of membership h – in example above h = 1 – can vary in the interval [0,1] depending
on the problem. In this case we have z(x) = h for b ≤ x < c.

This generalization can modelled by nested IFs in Derive (be nested WHENs on the CAS-TI):

Using this function we redefine RT(x) and we receive the same graph as before:

 D-N-L#55

G. Hagen: Piecewiese linear functions in FUZZY Logic

 p17

Technical applications are control mechanisms for machines. Substitute the body temperature
and its expressions by "distance to the goal" and "far away", "close", "very close", "target
point" then you have started modelling the control system for a crane trolley. It is obvious that the
modelling process becomes very soon more complicated.

A fine introduction is

Gerorg HEINRICHS, Regeln mit Fuzzy, Naturwissenschaftliche Reihe, 1. Auflage Klett, 1997

**
A student´s question: "How to produce a kind of square wave with Derive without
using the built-in SQUARE_WAVE(x)-function?"

It is not difficult when using Milton Lesmes´- "Make Periodic Function" from

 p18

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

Financial Mathematics II

TVM and Amortization

For Derive 5 & 6
MacDonald R. Phillips

phillipsm@gao.gov
donphillips@starpower.net

February 2004

The two main programs in Financial Mathematics II are
TVM(n,im,pv,pmt,fv,ppy,cpy,beg,fp) and
Amortization(n,im,pv,pmt,bal,ppy,cpy,beg,fp,g,f).

Other programs called by the main programs include
RND(x,n), ID(i,nth,mth), SPPV(i,n), USPV(i,n,beg), SPFV(i,n), and USFV(i,n,beg).

The variables are:

n = number of payments
im = annual interest or discount rate compounded cpy times per year
pv = present value
pmt = annuity payment
fv = future value
ppy = number of payments per year (cannot be infinity)
cpy = number of times the interest or discount rate is compounded per year; may be

infinity (enter cpy as a negative value if using a discount rate)
beg = if 0 (the default), payments are made at the end of the period; if 1, payments

are made at the beginning of the period
fp = placement of final payment on an annuity due (lease). Default is 0. (If beg = 0,

fp is automatically set to 0. If beg = 1, and fp = 0, the future value or ballon
payment on an annuity-due is at the end of the annuity-due period; if fp = 1, the
future value or ballon payment is made with the final payment.)

bal = in the amortization program, bal is an amount, if any, that is added to or sub-
stracted from the final payment to determine the final odd payment (default is 0)

g = number of paymets to group together when computing an amortization
schedule (default is 1)

f = number of payments in the first group (if 0, f is set to g)

The routines all use the cash flow sign convention. Cash inflows are entered as positive
numbers and cash outflows as negative numbers.[1]

The RND function rounds the value(s) of a number, vector, or matrix to n decimal points; the
non-number elements are left alone.

The ID function converts an interest/discount rate compounded for nth periods per year to an
interest/discount rate compouned mth periods per year. If nth or mth are negative, it repre-
sents a discount rate. nth and mth may take on any values, including infinity [1].

The SPPV function computes the present value of 1 received n periods from now at interest
rate i per period.

[1] This does not work with the TI-TVM-Solver.

 D-N-L#55

MacDonald Phillips: Financial Mathematics II

 p19

The USPV function computes the present value of an annuity of 1 received for n periods at an
interest rate of i per period. The beg variable determines whether the annuity is an annuity-
immediate (beg = 0) or an annuity-due (beg = 1).

The SPFV function computes the future value of 1 invested now and received in n periods at
an interest rate of i.

The USFV funciton computes the future value of an annuity of 1 invested for n periods at an
interest rate of i. The beg variable determines whether the annuity is an annuity-immediate
(beg = 0) or an annuity-due (beg = 1).

