
THE DERIVE - NEWSLETTER #5566

T H E B U L L E T I N O F T H E

U S E R G R O U P

 C o n t e n t s:

 1 Letter of the Editor
 2 Editorial - Preview
 3 DUG-Meeting 2004
 User Forum
 Don Phillips
 4 Total Differential
 Josef Lechner & Ove Kroll
 5 Angular Mode
 Tania Koller and Students
 6 Modelling Reality on the Voyage 200
 Giora Mann & Nurit Zehavi
 7 Quadratic Approximation for Integration
 Karsten Schmidt
 15 Applications of Moore-Penrose Inverse of a Matrix
 Bjoern Felsager
 23 Kvadratisk Programmering / Quadratic Programming
 Lorenz Kopp
 35 A Tool for Generating Tree Diagrams
 38 More Solutions May Exist?
 Johann Wiesenbauer
 39 Titbits from Algebra and Number Theory (29)

December 2004

 D-N-L#56

D U G M e e t i n g , M o n t r é a l 2 0 0 4
 D-N-L#56

DERIVE & CAS-TI User Group Meeting 2004

User Group Meeting 2004 was announced for Saturday, 17 July, during TIME 2004 Conference in
Montréal, Quebec, Canada.

DUG-members who attended the conference followed the announcement and joined the meeting. We
spent two interesting and inspiring hours together.

The editor and president of the DUG gave a report about the activities of the DUG so far:

The assembly accepted and appreciated the editor´s proposal to have no membership dues for 2004
and the following years due to the fact, that the newsletter will not be printed and shipped by snail
mail, but can be downloaded from the DUG-homepage.

Electronic form of the DUG publications meets the wishes and suggestions of many members. About
50 new members joined the User Group in 2004. Welcome to them all.

Since founding the DUG in 1991 we have published 54 newsletters

containing

 more than 2200 pages
 386 contributions submitted by
 149 authors from
 27 countries.

We had 592 requests and answers in the User Forums and presented
 239 CAS-related books on the book shelf.

Among others Johann Wiesenbauer provided 27 Titbits from Algebra and Number Theory
which could fill a very special book on this topic. We were very happy that we could express our
gratefulness to Johann personally at the meeting.

We found that the Derive-Users have been very productive in delivering papers, the CAS-TI-Users are
hesitating – with a few exceptions. So we have to encourage this group to go to public with their find-
ings in the future.

Ideas and intentions for the future are:

� Continuing publication of revised versions of Newsletters from 1991 - This service
is very much appreciated by the members and is an exciting task for the editor.

� Providing an extended index containing all articles and contributors. Later we would like
to add short abstracts (2 sentences) and links between related contributions.

(continued on page 3)

 D-N-L#56

L E T T E R O F T H E E D I T O R
 p 1

Dear DUG-Members,

First of all I´d wish to welcome our 50 new mem-
bers who joined DUG during 2004. We hope that
you will find many information and inspiring ideas
in our publications and we would be very pleased if
some of you would submit one or the other contri-
bution for publication.

As I reported at the DUG-Meeting in summer we
would like to encourage our handheld users to
share their experiences with us. I had many positive
reactions on the fact that the Newsletter can be
downloaded from our website and that I revise the
old newsletters from our first years. I can say that
this is a very interesting task to recognize how
things have
changed within a
few years. I am
sure that we will
discover many
new qualities of
the many contri-
butions from the
early nineties. I
was relly moved
by revising
DNL#4, when I
found again a Call for Papers for our first DERIVE
Spring School 1992 in Krems. Those were the days
when it all has begun. In 1991 the Austrian gov-
ernment purchased the nationwide DERIVE licence
for our secondary schools and we are very happy
that some weeks ago our government renewed the
licence contract for DERIVE 6.10.

This issue contains two fine articles from Giora &
Nurit (Quadratic Approximation) and Karsten
Schmidt who fulfills his promise to present exam-
ples for application of Moore-Penrose Matrices.
We have a Danish contribution which deals with
Quadratic Optimization and shows that this topic
can be treated even in secondary school.

Bjoern´s article was written before times of De-
rive´s slider bar and I tried to include this valueable
tool. I left his article in Danish and added some
English comments.

