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DERIVE & CAS-TI User Group Meeting 2004 
 

User Group Meeting 2004 was announced for Saturday, 17 July, during TIME 2004 Conference in 
Montréal, Quebec, Canada. 
 
DUG-members who attended the conference followed the announcement and joined the meeting. We 
spent two interesting and inspiring hours together.  
 
The editor and president of the DUG gave a report about the activities of the DUG so far: 
 
The assembly accepted and appreciated the editor´s proposal to have no membership dues for 2004 
and the following years due to the fact, that the newsletter will not be printed and shipped by snail 
mail, but can be downloaded from the DUG-homepage. 
 
Electronic form of the DUG publications meets the wishes and suggestions of many members. About 
50 new members joined the User Group in 2004. Welcome to them all. 

 
 
Since founding the DUG in 1991 we have published  54 newsletters  

 
containing 
 
  more than 2200 pages 
  386 contributions submitted by 
  149 authors from 
  27 countries. 
 
We had  592 requests and answers in the User Forums and presented 
  239 CAS-related books on the book shelf. 
 
Among others Johann Wiesenbauer provided 27 Titbits from Algebra and Number Theory 
which could fill a very special book on this topic. We were very happy that we could express our 
gratefulness to Johann personally at the meeting. 
 
We found that the Derive-Users have been very productive in delivering papers, the CAS-TI-Users are 
hesitating – with a few exceptions. So we have to encourage this group to go to public with their find-
ings in the future. 
 
Ideas and intentions for the future are: 
 

� Continuing publication of revised versions of Newsletters from 1991 - .....   This service 
is very much appreciated by the members and is an exciting task for the editor. 

� Providing an extended index containing all articles and contributors. Later we would like 
to add short abstracts (2 sentences) and links between related contributions. 

(continued on page 3) 
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Dear DUG-Members, 
 
First of all I´d wish to welcome our 50 new mem-
bers who joined DUG during 2004. We hope that 
you will find many information and inspiring ideas 
in our publications and we would be very pleased if 
some of you would submit one or the other contri-
bution for publication. 
 
As I reported at the DUG-Meeting in summer we 
would like to encourage our handheld users to 
share their experiences with us. I had many positive 
reactions on the fact that the Newsletter can be 
downloaded from our website and that I revise the 
old newsletters from our first years. I can say that 
this is a very interesting task to recognize how 
things have 
changed within a 
few years. I am 
sure that we will 
discover many 
new qualities of 
the many contri-
butions from the 
early nineties. I 
was relly moved 
by revising 
DNL#4, when I 
found again a Call for Papers for our first DERIVE 
Spring School 1992 in Krems. Those were the days 
when it all has begun. In 1991 the Austrian gov-
ernment purchased the nationwide DERIVE licence 
for our secondary schools and we are very happy 
that some weeks ago our government renewed the 
licence contract for DERIVE 6.10. 

This issue contains two fine articles from Giora & 
Nurit (Quadratic Approximation) and Karsten 
Schmidt who fulfills his promise to present exam-
ples for application of Moore-Penrose Matrices. 
We have a Danish contribution which deals with 
Quadratic Optimization and shows that this topic 
can be treated even in secondary school.  
 

Bjoern´s article was written before times of De-
rive´s slider bar and I tried to include this valueable 
tool. I left his article in Danish and added some 
English comments. 
 

Just recently I 
received a mail 
from our very 
productive 
member Don 
Phillips who 
sent a very 
impressive 
paper on "Two 
stage least 
squares", an-

other mail from Josef Lechner containing two arti-
cels for publication and one mail from Canada 
announcing a paper about "Diophant-ive Polyno-
mials". Lorenz Kopp did not only send his fine tool 
for generating tree diagrams but also a bundle of 
simulations for random experiments with very 
interesting graphic representations. 
 
Please take also notice of the extended report on the 
DUG-meeting 2004 in Montreal. 
 
I´ll take the occasion to thank 
Walter Wegscheider and Ben-
jamin Kaineder for putting the 
DNLs and other files on the 
website. 
 
Finally I wish you and your families a Merry 
Christmas Time and a Happy, Healthy and Success-
ful New Year 2005. 
 
With best regards from my grandchildren and from 
Noor and Josef 

 
 

 
Download all DNL-DERIVE- and TI-files from 

http://www.austromath.ac.at/dug/ 
http://www.bk-teachware.com/main.asp?session=375059  
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group. 
It is published at least four times a year 
with a contents of 44 pages minimum. The 
goals of the DNL are to enable the ex-
change of experiences made with DERIVE 
and the TI-89/92/Titanium/Voyage 200 as 
well as to create a group to discuss the 
possibilities of new methodical and didac-
tical manners in teaching mathematics. 
 
As many of the DERIVE Users are also 
using the CAS-TIs the DNL tries to com-
bine the applications of these modern tech-
nologies. 
 

Editor: Mag. Josef Böhm 
A-3042 Würmla 
D´Lust 1 
Austria 
Phone/FAX: 43-(0)2275/8207 
e-mail:  nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & CAS-TI Newsletter will be. 
 
 
 
 
 
 
Next issue:  March 2005 
Deadline  15 February 2005 

 
Preview:  Contributions waiting to be published 
 
 Finite continued fractions St. Welke, GER 
 Some simulations of Random Experiments, J. Böhm, AUT & L. Kopp, GER 
 Wonderful World of Pedal Curves, J. Böhm 
 Another Task for End Examination, J. Lechner, AUT 
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER 
 ANOVA with DERIVE & TI, M. R. Phillips, USA 
 Hill-Encription, J. Böhm 
 CAD-Design with DERIVE and the TI, J. Böhm 
 Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL 
 Farey Sequences on the TI, M. Lesmes-Acosta, COL 
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT 
 Henon & Co, J. Böhm 
 Pringles, B. Grabinger, GER 
 Challenges from Fermat, Bj. Felsager, DEN 
 Actuarial Mathematics, M. R. Phillips, USA 
 Are all Bodies falling equally fast, J. Lechner, AUT 
 Modelling Traffic Density, Th. Himmelbauer, AUT 
 Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT 
 Two Stage Least Squares, M. R. Phillips, USA 
  

 and Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,  
 Keunecke, GER, .........and others 

 

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag.Josef Böhm 
Herstellung: Selbstverlag 
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� Describing the many treasures which are more or less hidden among the User  
contributed files. Most of the users don´t know about the contents and how to use. 

� It could be useful to deal with one or the other files of the MATH-folder, too. 

 
At this occasion the editor expressed his thanks to Theresa Shelby, Albert Rich, David Stoutemyer and 
Bernhard Kutzler for their great cooperation. 
 