1. Interest Rate Conversions

The mathematics of interest/discount rate conversion is gone into in detail in The Theory of
Interest, 2nd ed., by Stephen G. Kellison. The ID(i,nth,mth) function will compute them all.
i is the interest rate in decimal form. nth is the current number of compounding periods per
year. And mth is the number of compounding periods per year to convert i to. For instance,
a 10% interest rate compounded annually is equivalent to a 9.7617... interest rate compoun-
ded semi-annually, a 9.5689... interest rate compounded monthly, a 9.531... interest/discount
rate compounded continuously, a 9.4932... discount rate compounded monthly, or a 9.0909...
discount rate compounded annually, as seen in the table below.

 (It is interesting to note that the continuously compounded rate for equivalent interest and
discount rates is the same. Continuously compounded rates are also known as the force of
interest or the force of discount.)

The interest rate for the financial functions is entered as a percent, not a decimal. And, a
discount rate is denoted by a minus sign in front of nth or mth. For instance, a 10% interest
rate compounded annually is equivalent to the following interest and discount rates com-
pounded cpy times per year.
APPEND([[CpY, Rate]], TABLE(ID(10, 1, n), n, [1, 2, 3, 4, 6, 12, 365, ∞, -365,
 -12, -6, -4, -3, -2, -1]))

 p20

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

To go, for instance, from an annually compounded discount rate to an equivalent annually
compounded interest rate, simply do this:

ID(9.09090909, -1, 1) = 10

A continuously compounded rate of 11% is equivalent to what nominal rate of interest com-
pounded monthly?

ID(11, ∞, 12) = 11.05057107

The ID function was developed to be used in the financial functions where the number of
payments per year is different from the number of interest compounding periods per year.

2. The Time-Value-of-Money: Annuities-Immediate

(Don and I had a "competition" producing a TVM-Solver for Derive. We both were inspired by
the Finance-Tool for the TI-handheld. It might be interesting for programmers to compare our
both products. Don´s output shows a nice feature with the leading asterisk for the result. My
advantage could be that I am introducing global variables, so the results for n, I, pv, pmt and
fv are stored under these names and can be used in a subsequent step, which is often ne-
cessary for more complex problems. I put Don´s output, my output (blue) and the TI´s output
in one row. Unfortunately the Finance-tool on the TI fails in several cases although it is im-
plemented on a CAS-machine!!!. I overcame this problem and programmed my own TVMS
(Time-Value-Money-Symbolic Tool). See DNL#49. Josef)

The TVM function will handle almost all general annuities. The only class of annuities it will
not compute, that I am aware of, is annuities with continuously paid or received payments;
i.e., ppy cannot be set to infinity. The function will compute perpetuities, however. That is, n
can be set to infinity.

The best way to see how the function works is to compute some examples. For the unknown
to be solved for, simply enter the name of the variable instead of a number. (In Josef´s TVM-
tool enter x.)

Example 1: A loan of $3,000 is to be repaid with quarterly installments at the end of each
quarter for five years. If the rate of interest charged on the loan is 10% convertible semian-
nually, find the amount of each payment.

The payment is -191.89. (The variable solved for is preceeded by an asterisk (*).)

If you were using a discount rate of 10% convertible semiannully, instead, the payment would
be:

 D-N-L#55

MacDonald Phillips: Financial Mathematics II

 p21

TVMS-Solver →

Notice that IR(%) has been replaced by DR(%) indicating that a discount rate was used in-
stead of an interest rate. The reason for the difference in payments is that a discount rate of
10% compounded semiannually is equivalent to an interest rate greater than 10%. It is, in
fact, equal to an interest rate of 10.526...% compounded semiannually.

ID(10, -2, 2) = 10.52631578

Example 2: At what annual effective rate of interest will payments of $100 at the end of
every quarter accumulate to $2,500 at the end of five years?

Example 3: An investment of $1,000 is used to make payments of $100 at the end of each
year for as long as possible with a smaller final payment to be made at the time of the last
regular payment. If interest 7% convertible semiannually, find the number of payments and
the amount of the total final payment.

∞ requires TVMS!

 p22

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

Thus, 18 payments are made. The amount to be added to the final payment is:

The total final payment is therefore $100 + $10.09 = $110.09.