Just recently I
received a mail
from our very
productive
member Don
Phillips who
sent a very
impressive
paper on "Two
stage least
squares", an-

other mail from Josef Lechner containing two arti-
cels for publication and one mail from Canada
announcing a paper about "Diophant-ive Polyno-
mials". Lorenz Kopp did not only send his fine tool
for generating tree diagrams but also a bundle of
simulations for random experiments with very
interesting graphic representations.

Please take also notice of the extended report on the
DUG-meeting 2004 in Montreal.

I´ll take the occasion to thank
Walter Wegscheider and Ben-
jamin Kaineder for putting the
DNLs and other files on the
website.

Finally I wish you and your families a Merry
Christmas Time and a Happy, Healthy and Success-
ful New Year 2005.

With best regards from my grandchildren and from
Noor and Josef

Download all DNL-DERIVE- and TI-files from

http://www.austromath.ac.at/dug/
http://www.bk-teachware.com/main.asp?session=375059

 p 2

E D I T O R I A L

 D-N-L#56

The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It is published at least four times a year
with a contents of 44 pages minimum. The
goals of the DNL are to enable the ex-
change of experiences made with DERIVE
and the TI-89/92/Titanium/Voyage 200 as
well as to create a group to discuss the
possibilities of new methodical and didac-
tical manners in teaching mathematics.

As many of the DERIVE Users are also
using the CAS-TIs the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef Böhm
A-3042 Würmla
D´Lust 1
Austria
Phone/FAX: 43-(0)2275/8207
e-mail: nojo.boehm@pgv.at

Contributions:
Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

Next issue: March 2005
Deadline 15 February 2005

Preview: Contributions waiting to be published

 Finite continued fractions St. Welke, GER
 Some simulations of Random Experiments, J. Böhm, AUT & L. Kopp, GER
 Wonderful World of Pedal Curves, J. Böhm
 Another Task for End Examination, J. Lechner, AUT
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER
 ANOVA with DERIVE & TI, M. R. Phillips, USA
 Hill-Encription, J. Böhm
 CAD-Design with DERIVE and the TI, J. Böhm
 Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL
 Farey Sequences on the TI, M. Lesmes-Acosta, COL
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT
 Henon & Co, J. Böhm
 Pringles, B. Grabinger, GER
 Challenges from Fermat, Bj. Felsager, DEN
 Actuarial Mathematics, M. R. Phillips, USA
 Are all Bodies falling equally fast, J. Lechner, AUT
 Modelling Traffic Density, Th. Himmelbauer, AUT
 Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT
 Two Stage Least Squares, M. R. Phillips, USA

 and Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,
 Keunecke, GER,and others

Impressum:
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA
Richtung: Fachzeitschrift
Herausgeber: Mag.Josef Böhm
Herstellung: Selbstverlag

 D-N-L#56

D U G M e e t i n g , M o n t r é a l 2 0 0 4
 p 3

� Describing the many treasures which are more or less hidden among the User
contributed files. Most of the users don´t know about the contents and how to use.

� It could be useful to deal with one or the other files of the MATH-folder, too.

At this occasion the editor expressed his thanks to Theresa Shelby, Albert Rich, David Stoutemyer and
Bernhard Kutzler for their great cooperation.

The immediate contact between the users and to the responsible people is one of the great advantages
of Derive and the CAS-TIs and – I am sure – a major part of their success.

Speaking about thanks we must not forget Noor Böhm, who has done all the administration work since
1991.

The report closed with an outlook on future contributions.

Then Bernhard Kutzler reported that he had audited the finances of the DUG and had found that
everything was ok.

There was one proposal for the management committee for the next period, which was accepted with
one voice:

 Josef Böhm
 Bärbel Barzel
 Noor Böhm
 Josef Lechner
 Bernhard Kutzler
 Walter Klinger

Johann Wiesenbauer suggested that due to the fact that the publications are now on the web we could
pose a "Problem of the Month" to be tackled by our members. So we will put again "Challenge" into
the next newsletter“ and wait for the responds. If there is need in more "problems" we can start with
them at any time, if there is not, it would be lost time and efforts to bring them on the web.