The immediate contact between the users and to the responsible people is one of the great advantages 
of Derive and the CAS-TIs and – I am sure – a major part of their success. 
 
Speaking about thanks we must not forget Noor Böhm, who has done all the administration work since 
1991.  
 
The report closed with an outlook on future contributions. 
 
Then Bernhard Kutzler reported that he had audited the finances of the DUG and had found that 
everything was ok. 
 
There was one proposal for the management committee for the next period, which was accepted with 
one voice: 
 

 Josef Böhm 
 Bärbel Barzel 
 Noor Böhm 
 Josef Lechner 
 Bernhard Kutzler 
 Walter Klinger 

 
Johann Wiesenbauer suggested that due to the fact that the publications are now on the web we could 
pose a "Problem of the Month" to be tackled by our members. So we will put again "Challenge" into 
the next newsletter“ and wait for the responds. If there is need in more "problems" we can start with 
them at any time, if there is not, it would be lost time and efforts to bring them on the web. 
 
Lana Moore from TI announced cooperation with TI by promoting the User Group and the Newsletter 
via the TI-Derive-Homepage. Many thanks for this valueable support. 
 
Thanks also to all friends who came together and honored the meeting with their presence. 
The next meeting was announced for the next DERIVE Conference which will take place in 2006 in 
Dresden, Germany. 
 
The meeting was closed after 2 hours. 
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Total Differential with DERIVE and the TIs 

 
Don Pillips 
Thanks for DNL #55!  It was great as usual.  I really liked how you did my article on TVM comparing 
my routines with yours and the TI-89. 
 
I've expanded my routines for actuarial math.  So, if you're planning on publishing it at some future 
date, please wait for the "new, expanded, greater" version. 
 
Also, I've noticed, as I'm sure many have, that Derive does not compute total differentials.  I've at-
tached a file which corrects that.  Maybe Albert, et.al., will include this functionality in a future version 
of Derive. 
 
Sincerely, 
Don Phillips 
 

 

 
 
Josef, 
 
Attached is the total differential program for the TI-89.   
It takes two arguments: the equation and the degree of dif-
ferentiation.  I just wish there was some way to put a default 
value in a TI-89 function or program. 
Regards, Don. 
 
You can find the TI-89, the TI-92 and the V200 grouped file 
among the files for download. Josef 
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Note from Josef Lechner and Ove Kroll concerning working with angles in DERIVE 6: 
 

 

 

See Albert Rich´s comment on page 14 
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Tania Koller and Students (IIIb) Model Reality on the Voyage 200 

 

  
 

  
 

  
 

  
 

  
 

  
 
 

See also page 22 
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Quadratic Approximations for Integration 
Giora Mann                                  Nurit Zehavi 

Levinsky College of Education, Israel    Weizmann Institute of Science, Israel 
 

Abstract 

The fundamental theorem of Calculus states that the definite integral over an inter-
val is the difference of the antiderivative at the two endpoints of the integration in-
terval. However, we need to know the antiderivative, but in too many interesting 
cases (for example in computing the length of curves) the antiderivative does not 
exist, or we are unable to find it.  
In this paper we present a didactical sequence in which we start by showing that a 
quadratic approximation of the function to be integrated can give a "good" ap-
proximation of the definite integral. Furthermore, this approximation depends only 
on three values of the integrand (no antidervative is needed). Refining the ap-
proximation opens the road to Simpson's rule for computing numerically definite 
integrals. 

 

Introduction 

The motivation for the didactic sequence presented in this paper originated from comments of curious 
high-school students while learning to compute definite integrals: "It is interesting that the definite 
integral for a given function depends only on the values of the primitive function at the endpoints of 
the integration interval; the area under the graph is not affected by the behavior of the primitive func-
tion and its derivative inside the interval of integration." This intimate connection between the definite 
integral and the given function is expressed in the fundamental theorem of Calculus:  

For F'(x) = f(x), ( ) ( ) ( )
b

a

f x F b F a= −∫ . 

The following is a typical problem given to students: Find the area between the graph of the function 
f(x) = 0.5x3 – 2x2 + 4 and the x – axis, above it (see Figure 1). We demonstrate the solution and explo-
ration of the problem using Derive: 

 
Figure 1. 
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Why is Derive's reaction to the Approx command - "false" ?! 

Let us approximate the left side first and then the right side: 

 
So, why "false"? 

The conflict is resolved when we change the number of digits: 

 
We see that the software implements different algorithms for approximating integrals and for ap-
proximating real numbers. It is worthwhile to learn more about the algorithm for approximating inte-
grals. 
 

A quadratic approximation for a definite integral 

 
Let us look at g(x) :=  x3 – 3x + 6 and find the area cir-
cumscribed by the graph of g(x), y = 0, x = -2, x = 1  
 

 
 

Figure 2.  
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We want to fit a quadratic function q(x) to g(x): 

 
Figure 3 indicates that (a) the graphs of the two functions in the integration interval are of different 
types (e.g., only g(x) has an inflection point), and (b) the area under q(x) seems to be the same as the 
area under g(x).  

 
Figure 3. 

And indeed, 
1 1

2 2

( ) 18.75 ( ) 18.75g x q x
− −

= =∫ ∫  

This is true for any definite integral of a polynomial of the third degree. We can show that easily, but 
having CAS at our disposal, we prefer to present a broader framework. It is enough to deal with the 
simplest polynomial of n:  

 
 

Computing the difference for n = 1…7 yields: 
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What conclusions could one make from the table? For n = 1,2 the difference between the integrals of 
the given polynomial and the quadratic approximation is zero, because the approximation is in fact the 
same polynomial. For n = 3, the fact that we get zero difference seems peculiar because we have two 
different integrands. The insight we gain for n = 4 is that the difference depends only on the width of 
the interval, and it is not affected by the location. For n > 4 the difference depends, as expected, on 
both the width and location of the interval. 

Students may wonder why we need to approximate the definite integral of a cubic polynomial by the 
integral of a quadratic function. Well, let us try to find the circumference of the braid created between 
y = sin(x) and  y = cos(x) from the first intersection point to the second to the right of the origin (Fig-
ure 4). 

 
Figure 4. 

The length of a curve is expressed by the formula 21 ( ')
b

a

y dx+∫ .  

So the circumference is twice the integral   
5

4
2

4

1 cos ( )x dx+∫
π

π

, which is not easy to compute without a 

CAS. We can start by approximating such integrals with a quadratic function by computing their coef-
ficients. But this is one of those moments in mathematics when working generally enables us to see 
surprising results unseen otherwise! 
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Approximating an integral with (only) three values of the integrand  

Assume that q(x) = Ax2 + Bx + C is a function that meets a given function f(x) at three points: the end-
points and the midpoint of the interval [a, b]: 

f(a) = q(a),   f(b) = q(b)    f((a + b)/2) = q((a + b)/2) 

 
From the above we conclude that: 

( ) ( ( ) 4 ( ) ( ))
6 2

b

a

b a a b
q x f a f f b

− +
= + +∫ . 