Example 4: At what annual effective rate of interest is the present value of a series of pay-
ments of $1 every six months forever, with the first payment made immediately, equal to
$10?

The FINANCE-Tool which is implemented on the CAS-TI devices is a great tool, but it fails
for some – important – cases. Originally it was made for the graphic calculators – without any
use of CAS – and unfortunately it was transferred to the CAS-calculators without considering
that there are more possibilities than on the TI-83/84 family. So it is not possible to have an
infite number of payments – see the example given above – and it is also not possible to
work with payment periods longer than a year. 1/2 or .5 is not accepted for PpY which is ne-
cessary to solve Example 5. I wrote a TVMS (TIME-VALUE-MONEY-Symbolical-Solver),
which overcomes all those problems. So some of the TI-screen shots don´t show the original
TVM-Solver, but my TVMS. Josef

Example 5: Find the accumulated value 18 years after the first payment is made of an annui-
ty of which there are 8 payments of $2,000 each made at two-year intervals. The nominal
rate of interest convertible semiannually is 7%.

If we take the 8 payments at the beginning of each two-year period, the future value at the
end of 16 years is:

 D-N-L#55

MacDonald Phillips: Financial Mathematics II

 p23

(Note: Since the payments are every 2 years, ppy is set to 0.5.)

Takeing the computed FV forward two more years gives:

The answer is $35,824.25.

3. Amortization of Annuities-Immediate

The amortization method is one of two general methods of repaying a loan; the other is the
sinking fund method. In the amortization method the borrower repays the lender by means
of installment payments at periodic intervals. In the sinking fund method the borrower repays
the lender by means of one lump-sum payment at the term of the loan. The borrower pays
interest on the loan in installments over this period. It is assumed that the borrower make
periodic payments into a fund, called a sinking fund, which will accumulate to the amount of
the loan to be repaid at the end of the term of the loan. The Amortization() routine here
cannot be used for sinking funds.

Example: You have just purchased a $25,000 car to be repaid over 36 months at an interest
rate of 7.5% compounded monthly. Compute the monthly payment, the additional payment
to be made at the time of the final payment, and the amortization schedule.
The amortization program rounds all values to 2 decimal places, i.e., dollars and cents.

Total payments are $27,995.58 of
which $2,995.58 is interest. Note the
final payment of -$777.48. But suppo-
sed you wanted to know the payments
and interest on a yearly basis for tax
purposes.

 p24

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

The regular payment is $777.66. The additional payment to be made with the final payment
is:

The addition payment is $0.18 for a final total payment of -$777.48.

The amortization schedule is:

 ..

 ..

 D-N-L#55

MacDonald Phillips: Financial Mathematics II

 p25

Oops, you actually made only 5 payments in the first year. What would the yearly schedule
look like then?

4. Time-Value-of-Money and Amortization: Annuities-Due (Leases)

The payments on an annuity-due (e.g., a lease) come at the beginning of a period, not at the
end of a period like a regular loan or mortgage (annuity-immediate). For instance, on a
36 month annuity-due the first payment is made immediately and the last payment is made at
the beginning of the 36th month, not its end. At times there may be an adjustment to the
final payment that is made either with the final payment, or at the end of the annuity's term.
Both the TVM and Amortization programs can handle either situation through the fp variable.
If beg is set to 1 (payments at beginnign of the period) and fp is 0 (zero), the adjust-ment or
ballon payment is made at the end of the annuity's term; if fp is 1, the adjustment is made
with the final payment.

Example 1: Find the payment on an annuity-due of 36 months, an interest rate of 10% com-
pounded monthly, and a present value of $10,000. What adjustment must be made to the
final payment when the payment is rounded to 2 decimal places? To have the adjustment
made to the final payment fp is set to 1 and remember to set beg to 1 also.

The adjustment is $0.20. The final payment is therefore $-320.01 + 0.20 = $319.81.

 p26

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

Compute the amortization schedule for this annuity-due.