Lana Moore from TI announced cooperation with TI by promoting the User Group and the Newsletter
via the TI-Derive-Homepage. Many thanks for this valueable support.

Thanks also to all friends who came together and honored the meeting with their presence.
The next meeting was announced for the next DERIVE Conference which will take place in 2006 in
Dresden, Germany.

The meeting was closed after 2 hours.

 P 4

D E R I V E - a n d CAS-TI - U s e r F o r u m
 D-N-L#56

Total Differential with DERIVE and the TIs

Don Pillips
Thanks for DNL #55! It was great as usual. I really liked how you did my article on TVM comparing
my routines with yours and the TI-89.

I've expanded my routines for actuarial math. So, if you're planning on publishing it at some future
date, please wait for the "new, expanded, greater" version.

Also, I've noticed, as I'm sure many have, that Derive does not compute total differentials. I've at-
tached a file which corrects that. Maybe Albert, et.al., will include this functionality in a future version
of Derive.

Sincerely,
Don Phillips

Josef,

Attached is the total differential program for the TI-89.
It takes two arguments: the equation and the degree of dif-
ferentiation. I just wish there was some way to put a default
value in a TI-89 function or program.
Regards, Don.

You can find the TI-89, the TI-92 and the V200 grouped file
among the files for download. Josef

 D-N-L#56

D E R I V E - a n d CAS-TI - U s e r F o r u m
 p 5

Note from Josef Lechner and Ove Kroll concerning working with angles in DERIVE 6:

See Albert Rich´s comment on page 14

 P 6

D E R I V E - a n d CAS-TI - U s e r F o r u m
 D-N-L#56

Tania Koller and Students (IIIb) Model Reality on the Voyage 200

See also page 22

 D-N-L#56

G. Mann & Nurit Zehavi: Quadratic Approximation
 p 7

Quadratic Approximations for Integration
Giora Mann Nurit Zehavi

Levinsky College of Education, Israel Weizmann Institute of Science, Israel

Abstract

The fundamental theorem of Calculus states that the definite integral over an inter-
val is the difference of the antiderivative at the two endpoints of the integration in-
terval. However, we need to know the antiderivative, but in too many interesting
cases (for example in computing the length of curves) the antiderivative does not
exist, or we are unable to find it.
In this paper we present a didactical sequence in which we start by showing that a
quadratic approximation of the function to be integrated can give a "good" ap-
proximation of the definite integral. Furthermore, this approximation depends only
on three values of the integrand (no antidervative is needed). Refining the ap-
proximation opens the road to Simpson's rule for computing numerically definite
integrals.

Introduction

The motivation for the didactic sequence presented in this paper originated from comments of curious
high-school students while learning to compute definite integrals: "It is interesting that the definite
integral for a given function depends only on the values of the primitive function at the endpoints of
the integration interval; the area under the graph is not affected by the behavior of the primitive func-
tion and its derivative inside the interval of integration." This intimate connection between the definite
integral and the given function is expressed in the fundamental theorem of Calculus:

For F'(x) = f(x), () () ()
b

a

f x F b F a= −∫ .

The following is a typical problem given to students: Find the area between the graph of the function
f(x) = 0.5x3 – 2x2 + 4 and the x – axis, above it (see Figure 1). We demonstrate the solution and explo-
ration of the problem using Derive:

Figure 1.

 P 8

G. Mann & Nurit Zehavi: Quadratic Approximation
 D-N-L#56

Why is Derive's reaction to the Approx command - "false" ?!

Let us approximate the left side first and then the right side:

So, why "false"?

The conflict is resolved when we change the number of digits:

We see that the software implements different algorithms for approximating integrals and for ap-
proximating real numbers. It is worthwhile to learn more about the algorithm for approximating inte-
grals.

A quadratic approximation for a definite integral

Let us look at g(x) := x3 – 3x + 6 and find the area cir-
cumscribed by the graph of g(x), y = 0, x = -2, x = 1

Figure 2.

 D-N-L#56

G. Mann & Nurit Zehavi: Quadratic Approximation
 p 9

We want to fit a quadratic function q(x) to g(x):

Figure 3 indicates that (a) the graphs of the two functions in the integration interval are of different
types (e.g., only g(x) has an inflection point), and (b) the area under q(x) seems to be the same as the
area under g(x).