The meaning of the result is that the area under the function f(x) over the interval [a, b] is approxi-
mately the area of a rectangle whose length is the length of the integration interval and whose height is 
the weighted mean (with weights 1, 4, 1) of the three values of the function at a, (a+b)/2, and b. As 
one can see, the quadratic function “disappeared”. We used only its existence to obtain the approxima-
tion, which depends only on three values of the given function and the interval of integration. There-
fore, we reflect again on the fundamental theorem of Calculus that requires the values of the primitive 
function at the endpoints of the integration interval. Clearly, if we are unable to find a primitive func-
tion, we can easily get a reasonable approximation of the integral, using only the values of the inte-
grand at the endpoints and the midpoint of interval. 

Toward Simpson's rule 
We come back to the approximation of the integral needed for finding the circumference of the braid: 
5

4
2

4

1 cos ( )x dx+∫
π

π

. Using the last result for 2( ) : 1 cos ( )h x x= + , we approximate 
5

4

4

( )h x dx∫
π

π

 by: 
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The first result is 6
2

π , and the second 6
2

. Figure 5 illustrates the results visually.  

 
Figure 5. 

 
Using Derive's numerical integration, we get some control of our result: 
Obviously if we want a better approximation, we should divide the integration interval into sub-
intervals and approximate the curve by parabolas. This is in fact the idea underlying Simpson's 
method.  
We proceed by dividing the interval into two sub-intervals: 

 
Applying the method, we get for each sub-interval: 

 
Combining the above we get the following approximation: 
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Doubling the number of intervals yields a better approximation: 

 
Comparing the three results that we got by applying the method of quadratic approximation with the 
numerical approximation by Derive shows that the greater the number of sub-intervals, the better the 
approximation that we obtain: 

 

Approximating integrals by Derive 
This may be a good time to tell students that Derive actually uses an adaptation of Simpson's rule to 
numerically approximate definite integrals. 
 
We previously saw that increasing the number of sub-interval increases the accuracy. Simpson's esti-

mate of ( )
b

a

f x dx∫ , when the interval is divided into n sub-intervals of equal length 
( )

2

b a
h

n

−
= , is the 

sum: 

0 1 2 3 2 1[ ( ) 4 ( ) 2 ( ) 4 ( ) ...2 ( ) 4 ( ) ( )]
3 n n n

h
f x f x f x f x f x f x f x− −+ + + + + + , 

where the error is at most 
4

4( )

180

b a M h−
; M4  denotes the maximum value of |f 4(x)| for x in [a, b].  

Simpson's estimate is exact for polynomials of the form y = a x3 + b x2 + c x + d, whose fourth deriva-
tive is zero. The error in using Simpson's methods for other functions involves the fourth derivative.  
 
We now reflect on the expressions of error for y = Axn ,  n < 5 that we obtained when we computed the 
error for polynomials. 

For n < 4 we got zeros, which agrees with the fact that  M4  is zero. For n = 4 we got 
54

15
A k

. 
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We substitute in 
4

4( )

180

b a M h−
:    M4 = 4!⋅A, b – a = 2k, h = k and get:  

4 52 4! 4
180 15

k A k A k⋅ ⋅ ⋅ ⋅
= . 

The significance of the last result is that our error for the polynomial y = Ax4 is exactly  the accuracy 
allotted by Simpson's rule.  

Concluding remarks 
The didactical sequence we described above utilizes CAS to make numerical integration by CAS less 
mysterious. We start by a ‘didactic moment’ in which students obtain two different results in using the 
software to approximate definite integrals. Next they realize that for a quadratic approximation, the 
coefficients of the quadratic function are not needed; the approximation is produced by using only 
three values of the integrand. At this stage the road to Simpson’s method is open; moreover when we 
mention the accuracy of the method the CAS can be used to get ‘some feeling’ of the key indicator of 
the error. 
 
 
 
 
Albert Rich´s comment on Angular Mode Settings 
 
Q: When calling on trig functions, how do I enter angles in degrees?  
  
A: In Derive 6, the ° operator is used to enter an angle in degrees.  The ° operator can be 
entered by clicking on it on the math symbol toolbar, pressing Ctrl+O, or by typing deg on the 
expression entry line.  For example, SIN(45°) simplifies to SQRT(2)/2.  Unlike earlier ver-
sions of Derive, selecting Degree in the Angular Unit field of the Simplification tab of the Op-
tions > Mode Settings command only effects the display of angles, not how angles are en-
tered.   
  
Q: In approximate mode, how do I get the inverse trig functions to return angles in degrees 
instead of radians?  
  
A: In approximate mode, the built-in inverse trig functions (e.g. ASIN, ACOS, ATAN, 
etc.) always return angles in radians, even in Degree mode.  For example, in Degree mode 
ATAN(1) simplifies to 45° but approximates to 0.7853981633.  To always get angles returned 
in degrees use the inverse trig functions (e.g. ARCSIN, ARCCOS, ARCTAN, etc.) defined in 
MiscellaneousFunctions.mth instead of the built-in functions.  For example, ARCTAN(1) sim-
plifies and approximates to 45. 
  
===================================== 
  
Note the new inverse trig functions: ARCSIN, ARCCOS, etc. 
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Applications of the Moore-Penrose Inverse of a Matrix 
 

Karsten Schmidt, FH Schmalkalden, Germany, kschmidt@fh-sm.de 
 
Introduction 
 
After giving an introduction to the Moore-Penrose inverse of a matrix, and its computation in 
DERIVE, in DNL #50 (Schmidt 2003), this paper deals with two important applications of the Moore-
Penrose inverse. One is a method for solving a system of linear equations, and the other is the compu-
tation of the Ordinary Least Squares estimator in linear regression. Some familiarity with matrix alge-
bra as well as basic understanding of the Moore-Penrose inverse of a matrix (as provided in DNL #50) 
is required. 
 