Notice that the final payment is $0.20 less than the prior payments.

Example 2: Compute the ballon payment to the above annuity-due if the regular payments
are only $300 a month, with the ballon payment coming at the end of the payment periods.
In this case fp set to zero (its default).

The ballon payment is $842.82 made at the end of the 36th month. Compute the amortizati-
on schedule.

The extra payment is 22473.98.

 D-N-L#55

M. Phillips: Financial Mathematics II

 p27

Notice that there is an extra payment with this annuity-due, a 37th payment which comes at
the end of period 36.

Financial Mathematics III will cover net present values, internal rates of return, and modified
internal rates of return for uneven cash flows.

If you have any questions, please feel free to send me an email.

I wanted to test Don´s tool with one or the other more examples from my times as school
teacher at a College for Business Administration. Josef

This is the first example:

If I had claim to receive 2500 € for three years at the begin of each quarter and I wished to
change this in monthly payments which should run forever. How long had I to wait for the first
payment at a discount rate of 8.5% compounded quarterly.

In a space saving form it could look as follows:

I had to wait 11.219 years. (And this is the correct result!)

And a second one (DNL#49):

A debt of 100 000 should be paid back by 18 monthly payments due at the end of the months
and one payment with an amount of 5 payments which is due immediately. How much is to
pay now at an interest rate of 5.5% compounded semiannually?

Try to solve this problem with the CAS-TI built in TVM-Solver. I´m quite sure that you will fail!!

 p28

MacDonald Phillips: Financial Mathematics II

 D-N-L#55

Amortization table as an example for an iterative process (Josef):
For teaching financial mathematics it might be useful to introduce an amortization table as a
meaningful application of ITERATES. See one possible way to tackle Don´s example from
above:

The important step is given in expression #7. It contains the whole "history" of the table.

The last rows of simplified expression #7 are:

We develop the real last row #36 (derived from row #35) and finally put all together to have a
short form of the table containing all important information.

According to our textbooks I didn´t use negative numbers for ordinary payments, interests
and balances. It would be easy work to change this and to add the sums in an additional row.

Having explained how an amortization table works it is time to invite you to use Don´s excel-
lent tool as a "Black Box" for solving extended problems. Josef

 D-N-L#55

Heinz Rainer Geyer: Der Roboter / The Robot

 p29

Der Roboter / The Robot

Heinz Rainer Geyer
Gutenbergschule Wiesbaden

März 2004

Mit den 3D-Einheitsvektoren baue ich zuerst einen (Basis-) Quader auf:

Using 3D unit vectors I build a (base-) cuboid:

Teste den Quader mit folgendem Beispiel: Quader mit einer Ecke im Koordinatenursprung
und den Seitenlängen 3, 4 und 2

Test the cuboid-function by creating a base cuboid with sides 3, 4 and 2:

Simplify expression #3 to find out how to produce a solid with a surface formed by polygons
(or rectangles like in this application). Compare the settings for Plot Color to obtain a cuboid
showing one single colour.

 p30

H. R. Geyer: Der Roboter / The Robot

 D-N-L#55

Folgende Abbildungen werden benötigt / We need the following mappings:
- Verschiebung / Translation (trans(obj, vec)
- Drehungen um die Achsen / Rotations (rotate_i(obj, angle)

Der Roboter steht auf einer 6×6×1 Grundplatte:
Our robot is fixed on a 6×6×1 base-plate:

Sein Körper ist um die z-Achse drehbar.
Its body can be rotated about the vertical axis.

 D-N-L#55

Heinz Rainer Geyer: Der Roboter / The Robot

 p31

Er besitzt einen Arm, der um die x-Achse drehbar ist.
It needs an arm which can be rotated about the x-axis.

The pictures show the arm in its base position, then rotated by 90° and finally fixed to the
body and rotated by 90° (including a 120° rotation of the body).