Figure 3.

And indeed,
1 1

2 2

() 18.75 () 18.75g x q x
− −

= =∫ ∫

This is true for any definite integral of a polynomial of the third degree. We can show that easily, but
having CAS at our disposal, we prefer to present a broader framework. It is enough to deal with the
simplest polynomial of n:

Computing the difference for n = 1…7 yields:

 p10

G. Mann & Nurit Zehavi: Quadratic Approximation
 D-N-L#56

What conclusions could one make from the table? For n = 1,2 the difference between the integrals of
the given polynomial and the quadratic approximation is zero, because the approximation is in fact the
same polynomial. For n = 3, the fact that we get zero difference seems peculiar because we have two
different integrands. The insight we gain for n = 4 is that the difference depends only on the width of
the interval, and it is not affected by the location. For n > 4 the difference depends, as expected, on
both the width and location of the interval.

Students may wonder why we need to approximate the definite integral of a cubic polynomial by the
integral of a quadratic function. Well, let us try to find the circumference of the braid created between
y = sin(x) and y = cos(x) from the first intersection point to the second to the right of the origin (Fig-
ure 4).

Figure 4.

The length of a curve is expressed by the formula 21 (')
b

a

y dx+∫ .

So the circumference is twice the integral
5

4
2

4

1 cos ()x dx+∫
π

π

, which is not easy to compute without a

CAS. We can start by approximating such integrals with a quadratic function by computing their coef-
ficients. But this is one of those moments in mathematics when working generally enables us to see
surprising results unseen otherwise!

 D-N-L#56

G. Mann & Nurit Zehavi: Quadratic Approximation
 p11

Approximating an integral with (only) three values of the integrand

Assume that q(x) = Ax2 + Bx + C is a function that meets a given function f(x) at three points: the end-
points and the midpoint of the interval [a, b]:

f(a) = q(a), f(b) = q(b) f((a + b)/2) = q((a + b)/2)

From the above we conclude that:

() (() 4 () ())
6 2

b

a

b a a b
q x f a f f b

− +
= + +∫ .

The meaning of the result is that the area under the function f(x) over the interval [a, b] is approxi-
mately the area of a rectangle whose length is the length of the integration interval and whose height is
the weighted mean (with weights 1, 4, 1) of the three values of the function at a, (a+b)/2, and b. As
one can see, the quadratic function “disappeared”. We used only its existence to obtain the approxima-
tion, which depends only on three values of the given function and the interval of integration. There-
fore, we reflect again on the fundamental theorem of Calculus that requires the values of the primitive
function at the endpoints of the integration interval. Clearly, if we are unable to find a primitive func-
tion, we can easily get a reasonable approximation of the integral, using only the values of the inte-
grand at the endpoints and the midpoint of interval.

Toward Simpson's rule
We come back to the approximation of the integral needed for finding the circumference of the braid:
5

4
2

4

1 cos ()x dx+∫
π

π

. Using the last result for 2() : 1 cos ()h x x= + , we approximate
5

4

4

()h x dx∫
π

π

 by:

 p12

G. Mann & Nurit Zehavi: Quadratic Approximation
 D-N-L#56

The first result is 6
2

π , and the second 6
2

. Figure 5 illustrates the results visually.

Figure 5.

Using Derive's numerical integration, we get some control of our result:
Obviously if we want a better approximation, we should divide the integration interval into sub-
intervals and approximate the curve by parabolas. This is in fact the idea underlying Simpson's
method.
We proceed by dividing the interval into two sub-intervals:

Applying the method, we get for each sub-interval:

Combining the above we get the following approximation:

 D-N-L#56

G. Mann & Nurit Zehavi: Quadratic Approximation
 p13

Doubling the number of intervals yields a better approximation:

Comparing the three results that we got by applying the method of quadratic approximation with the
numerical approximation by Derive shows that the greater the number of sub-intervals, the better the
approximation that we obtain:

Approximating integrals by Derive
This may be a good time to tell students that Derive actually uses an adaptation of Simpson's rule to
numerically approximate definite integrals.