Computation and Properties of the Moore-Penrose Inverse 
 
In order to facilitate working with this paper, the definition and DERIVE functions for the computation 
of the Moore-Penrose inverse of a matrix are repeated from DNL #50: 
For any m n× -matrix A there exists a unique matrix with properties related to those of the inverse of a 

nonsingular matrix. This is the Moore-Penrose inverse, denoted by +A , which satisfies the four condi-
tions (the transpose of A is denoted by ′A ) 

 + =AA A A  (1) 

 + + +=A AA A  (2) 

 ( )+ +′ =A A A A
 (3) 

 ( )+ +′ =AA AA
 (4) 

Conditions (3) and (4) require both +A A  and +AA  to be symmetric matrices. Note that +A  is an 

n m× -matrix, i.e. the dimension of +A  is equal to the dimension of ′A . 
The Moore-Penrose inverse of a matrix can be computed in DERIVE with the following two functions: 
 

MPIV(a) ≔                           
  If DIM(a`) = 1                    
     If (a`·a)↓1↓1 = 0              
        0·a`                        
        a`/(a`·a)↓1↓1               
     "This is not a column vector!" 
 
MPI(A, APLUS, aj, dt, c, bt, J) ≔                                    
  Prog                                                               
    APLUS ≔ MPIV(A COL [1])                                          
    J ≔ 2                                                            
    Loop                                                             
      If J > DIM(A`)                                                 
         RETURN APLUS                                                
      aj ≔ A COL [J]                                                 
      dt ≔ aj`·APLUS`·APLUS                                          
      c ≔ (IDENTITY_MATRIX(DIM(A)) - A COL [1, ..., J - 1]·APLUS)·aj 
      bt ≔ MPIV(c) + (1 - MPIV(c)·c)/(1 + dt·aj)·dt                  
      APLUS ≔ APPEND(APLUS - APLUS·aj·bt, bt)                        
      J :+ 1 
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MPIV computes the Moore-Penrose inverse of a vector and MPI the Moore-Penrose inverse of a matrix 
(or vector). Note that MPIV requires a column vector passed as parameter, which has to be declared in 
DERIVE as a matrix with one column. Note also that MPIV and, therefore, MPI, via calling MPIV repeat-
edly, might not be able to compute the Moore-Penrose inverse since it might be impossible to deter-
mine if =a 0 , when a has nonnumeric entries. Both functions, along with a couple more from the next 
section, are provided in the utility file MP.mth. 
Among the many properties that hold for the Moore-Penrose inverse the following three will be useful 
later in this paper (I denotes the identity matrix): 

 ( )+ +′ ′ =A A A A  (5) 

 +′ ′=A AA A  (6) 

 
( ) ( ) 1rank and

m n n n
n −+ +

× ×
′ ′= ⇔ = =A A A A A A A I

 (7) 
 
 
Application to Systems of Linear Equations 
 
We consider a system of linear equations (SLE) 
 

1 1m n n m× × ×
=A x b  

where A is the known coefficient matrix, b a vector of known constants, and x a vector of unknown 
variables. 
The Moore-Penrose inverse of A can be applied to such a system 
• to check if it is consistent or inconsistent, i.e. to find out if it has solutions or not, and 
• if it is consistent, to provide the general solution, which may consist of either one unique or an 

infinite number of solutions. 
 
A system of linear equations =Ax b  is consistent if and only if 

 
+ =AA b b  (8) 

As an example, consider an SLE defined by 

 
2 2 2 1

1 2 5
;

3 4 10× ×

   
= =   

   
A b  (9) 

The Moore-Penrose inverse of A is 

 3 1
2 2

2 1+ − 
=  − 

A  

Since A is nonsingular ( ( ) 1
2det 0= − ≠A ) we have 1+ −=A A . Hence 

 1+ −= =
I

AA b AA b b  

for any vector b. System (9), like any other system with a nonsingular coefficient matrix A, is there-
fore consistent according to (8). 
As another example, consider 

 2 2 2 1

1 2 5
;

2 4 10× ×

   
= =   

   
A b

 (10) 
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This time A is singular ( ( )det 0=A ), its inverse 1−A  does not exist. Computing the Moore-Penrose 

inverse 

 
1 2
25 25
2 4
25 25

+  
=   

 
A  

is nevertheless possible and we find that condition (8) is satisfied for system (10): 

 
1 2 1 2
25 25 5 5
2 4 2 4
25 25 5 5

1 2 5 5 5
2 4 10 10 10

+           
= = = =                       

AA b b  

As a third example, look at 

 2 2 2 1

1 2 5
;

2 4 15× ×

   
= =   

   
A b

 (11) 
This time we find that condition (8) is not satisfied: 

 
1 2
5 5
2 4
5 5

5 7
15 14

+     
= = ≠         

AA b b  

System (11) is therefore inconsistent. 
 

 
 
The function CHECKSLE in the above screenshot checks if a system of linear equations is consistent or 
not, and prints the result on the screen. Since there is no unknown clause in the IF-expression, the 
entire (simplified) IF-expression is returned, which can obviously be fairly informative in cases such 
as the last SLE (consisting of matrix A in #5 and vector b in #9). 
 
If a system of linear equations =Ax b  is consistent, its general solution is given by 

 1n n n

+ +

× ×

 = + − 
 

x A b I A A z
 (12) 

where z is an arbitrary vector. 
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Note that since the vector n∈z  in (12) is arbitrary, we might simply choose =z 0 . Consequently, 
one (possibly unique) solution of a consistent system of linear equations =Ax b  is always given by 

 +=x A b  
The following function SOLVESLE either solves a system of linear equations =Ax b  where the matrix 
A and the vector b have been passed as parameters, or displays a message if the system is inconsistent. 
 

z ≔ VECTOR(VECTOR(APPEND(z, J), i, 1), J, 1, DIM(A`)) 
 
SOLVESLE(A, b) ≔                                                    
  If A ⋅ MPI(A) ⋅ b = b                                             
     MPI(A) ⋅ b + (IDENTITY_MATRIX(DIMENSION(A`)) - MPI(A) ⋅ A) ⋅ z 
     "No solution(s)!" 

 
We now want to compute the solution(s) of the above three systems. We start with system (9). Since A 
is a nonsingular matrix, we have 1+ −=A A , and (12) simplifies to 

 

( )
1 1

1

+ +

− −

−

= + −

 
= + − 

 
=

I

x A b I A A z

A b I A A z

A b

 

for any choice of z. Obviously, the general solution (12) simplifies to a unique solution if A is 
nonsingular. Hence 

 1
3 51
2 2 2

2 1 05
10

− −    
= = =    −     

x A b  

For system (10) we get 

 ( )
4 2

1 25 5
2 1

1 25 5

1
2

z z
z z

+ +  − +
= + − =   − + + 

x A b I A A z  

In this case there is an infinite number of solutions. For example, by choosing =z 0  we get 

 
1
2

+  
= =  

 
x A b  
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The above screenshot shows the capability of the function SOLVESLE to handle all three possible sce-
narios in considering a system of linear equations: a unique solution, an infinite number of solutions, 
and the case that no solution exists. 
 