Ohne Hand kann so ein Roboter nicht greifen. Die Hand kann sich wieder um die z-Achse
drehen:
A robot without a hand is useless. The hand can rotate about the z-axis.

Zusammengesetzt ergibt sich der robot_1() mit den Drehwinkeln für Körper, Arm und Hand.
Composed we obtain robot_1() with rotation angles for body, arm and hand.

 p32

H. R. Geyer: Der Roboter / The Robot

 D-N-L#55

Wir arbeiten im Gradmaß weil Derive 6 für die Schieberegler (noch) nicht π akzeptiert und
führen die Winkel a_, b_ und c_ als variable Größen ein und zeichnen den beweglichen Ro-
boter.

We work with degrees, because Derive 6 does not accept (until now!) π as bounds for the
slider bars, introduce angles a_, b_ and c_ as variables and plot the animated robot.

You can be sure that your students will add a second arm, a nose, ET´s finger,

 D-N-L#55

Tania Koller: Modelling with Functions

 p33

Striking Backgrounds – Modelling with Functions

Tania Koller, Vienna

Derive 6 offers the possibility to load pic-
tures in the background of the 2D- and 3D-
Plot Windows. I took some pictures in
Switzerland with some of the nice bridges
in Bern. The students should find out a
function to describe the form of the arc.

This is wonderful, but I have several
classes working with the Voyage 200 and I
wanted to present the same task to them.
TI-Connect makes this possible. I found a
respective article in the TI-News[1] and then
I tried.
This is my recipe:

1. Convert your picture into the *.bmp-format.
2. I work with Microsoft Office Picture Manager (any other Graphics Program will do!)
3. Edit picture

Color > Saturation –100, Contrast -19
Resize in a ratio 239 × 104 pixel for Voyage200 (159 × 77 for TI-89)
I took 1024:446, I resized to 24% of original measures

4. Start TI Connect
5. Open TI Screen Capture → get Screen, click on the file and drag it using the left mouse button

into the TI Screen Capture window, then save as *.v2i for Voyage 200 or *.9xi for den TI92+
or *.89i for the TI-89 family.

6. Activate *.v2i in Explorer, right mouse button → Send to TI Device

By inserting Tania´s con-
tribution I could easily to
follow her clear instruc-
tions (using Paint Shop
Pro as Graphics Program).
I would like to illustrate the
process by presentig
some screen shots.

You can see the original
picture and then the re-
sized one (I converted into
a gray scale graphic).
Now we are ready for
Screen Capture:

[1] M.Falb, Wie die Bilder auf den Taschencomputer kommen, TI-Nachrichten 1/04

 p34

Tania Koller: Modelling with Functions

 D-N-L#55

I saved the picture and sent it
to the TI. First to the V 200 and
then I repeated the process for
TI-89.

These are the results: The loaded bridge on the V200-screen. I copied some coordinates of
the arch into the sysdata - data sheet and performed a quadratic regression – according to
Tania´s advice. The last screen shots show is Tania´s pictures of the Aaare River Bridgeon
my TI-89 and on my TI-83+

Voyage 200 / TI-92 TI-89 TI-84

The same can be done with Derive 6 and offers a rich variety of problems for our students. I would be
happy if you could provide other exciting background pictures which provoke thinking in functions,
Tania

 D-N-L#55

Johann Wiesenbauer: Titbits 28

 p35

Titbits from Algebra and Number Theory (28)

by Johann Wiesenbauer, Vienna

This time I want to go to battle again for what I call
“indexfree programming”. In my experience most people
handle lists in Derive as they would handle arrays in other
programming languages, where this concept actually
exists. In those languages the time to access an element

in an array is independent from its location within the array. This is no longer
true in Derive, where you are actually dealing with linked lists. In particular, you
should always bear in mind that due to the use of pointers elements at the left
end of a list can be far more easily accessed than elements at its right end. If
the list is short this doesn’t matter, but if the list is long it surely does and you
should be aware of this special Derive feature. That this idea is still new to
some people I have also seen in some lectures using Derive on the recent Derive-
conference in Montreal. (On this occasion, congratulations and many thanks to
Michel Beaudin and his people for doing a fabulous job in organizing this confer-
ence. Wonderful memories come back while writing these lines!)