We previously saw that increasing the number of sub-interval increases the accuracy. Simpson's esti-

mate of ()
b

a

f x dx∫ , when the interval is divided into n sub-intervals of equal length
()

2

b a
h

n

−
= , is the

sum:

0 1 2 3 2 1[() 4 () 2 () 4 () ...2 () 4 () ()]
3 n n n

h
f x f x f x f x f x f x f x− −+ + + + + + ,

where the error is at most
4

4()

180

b a M h−
; M4 denotes the maximum value of |f 4(x)| for x in [a, b].

Simpson's estimate is exact for polynomials of the form y = a x3 + b x2 + c x + d, whose fourth deriva-
tive is zero. The error in using Simpson's methods for other functions involves the fourth derivative.

We now reflect on the expressions of error for y = Axn , n < 5 that we obtained when we computed the
error for polynomials.

For n < 4 we got zeros, which agrees with the fact that M4 is zero. For n = 4 we got
54

15
A k

.

 p14

G. Mann & Nurit Zehavi: Quadratic Approximation
 D-N-L#56

We substitute in
4

4()

180

b a M h−
: M4 = 4!⋅A, b – a = 2k, h = k and get:

4 52 4! 4
180 15

k A k A k⋅ ⋅ ⋅ ⋅
= .

The significance of the last result is that our error for the polynomial y = Ax4 is exactly the accuracy
allotted by Simpson's rule.

Concluding remarks
The didactical sequence we described above utilizes CAS to make numerical integration by CAS less
mysterious. We start by a ‘didactic moment’ in which students obtain two different results in using the
software to approximate definite integrals. Next they realize that for a quadratic approximation, the
coefficients of the quadratic function are not needed; the approximation is produced by using only
three values of the integrand. At this stage the road to Simpson’s method is open; moreover when we
mention the accuracy of the method the CAS can be used to get ‘some feeling’ of the key indicator of
the error.

Albert Rich´s comment on Angular Mode Settings

Q: When calling on trig functions, how do I enter angles in degrees?

A: In Derive 6, the ° operator is used to enter an angle in degrees. The ° operator can be
entered by clicking on it on the math symbol toolbar, pressing Ctrl+O, or by typing deg on the
expression entry line. For example, SIN(45°) simplifies to SQRT(2)/2. Unlike earlier ver-
sions of Derive, selecting Degree in the Angular Unit field of the Simplification tab of the Op-
tions > Mode Settings command only effects the display of angles, not how angles are en-
tered.

Q: In approximate mode, how do I get the inverse trig functions to return angles in degrees
instead of radians?

A: In approximate mode, the built-in inverse trig functions (e.g. ASIN, ACOS, ATAN,
etc.) always return angles in radians, even in Degree mode. For example, in Degree mode
ATAN(1) simplifies to 45° but approximates to 0.7853981633. To always get angles returned
in degrees use the inverse trig functions (e.g. ARCSIN, ARCCOS, ARCTAN, etc.) defined in
MiscellaneousFunctions.mth instead of the built-in functions. For example, ARCTAN(1) sim-
plifies and approximates to 45.

=====================================

Note the new inverse trig functions: ARCSIN, ARCCOS, etc.

 D-N-L#56

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 p15

Applications of the Moore-Penrose Inverse of a Matrix

Karsten Schmidt, FH Schmalkalden, Germany, kschmidt@fh-sm.de

Introduction

After giving an introduction to the Moore-Penrose inverse of a matrix, and its computation in
DERIVE, in DNL #50 (Schmidt 2003), this paper deals with two important applications of the Moore-
Penrose inverse. One is a method for solving a system of linear equations, and the other is the compu-
tation of the Ordinary Least Squares estimator in linear regression. Some familiarity with matrix alge-
bra as well as basic understanding of the Moore-Penrose inverse of a matrix (as provided in DNL #50)
is required.