 
Linear Regression and the Moore-Penrose Inverse 
 
We consider the (multiple) linear regression model 
 

1 11 K NN KN × ×××

= +y X uβ  (13) 

where y is the vector of observations on the dependent variable, X the regressor matrix, β a vector of 
parameters, and u a vector of disturbances. 
Denoting an estimator of the unknown parameter vector β  by β , we have 

 =
= −

y X
u y y

β  

where y  is the estimate of y using β , and u  is the vector of residuals. 

The most popular estimator for β is the (Ordinary) Least Squares estimator which minimizes the sum of 
squared residuals 

 

( )

( ) ( )

2

1

min

N

i
i

uϕ
=

=

′=
′= − − →

∑
u u

y X y X β

β

β β

 

Note that 

 
( ) ( ) ( )

2

ϕ ′= − −

′ ′ ′ ′ ′ ′= − − +

′ ′ ′ ′= − +

y X y X

y y y X X y X X
X X y X y y

β β β

β β β β

β β β

 

is a convex function since ′X X  is a nonnegative definite matrix. Therefore, finding its first derivative 

 
( )

( )( ) 2

2 2

∂ϕ

∂
′′ ′ ′ ′= + −

′ ′ ′= −

X X X X y X

X X y X

β
β

β
β

 

and setting it equal to 0 is necessary and sufficient to determine the minimum of ( )ϕ β : 

 
1 1

2 2
K K× ×

′ ′ ′ ′ ′ ′ ′− = ⇔ − = ⇔ =X X y X X X X y X X X yβ β β0 0  

The last equation constitutes the so-called system of normal equations. 
Under the (usual) assumption that ( )rank K=X , which assures that ′X X  is nonsingular, we can eas-

ily derive the Least Squares estimator from the normal equations 

 ( ) ( ) ( )1 1 1− − −′ ′ ′ ′ ′ ′ ′ ′= ⇔ = ⇔ =
I

X X X y X X X X X X X y X X X yβ β β  

One might think that the system of normal equations is inconsistent if ( )rank K<X . However, this is 

not true. 
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Observe that the system of normal equations is essentially a system of linear equations in the notation 
of the previous section: 
 ′ ′=

x bA

X X X yβ  

Using properties (5) and (6) of the Moore-Penrose inverse, it can be shown that the system of normal 
equations is consistent without any rank assumption on X: 

 ( )
+

+

+ +

′

= ⇒

′ ′ ′ ′ ′= =
X

X

AA b b

X X X X X y X XX y X y  

Hence, its general solution is given by 

 

( )

( ) ( )

( )
+ +

+ +

+ +

+ +

= + − ⇒

 
 ′ ′ ′ ′= + −
 
 

= + −

X X

x A b I A A z

X X X y I X X X X z

X y I X X z

β  

where K∈z  is an arbitrary vector. 
The number of solutions, however, depends on the rank of the regressor matrix. If ( )rank K=X , it 

follows from (7) that + =X X I , and the general solution simplifies to the unique solution 

 
+ +

+

 
= + − 

 

=

I
X y I X X z

X y

β
 

i.e. the Least Squares estimator is simply the product of the Moore-Penrose inverse of the regressor 
matrix and the vector of the observations on the dependent variable. 
If, however, ( )rank K<X , we have an infinite number of solutions. Therefore, it is not the consis-

tency of the system of normal equations that is guaranteed by assuming X to be of full column rank, 
but the uniqueness of its solution. 
 
Finally, this straightforward method of computing the Least Squares estimator is demonstrated by 
means of an example. We want to apply linear regression analysis to predict the number of O-ring 
failures to be expected when the space shuttle Challenger was launched on January 28, 1986. 
O-ring failure is when an O-ring, which seals the gaps between the parts of the solid fuel rocket mo-
tors, leaks. There had been 24 previous space shuttle launches. During 17 of them no O-ring failure 
occurred, while during the remaining 7 launches there were between one and three O-ring failures. 
The table below provides the number of failures and the ambient temperatures before launch, sorted 
according to temperature. 
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failures t [temp. in °C] temp. in °F failures t [temp. in °C] temp. in °F 

3 12 53 0 21 70 

1 14 57 0 21 70 

1 14 58 0 22 72 

1 17 63 0 23 73 

0 19 66 2 24 75 

0 19 67 0 24 75 

0 19 67 0 24 76 

0 19 67 0 24 76 

0 20 68 0 26 78 

0 21 69 0 26 79 

1 21 70 0 27 80 

1 21 70 0 27 81 

 
The following screenshot shows an algebra window and a 2D-plot window. The first three expressions 
in the algebra window are the contents of the file T4Data.mth. Expression #1 defines a 24 2× -matrix 
Data, which was entered in transposed form to save space (unfortunately, this requires simplification 
of Data prior to plotting the points in the 2D-plot window). In expressions #2 and #3 the data are rear-
ranged according to the definition of the linear regression model (13). X denotes the regressor matrix, 
containing a column of ones (for the y-intercept), and a column with the observations on the independ-
ent variable (temperature in Celsius), y denotes the vector of observations on the dependent variable 
(number of failures). 
Expression #4 is the formula for the computation of the Least Squares estimator using the Moore-
Penrose inverse. Approximating #4 yields #5, which is in turn used to define and finally plot the 
straight line which is the result of the Least Squares estimation. 
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Considering the relatively high coefficient of determination ( 2 0.3R = ), and the fact that the slope 
parameter is statistically significant (at the 1%-level; both values not shown in the screenshot), the 
above result is fairly reliable. 
Since the pre-launch ambient temperature on January 28, 1986, was 1− °C (31°F), the prediction from 
the above regression would have been 

 ( )2.629 0.105 1 2.734failures = − − =  

i.e. 2 or 3 O-ring failures were to be expected according to our regression result. Nevertheless, the 
space shuttle was launched. Less than two minutes into the flight, due to O-ring failure, leaking fuel 
was ignited by a rocket engine, and Challenger exploded. 
 
Reference 
 
Schmidt, K. (2003), An Introduction to the Moore-Penrose Inverse of a Matrix, The DERIVE-

Newsletter #50 (June 2003), 12 – 18. 
 

Artificial and Real Fountains 

 

  
Picture: Fountain in St. Petersburg, Russia (Tania Koller) 
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Kvadratisk programmering 
Et eksempel på et valgfrit emne i symbolsk matematik 

Quadratic Programming 
An Example for an Optional Topic in Symbolic Mathematics 

Bjoern Felsager, Denmark 
 
Netop fordi symbolske programmer arbejder med vilkårlige udtryk kan man lige så nemt lave kvadra-
tisk programmering, som lineær programmering (eller en hvilken som helst anden form for program-
mering!). Det er jo alligevel de samme faciliteter, man trækker på! Her vil vi se på nogle eksempler på  
kvadratisk programmering hentet fra en standardlærebog for handelsgymnasiet (Søren Antonius et 
al.): 
  

En produktion af to varer A og B er underlagt betingelser, som kan udtrykkes ved følgende 
uligheder, hvor x er antal enheder for A og y er antal enheder for B: 
 
Production of goods A and B underlies some restrictions which can be expressed by 
the following inequalities for number of units x of A and number of units y for B. 