Let’s take as an example though a program by Rüdeger Baumann in the DNL #52,
p 49-50, on the so-called Josephus problem and I hope he doesn’t mind. After
all, he seemed to be very unhappy himself about the performance of his program
and has posed it as a challenge to write a better version of it. Hence, let’s do
exactly that!

The Josephus problem in its most general starts with n people numbered 1 to n
around a circle and it is assumed that every s-th person is killed until nobody is
left. Rüdeger was asking for the “Josephus permutation”, i.e. for the list of the
numbers of the killed people in exactly the order they were killed. For example,
if n=10 and s=2 then this list is [2,4,6,8,10,3,7,1,9,5].

Now take a look at his program, which is listed on the next page for the sake of
easy reference. What’s wrong with it from a programming point of view? Well,
you might notice that the only call of append() at the beginning serves no pur-
pose, but does no harm either. You might also notice that there a lot of global
variables like v, z, i, j , r, which should be definitely local variables, i.e. they
should appear in the list of parameters of the function definition. There are a
lot of other points , which deserve to be mentioned here, but the question re-
mains: Why is the program so “terribly slow” quoting Rüdeger himself? The sim-
ple answer is: Because of the frequent use of indices, namely r and z in the pro-
gram – a deadly sin for a Derive programmer aiming at a good performance!

 p36

Johann Wiesenbauer: Titbits 28

 D-N-L#55

 Josef(n, s, Liste ≔ []) ≔
 Prog
 v ≔ APPEND([1, ..., n])
 z ≔ n
 i ≔ 0
 Loop
 i :+ 1
 If i > n
 RETURN REVERSE(Liste)
 j ≔ 0
 Loop
 j ≔ j + 1
 If j > s exit
 r ≔ IF(z < n, z + 1, 1)
 Loop
 If v↓r ≠ 0 exit
 r ≔ IF(r < n, r + 1, 1)
 z ≔ r
 Liste ≔ ADJOIN(v↓z, Liste)
 v ≔ REPLACE(0, v, z)

 Josef(10, 2) = [2, 4, 6, 8, 10, 3, 7, 1, 9, 5]

Now here is where our “indexfree programming” comes into play. As for the pro-
gram logic let's first carry out the example above manually.

k list result of the action

0 [1,2,3,4,5,6,7,8,9,10] initialization
1 [2,3,4,5,6,7,8,9,10,1] cyclic rotation
2 [3,4,5,6,7,8,9,10,1] truncation of 2
3 [4,5,6,7,8,9,10,1,3] cyclic rotation
4 [5,6,7,8,9,10,1,3] truncation of 4
5 [6,7,8,9,10,1,3,5] cyclic rotation
6 [7,8,9,10,1,3,5] truncation of 6
7 [8,9,10,1,3,5,7] cyclic rotation
8 [9,10,1,3,5,7] truncation of 8
9 [10,1,3,5,7,9] cyclic rotation
10 [1,3,5,7,9] truncation of 10
11 [3,5,7,9,1] cyclic rotation
12 [5,7,9,1] truncation of 3
13 [7,9,1,5] cyclic rotation
14 [9,1,5] truncation of 7
15 [1,5,9] cyclic rotation
16 [5,9] truncation of 1
17 [9,5] cyclic rotation
18 [5] truncation of 9
19 [5] cyclic rotation
20 [] truncation of 5

 D-N-L#55

Johann Wiesenbauer: Titbits 28

 p37

As you can see from the table above, we must alternate between cyclic rotations
of the list and truncations of its first element. The elements, which are cut off,
namely 2,4,6,8,10,3,7,1,9,5 must be collected in a list, which represents the
Josephus permutation in the end.