2x + 3y ≤ 240 
2x + 2y ≤ 180 
4x + y ≤ 240 

x ≥ 0 
y ≥ 0 

  
Af de tre første betingelser følger, at de kritiske x-værdier (dvs. skæringen med x-aksen) er 120, 90 og 
60, ligesom de kritiske y-værdier er 80, 90 og 240. Altså skærer polygonområdet x-aksen i 60 og y-
aksen i 80. Vi starter derfor med at vælge grafrummet 
 

-10 ≤ x ≤ 70  og  -10 ≤ y ≤ 90  . 
 
Vi indskriver derefter kriterierne  
 

 
 
og tegner kriterieområdet:  

 
The restrictions describe a region which has 
its boundaries in critical x- and y-values. 
 
The intersection points of the boundary-lines 
result in a polygon. 
 
The points on the axes are easy to find. But 
we need also the intersection points of the 
restriction lines. 
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Det kan også betale sig at indskrive ligningerne 
for radområdet, så vi fx bestemme skærings-
punkterne: 
 
Ved at benytte Solutions i stedet for Solve får 
vi skæringspunkterne ud på koordinatform, så de 
kan tegnes direkte: 
 
By using Solutions instead of Solve we ob-
tain the intersection points in coordinate form 
and the points are immediately ready for plot-
ting. 
 
Vi har styr på kriterieområdet! 
  
Under passende antagelser bliver den samlede omsætning nu givet ved det følgende kvadratiske udtryk 
i x og y: 

2 2

( , ) 20 25
3 4
x yf x y x y= − + −  

Det er altså denne funktion vi skal maksimere i polygonområdet, så vi ser på nogle niveaukurver, fx 
niveaukurven gennem (25,25), dvs. kurven med ligningen f (x, y) = f (25, 25) . Faktisk kan vi lige så 
godt tegne en familie af niveaukurver f (x, y) = k, så på basis af værdien af f (25,25) gætter vi på et 
passende interval af familieparameteren k. 
 
Under certain circumstances revenue is 
given by the following quadratic expression: 

2 2

( , ) 20 25
3 4
x yf x y x y= − + −  

We try to find the maximum value for this 
function without violating the restrictions. We 
inspect so called level curves (contour curves 
of the surface f), eg the level curve contain-
ing point (25,25). This is a curve with equa-
tion f (x,y) = f (25,25). But we can also create 
a whole family of level curves f (x,y) = k with 
appropriate interval for parameter k. 
 

 
Now in times of slider bars we can present the family of level curves  
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Det kunne godt se ud som om niveaukurverne er ellipser, samt at centrum for disse ellipser ligger inde 
i kriterieområdet. Vi kan bakke analysen op med et tredimensionalt billede af grafen for omsætnings-
funktionen sammen med niveaufladen for (x, y) = (25,25), dvs. z = 760,41666… 

The level curves are ellipses with their center within the feasible region. We can perform a 
3D-analysis plotting the revenue surface together with the level plane for (x,y) = (25,25),  
i.e. z = 760.416...  (and we can also introduce a slider bar for level planes z = k). 
 

    
 
Det er sværere at få kriterieområdet med, fordi kriterieligningerne giver anledning til lodrette planer. 
Vi må derfor indskrive dem på parameterform (og sætte parameterintervallerne fornuftigt!): 
 
We want to add the boundaries which appear as vertical planes. For plotting them we have 
to rewrite them in parameter form and set meaningful intervals for the parameters. 
 
 
Planen med ligningen 2x + 3y = 240  tegnes altså med parameterfremstillingen 
 

2, ,
3

(120 )x zx ⋅ 
  

−     0 ≤ x ≤ 70 ,  0 ≤ z ≤ 1000 
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Vi kan beregne toppunktet for det kvadratiske polynomium f (x, y) ved at løse toppunktsligningerne i x 
henholdsvis y. Det gøres nok nemmest ved at differentiere: 

DIF(f(x,y),x) = 0    og    DIF(f(x,y),y) = 0   

Ved at løse disse to ligninger med hensyn til x og y finder vi altså den optimale produktion: 
 

We can find the top of the surface f (x,y) by means of calculus and solving the respective 
equations we obtain the optimal production plan. 
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Som forventet ligger toppunktet inde i kriterieom-
rådet og den maksimale omsætning er altså givet 
ved  f (30,50) = 925 . 
 
The top of the surface lies within the feasible 
region and the maximum revenue of 925 will 
be reached by producing x = 30 units of A 
and y = 50 units of B. 
 

 
Bemærkning: Vi kan også finde toppunktet mere geometrisk ved at se på skæringen mellem niveau-
kurverne og en familie af vandrette henholdsvis lodrette linjer. Vi løser altså ligningen for niveau-
kurverne  f (x, y) = k med hensyn til y (henholdsvis x): 
 
Comment: One can find the top point by geometric means only. We solve the general level 
curve f (x,y) = k for y (and for x): 
 

 
 
Efter en passende expand af løsningsudtrykket ses da netop at y-værdierne ligger symmetrisk omkring 
50 og tilsvarende fås at x-værdierne ligger symmetrisk omkring 30. Tegner vi linjerne x = 30 og y = 50 
ser vi da også netop, at der er tale om symmetriakserne for ellipserne: 
 
Applying the appropriate EXPAND-command on the solutions we recognize symmetry of the 
curves with respect to x = 30 and y = 50. 
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There is an additional way to visualize the region of possible solutions: 

 

 

Dette afslutter det første eksempel, som var simpelt, netop fordi toppunktet lå inde i kriterieområdet. 
Vi følger op med et nyt eksempel, hvor toppunktet ligger udenfor kriterieområdet! 

 
The result of our first example was not so difficult to find because the vertex of the surface is 
within the boundaries. We proceed with an example with the vertex lying outside of the criti-
cal region. We just change the revenue function on one place. 
 

Eksempel 2:   Vi prøver så at se på, hvad der sker, hvis vi ændrer omsætningsfunktionen en anelse til 
2 2

( , ) 20 25
5 4
x yf x y x y= − + −  

Det ændrer niveaukurverne, så de nu har centrum udenfor polygonområdet: 
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The vertex is outside of the boundaries. 
 
I stedet skal vi derfor bestemme maksimumspunktet, som det punkt på randen af polygonområdet, 
hvor niveaukurven netop tangerer polygonområdet, dvs. hvor niveaukurven slipper kriterieområdet. 
Først må vi da finde ud af hvilke af begrænsningsfunktionerne der er tale om. En trace viser, at det er 
den anden af kriteriefunktionerne (2x + 2y = 180):  
 

For finding the maximum point we have to 
find a point on the borderlines of the feasible 
region (- the circumference of the polygon) 
which is also a point of an osculating level 
curve. At first we can try to find an approxi-
mative solution by using Trace mode. We 
trace along the second constraint line and 
estimate the osculating point of a possible 
level curve. 
 
One estimate could be (44.3, 45.7). 

 
 
We proceed by applying implicit differentiating function f1(x,y) which gives the slope in any 
point. We try to find a level curve which has not only a point with 2x + 2y = 180 in common, 
but also the slope in this point. 
 

 
 
Randkurven har altså ligningen y = 90 – x, og dermed hældningen –1. For at finde hældningen af ni-
veaukurven differentierer vi ligningen for niveaukurven, idet vi opfatter y som en funktion af x. 
Hældningen for kurven er altså givet ved kommandoen: 
 

IMP_DIF(f1(x,y),x,y)       (with x,y as default settings) 
 

Vi finder da: 
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Dermed har vi fundet en oplagt kandidat til den produktion, der giver den maksimale omsætning, som 
altså viser sig at være: 

x = 400/9  og  y = 410/9, 

med den maksimale omsætning givet ved 

f (400/9, 410/9) = 1113.8888…. 

Vi kan checke løsningen grafisk ved dels at tegne det optimale punkt, dels tegne den tilhørende ni-
veaukurve: 
 
So we found a candidate for the maximum revenue in x = 400/9 and y = 410/9 with gaining a 
revenue of 1113.9. We can check this easily by plotting the respective level curve. 
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Øvelser til kvadratisk programmering 

 
Bemærkning: En klassisk introduktion til kvadratisk programmering kan man fx finde i  
 

Mogens Ditlev Hansen: Matematik - Økonomi – Optimering (Abacus 1987) 
 
Der er gode diskussioner/eksempler i kapitel 4 samt en del supplerende opgaver, fx 
 
Øvelse 1: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved 
 

2 2( , ) 3 18 2 28f x y x x y y= − + − +  
 

hvor produktionen er underlagt betingelserne: 
 

2x + 5y ≤ 45 
5x + 2y ≤ 60 
x ≥ 0 , y ≥ 0 

 
Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.  
Bestem maksimum for kriteriefunktionen. 
 
 
Øvelse 2: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved 
 

2 2( , ) 18 3 36f x y x x y y= − + − +  
 

hvor produktionen er underlagt betingelserne: 
 

x + 3y ≤ 21 
5x + y ≤ 35 
x ≥ 0 , y ≥ 0 

 
Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.  
Bestem maksimum for kriteriefunktionen. 
 
 
Øvelse 3: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved 
 

2 2( , ) 10 120 10 220f x y x x y y= − + − +  
 

hvor produktionen er underlagt betingelserne: 
 

x + 2y ≤ 18 
2x + y ≤ 18 
x ≥ 0 , y ≥ 0 

 
Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.  
Bestem maksimum for kriteriefunktionen. 
 
I like this contribution very much and would like to add two more worked examples (Josef). 
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Example 1:                             

2 2( , ) 3 4 2 2 Maximum
2 7

2 4
, 0

f x y x y x xy y
x y

y x
x y

= + − + − =
+ ≤

− ≤
≥

 

 

 

 

 
 

 

Solution curve in blue 



   D-N-L#56  
 

Bjoern Felsager: Quadratic Programming  
  p33   

 

                                                 
 

 
 

Maximum is 12 when for x = 3 and y = 2. 
 
Do you miss a Minimumproblem? Here it is: 
 
Example 2:                             

2 2

( , ) 2 Minimum
2 2

2 3 6
4 5

, 0

x yf x y x y

x y
x y
x y

= + − − =

+ ≤
+ ≤

≥
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We make the 2nd boundary line to a tangent of one circle of the family of circles with centers 
in (1,2) which form the level curves. We could do this without calculus, too. 
 

 
 

 
 

 

 

 
 
Minimum = -2.03 for x = 0.765   and y = 1.059. 

Reference: The Operational Research Problem Solver, REA, New York 1985 
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A Tool for Generating Tree Diagrams 
Lorenz Kopp, Neumarkt, Germany 

 
Base figure is a circle kr with radius r and center M_. 

 
 

Meaning of the variables: [ax, ay] starting point, dx, dy increase of x and y to the next circle 
(1st point right on the top = slope triangle). Radius r is considered. 
 
Two Branches: one, two, three or four experiments 
 

 
 

 
The first two generations: 
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Some hints for plotting the trees: 
Window Tile Vertically, Plot region 0 ≤ x ≤ 8, -4 ≤ y ≤ 4, Set Cross 4,0 and Cross on Center. 
Switch off Axes, Labels, Grids. 

 
My tip: Set Option Display Grids Intervals 14,8 (Josef) 

 
See tree23(0,0,2,2) with comments (annotations): 

 
The maximum tree with four generations of branches tree24(0,0,2,2): 
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We provide some other fundamental types of trees: 
 
Two generations with three branches. 
 

tree32(0,0,2.5,2.5) 

 
 

 
 
1st generation 3 branches, 2nd generation 
2 branches:   tree3121(ax,ay,dx,dy) 
tree3121(0,0,3,3) 

 
 

1st generation 2 branches, 2nd generation  
3 branches:  tree2131(ax,ay,dx,dy) 
tree2131(0,0,1.5,2.5) 

 
vertically zoomed out 

 
Finally you can use this tool to create your 
special tree. 
 
Assume you would like to have a decision 
tree according to the sketch! 
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Warning: More solutions may exist 
 
I received an email concerning the various different answers when solving equations using different 
CAS-calculators, different OS, different modes. In many cases you find a warning: More ..... So you 
never can be sure, if there are other solutions in addition the shown ones. 
 
Some time ago I published a DERIVE-tool to overcome this problem for many cases. So I adapted this 
program for the handheld devices and made of MYSOLUTIONS a function mysol(equation, variable, 
lower_bound, upper_bound, step). The equation which caused the discussion was ex = x4. 
 