As for an implementation of this idea, a first program could look like this:
 myjosef0(n, s, k_ ≔ 0, u_, v_ ≔ []) ≔
 Prog
 u_ ≔ [1, ..., n]
 Loop
 k_ :+ 1
 If MOD(k_, s) = 0
 v_ ≔ ADJOIN(FIRST(u_), v_)
 u_ ≔ APPEND(u_, [FIRST(u_)])
 u_ ≔ REST(u_)
 If u_ = []
 RETURN REVERSE(v_)

Well, this program is remarkably short, uses only 3 auxiliary variables and above
all, it is free of indices! Nevertheless, its performance is still disappointing.

The reason is the line
 u_ ≔ APPEND(u_, [FIRST(u_)])

which performs the cyclic shifts. It is not at all a good idea, to do it this way.
Remember, when dealing with a linked list it is relatively costly in terms of time
to do things at the right end of a list. Hence, let’s rewrite the program above in
order to take this into account, even if it becomes slightly longer by this:
 myjosef(n, s, k_ ≔ 0, u_, v_ ≔ [], w_ ≔ []) ≔
 Prog
 u_ ≔ [1, ..., n]
 Loop
 k_ :+ 1
 If MOD(k_, s) = 0
 v_ ≔ ADJOIN(FIRST(u_), v_)
 w_ ≔ ADJOIN(FIRST(u_), w_)
 u_ ≔ REST(u_)
 If u_ = []
 Prog
 If w_ = []
 RETURN REVERSE(v_)
 u_ ≔ REVERSE(w_)
 w_ ≔ []

As you can see, rather then appending the first elements at the end, we used an
auxiliary list w_ and adjoined the corresponding elements at its beginning! What
about the performance of this program? Does it make any difference? You bet!
In order to test it, let’s define another function interesting in its own:

 p38

Johann Wiesenbauer: Titbits 28

 D-N-L#55

 survivor(n, s) ≔ (myjosef(n, s))
 -1

Its purpose is to pick out the very last element of the Josephus permutation
representing the survivor, as it were. (Well, referring to the original problem
this lucky person could at least choose to commit suicide or simply stay alive!)
For example, the computation
 Survivor(10000,2)=3617

takes only 0.932s on my 2GHz-PC vs. 82.7s when using Rüdeger´s routine
Josef().

Now I hear you saying that this is all very nice, but you expected to read more
about number theory (or algebra for that matter) in this column and not so much
about good programming techniques. Well, your wish is my command! Hence, let
me conclude with a nice numbertheoretical application by deriving an explicit
formula for the survivor function for the special case s=2, which we call f(n) in
the following.

First, let’s assume that n is even. Then in the first turn, i.e. going through the
whole circle just once, all even numbers are wiped out and we are left with the
odd numbers 1,3,5,7,…,n-1. Hence, assuming that we already know the survivor
index f(n/2) for n/2 numbers a1,a2,…,an/2 it is easy to see that f(n)=2f(n/2)-1.
Similarly, if n is odd, then after the first turn and the additional elimination of 1
in the second turn we are left with the odd numbers 3,5,7,…,n-1. By an analogous
reasoning as above we see that f(n)=2f([n/2])+1 in this case, where [x] denotes
the greatest integer ≤ x. Hence, we have already got the very efficient recur-
sive definition
f(n):=if(n=1, 1, if(even?(n), 2f(n/2)-1, 2f(floor(n/2))+1))

The question remains whether this recursion can be used to get an explicit for-
mula. To get a hint we use Derive to compute the first 30 values of f(n):

You see the pattern? If n is given in the form n=2i+j for some j with 0≤ j < 2i,
then f(n)=f(2i+j)=2j+1. In other words, the explicit formula we are looking for is

f(n) ≔ 2·(n - 2^FLOOR(LOG(n, 2)))+1

And here the final surprise as you should check yourself: Using the binary rep-
resentation of n this is exactly a cyclic binary rotation of n to the left! (Any
comments or suggestions, as always to j.wiesenbauer@tuwien.ac.at)