For my experiments I took another equation which has much more solutions. 
Compare the solve-output with the mysol-output: 
 

   
 

    
 

Josef 
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Titbits from Algebra and Number Theory (29) 

 
by  Johann Wiesenbauer, Vienna 

 
In the first place, as for the last column of this series, which dealt with Josephus per-
mutations from a programming point of view, I want to apologize to Stefan Welke again 
for having overlooked that he had already written a treatise on exactly the same topic. 
In fact, using a new feature of delete( ) in Derive 6, he could achieve an impressive per-
formance, and there was little to add as you can read yourself in the accompanying De-
rive file to the Titbits(28).  

Nevertheless, I hope that the derivation of the nice formula for the "survivor" in the 
special case s=2 depending on n, was interesting enough. By the way, I doubt, if there is 
a similarly simple formula for the general case, but I’m convinced that there should be a 
way to write a very fast program to compute the number of the survivor for general 
numbers n and s. In view of the fact that I have not yet programmed it myself, it may 
be a little audacious, but nevertheless I would like to pose this as a challenge for those 
intrepid readers, who "fear neither death nor devil", when it comes to programming in 
Derive. 

Speaking of a challenge, this reminds me of the nice problem posed by Steven Schone-
feld in the ACDC column in the DNL #55, p40.  As you can read there, this problem 
served as an introductory challenge for people who wanted to get hired by Google as 
engineers. In fact, as you can easily check yourself this problem has been discussed on 
many newsgroups and many solutions in different languages were presented on this oc-
casion. What follows is my solution of this nice problem in Derive 6. 
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And here a few remarks as to the programming: 

Basically, the program searches for the first n occurrences of d-digit primes in the 
decimal representation of the positive real number c, which is assumed to be irrational, 
where only the first s (by default 1000) decimal places after the decimal point are used. 
Here the primes should have really d digits, i.e. leading zeros are not allowed. Further-
more, blocks may exceed that bound of s digits as long as their start is within this 
bound. As a nice consequence, always s blocks are checked for primality not depending 
on the value of d and leading zeros are not allowed, hopefully all in perfect agreement to 
what Steven demanded in his challenge. Ok, maybe not quite, because I set n:=1 by de-
fault, which yields only the first occurrence of a d-digit prime, while Steven seemed to 
be more interested in all occurrences within the given bound, which you get by setting 
n:= inf. Furthermore, the routine returns also the locations of the starting digit of the 
primes, but it’s easy to suppress this information, if you are not interested in it, as 
shown in the examples below. 
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In particular, these computations show that there are 42 10-digit primes which start 
not later than the 1000-th digit after the decimal point. Is this in agreement with what 
we had expected? Sure! After all, due to the prime number theorem the density of 
primes near a positive real number x should be about 1/ln(x). Hence, we would expect 
about 1000/(10 ln 10) ≈ 43.43 10-digit primes for s=1000, which is not too far away 
from the actual number above, indeed! More generally, the dependency of the number 
of d-digit primes on s and d can be roughly described by the function 

 

Closely related to the problem above is the problem of finding the starting location(s) 

of any string d of digits within a given positive irrational number c, e.g. e, π , 2 , etc. In 
fact, it is not very difficult to modify the program above accordingly. 
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There is a small subtlety, you should be aware of, though: Trailing zeros, which had been 
cut off by Derive when approximating c-floor(c), must be appended again. This is done 
by the line 

 

in the program above. (Note that this cutting off of trailing zeros didn’t  bother us in 
the first program, since we were looking for strings representing primes only!) 

Well, what about the distribution of  0-9 within say the first 10000 digits of π  after 
the decimal point? Here you are! 

 

 

Now that the year 2004 is coming to an end (hopefully it was a good year for you and 
your family!), we could ask whether it is contained in the decimal representation of π  
starting not later than 10000 digits after the decimal point? Wanna bet?  

StringSearch(pi, "2004", 1, 10000) = [7235] 

Yes! By the way, this bet hasn’t been extremely risky, as the chances of a failure are 
only about 1/e ≈  36.79%, assuming that π  is normal, i.e. its decimal places form a 
“good” pseudorandom sequence. (Most mathematicians believe this to be true, although 
no rigorous proof is known!) 

Let’s turn to a completely different topic now, which should have already been part of 
my talk in Montreal, but it turned out that there was not enough time for it. It deals 
with the so-called discrete logarithm problem (DLP for short) with many important ap-
plications in modern cryptography (Diffie-Hellman key exchange,  ELGamal cryptosys-
tem, DSA etc). 

In its most general form it can be stated as follows. Given a finite cyclic group G of or-
der n, a generator α of G and an element β∈G, find the unique integer x, 0 ≤ x < n, such 
that xα =β. This integer x is called the discrete logarithm of β to the base α and is de-
noted by βαlog . The most important examples of G are the multiplicative groups of a 

finite field Fq, where q is either a big prime or a big power of 2 (the "classical" DLP), or 
groups emerging from the theory of elliptic curves (ECDLP). 
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Basically, there are algorithms for solving DLP that work in any group G and others, 
which take advantage of special features of the given group. 

A prominent member of the first category is the so-called baby-step giant-step algo-
rithm by Shanks. Using the notations above, this is an algorithm that takes O(√n) group 
operations to compute the solution x of xα =β by carrying out the following steps: 

1. Set n ← ceiling(  n )  and i ←0. 

2. Compute the values jα , j=0,1,…,n-1 and store them in a list. Furthermore, set  
α ← n−α . 

3. Compare β with all elements in the list above. If β = jα  for some j, then return 
x=in+j. 

4. Set β ← α β, i ← i+1 and go to step 3. 

 

In order to implement a simple example let’s specify the group G as the prime residue 
class group mod p for some prime p and let α be an element of order n for this group. 
Now a program that computes discrete logarithms αβlog  in this group could look like 

this. (Note that the fourth parameter n can be omitted, if it is unknown or α is chosen 
to be a primitive root of G, as in the example below. In both cases n will be set p-1.) 

 

     (11.2s) 

 



   p44  
 

Johann Wiesenbauer: Titbits (29)  
  D-N-L#56   

  
Another method of this general flavour is Pollard’s ρ -method for solving the DLP. If 

you are familiar with Pollard’s ρ -method for the integer factoring problem, then you 

already know the general idea behind it. As for the details, have a look at the following 
program. (Note that unlike the first program the exact order n of α must be known and 
cannot be omitted here!) 

 

      (5.89s) 

Originally, this algorithm was only designed for the case, where n is a prime, although 
our adaption works also in the case, where n is composite. Nevertheless, in the latter 
case you should rather use the algorithm by Pohlig-Hellman, which is particularly good, 
if n is very “smooth” (see example below)! 

 

 (0.02s !!) 

 

Believe me, I would love to go into details, but there is simply no space left! If you are 
curious though, you will find them in  http://www.cacr.math.uwaterloo.ca/hac/  anyway.  