 D-N-L#55

Calculation Time in the Output

 p39

Calculation Time not only in the Status Line

René Hugelshofer, a close friend from Switzerland asked how to integrate calculation time into the
output of a function and/or program in Derive – in addition to the computation time presented in the
Derive status line. It is a shame that I didn´t have an answer at the moment. I met Albert Rich in
Montréal and this was the occasion to ask the right person. He answered that all what I want to know
can be found in the Online Help, and he is right:

RANDOM(0) simplifies to the time in centiseconds since the current calendar year began and
initializes the random number state variable to that time.

This is a time consuming operation and we would
like to include the computation time into the
output.

Simplifying the inverse matrix gives a "nice"
expression and takes 3.06 sec (status line) on my
PC. Time differs a little from one calculation to
the other.

The following short program does the job (I am sure that you can follow the code):

The status line reports a computation time of
3.55 sec. What is the reason for the the difference?
The answer is seems to be easy:
Formatting this bulky expression might take some
time. Let´s test this by using another program
avoiding the output.

Status line shows 2.69 sec. Calling now the result by simplifying x_ as next expression #9, the status
line shows 0.38 seconds, which makes the difference. Please note, that x_ is global in this case!

Many thanks René for this interesting question.

 p40

ACDC Steven´s email

 D-N-L#55

Amusing Corner of the Deriver´s (and other CASer´s)-Curiosity
founded by Alfonso Población Saéz

Hello Josef and Noor,

It was nice seeing you in Montreal. Perhaps you have heard of the following puzzle.

In July, billboards and banners began appearing with the cryptic message:

{ First 10 digit prime in consecutive digits of e }.com

If you solved this puzzle, you were led to another puzzle, and ultimately to Google's webpage. These
puzzles were a ploy to recruit more engineers to work for Google.
I did not hear about this problem until about one week ago. Of course, hundreds of other people have
already solved this prime puzzle. Still, it seemed like a good problem for DERIVE – and it was. After
finding the first 10-digit prime in consecutive (decimal) digits of e, I decided to find the second, third,
etc. In fact, I found all the 10-digit primes contained in the first 1000 decimal digits of e. I wrote a
DERIVE procedure (program) to find all the n-digit primes in the first 1000 digits of e; for a value of
n = 1, 2, etc. determined by the user. The 1000 digits was just a convenient, arbitrary, fairly large
number. I could have searched the first 1093 digits of e.
Let me challenge your readers to write similar procedures. Of course, they might want to search other
irrational numbers {PI, SQRT(2), SQRT(3), ATAN(2), etc.} for n-digit primes.
Remarks:

(1) Searching the first 1000 digits of a rational number should give routine, predictable results. Hence,
you may want to search for primes exclusively in irrational numbers.
(2) Of the 10 one-digit numbers, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, there are exactly four primes {2, 3, 5, 7}.
So, you might expect to find approximately 40% of the one-digit numbers in e to be primes. This per-
centage will decrease when you search for longer primes. Try to find a relationship between the length
of these primes and the number found in the first 1000 digits of e.
(3) In stead of searching for 10-digit primes contained entirely in the first 1000 digits of e, you might
want to search for these primes with leading (first) digit among the first 1000 digits of e. This way,
you will always search through the same number of candidates (1000) – whether you search for 10-
digit primes or 20-digit primes.
(4) In searching for 10-digit primes, my program will return:
(a) a 9-digit prime – if it is preceded by one zero digit;
(b) an 8-digit prime – if it is preceded by two zero digits;
(c) a 7-digit prime – if it is preceded by three zero digits; etc.
These "shorter" primes can easily be sorted out with a second search. Also, you may want to determi-
ne what percent of the primes are "shorter" primes.
(5) As of this writing, you can still check your first 10-digit prime in e by concatenating
.com
and using it as a www address. If correct, you will get to the second Google puzzle.
Happy Searching,
Steven Schonefeld