Computation and Properties of the Moore-Penrose Inverse

In order to facilitate working with this paper, the definition and DERIVE functions for the computation
of the Moore-Penrose inverse of a matrix are repeated from DNL #50:
For any m n× -matrix A there exists a unique matrix with properties related to those of the inverse of a

nonsingular matrix. This is the Moore-Penrose inverse, denoted by +A , which satisfies the four condi-
tions (the transpose of A is denoted by ′A)

 + =AA A A (1)

 + + +=A AA A (2)

 ()+ +′ =A A A A
 (3)

 ()+ +′ =AA AA
 (4)

Conditions (3) and (4) require both +A A and +AA to be symmetric matrices. Note that +A is an

n m× -matrix, i.e. the dimension of +A is equal to the dimension of ′A .
The Moore-Penrose inverse of a matrix can be computed in DERIVE with the following two functions:

MPIV(a) ≔
 If DIM(a`) = 1
 If (a`·a)↓1↓1 = 0
 0·a`
 a`/(a`·a)↓1↓1
 "This is not a column vector!"

MPI(A, APLUS, aj, dt, c, bt, J) ≔
 Prog
 APLUS ≔ MPIV(A COL [1])
 J ≔ 2
 Loop
 If J > DIM(A`)
 RETURN APLUS
 aj ≔ A COL [J]
 dt ≔ aj`·APLUS`·APLUS
 c ≔ (IDENTITY_MATRIX(DIM(A)) - A COL [1, ..., J - 1]·APLUS)·aj
 bt ≔ MPIV(c) + (1 - MPIV(c)·c)/(1 + dt·aj)·dt
 APLUS ≔ APPEND(APLUS - APLUS·aj·bt, bt)
 J :+ 1

 p16

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 D-N-L#56

MPIV computes the Moore-Penrose inverse of a vector and MPI the Moore-Penrose inverse of a matrix
(or vector). Note that MPIV requires a column vector passed as parameter, which has to be declared in
DERIVE as a matrix with one column. Note also that MPIV and, therefore, MPI, via calling MPIV repeat-
edly, might not be able to compute the Moore-Penrose inverse since it might be impossible to deter-
mine if =a 0 , when a has nonnumeric entries. Both functions, along with a couple more from the next
section, are provided in the utility file MP.mth.
Among the many properties that hold for the Moore-Penrose inverse the following three will be useful
later in this paper (I denotes the identity matrix):

 ()+ +′ ′ =A A A A (5)

 +′ ′=A AA A (6)

() () 1rank and

m n n n
n −+ +

× ×
′ ′= ⇔ = =A A A A A A A I

 (7)

Application to Systems of Linear Equations

We consider a system of linear equations (SLE)

1 1m n n m× × ×
=A x b

where A is the known coefficient matrix, b a vector of known constants, and x a vector of unknown
variables.
The Moore-Penrose inverse of A can be applied to such a system
• to check if it is consistent or inconsistent, i.e. to find out if it has solutions or not, and
• if it is consistent, to provide the general solution, which may consist of either one unique or an

infinite number of solutions.

A system of linear equations =Ax b is consistent if and only if

+ =AA b b (8)

As an example, consider an SLE defined by

2 2 2 1

1 2 5
;

3 4 10× ×

= =

A b (9)

The Moore-Penrose inverse of A is

 3 1
2 2

2 1+ −
= −

A

Since A is nonsingular (() 1
2det 0= − ≠A) we have 1+ −=A A . Hence

 1+ −= =
I

AA b AA b b

for any vector b. System (9), like any other system with a nonsingular coefficient matrix A, is there-
fore consistent according to (8).
As another example, consider

 2 2 2 1

1 2 5
;

2 4 10× ×

= =

A b

 (10)

 D-N-L#56

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 p17

This time A is singular (()det 0=A), its inverse 1−A does not exist. Computing the Moore-Penrose

inverse

1 2
25 25
2 4
25 25

+
=

A

is nevertheless possible and we find that condition (8) is satisfied for system (10):

1 2 1 2
25 25 5 5
2 4 2 4
25 25 5 5

1 2 5 5 5
2 4 10 10 10

+
= = = =

AA b b

As a third example, look at

 2 2 2 1

1 2 5
;

2 4 15× ×

= =

A b

 (11)
This time we find that condition (8) is not satisfied:

1 2
5 5
2 4
5 5

5 7
15 14

+
= = ≠

AA b b

System (11) is therefore inconsistent.

The function CHECKSLE in the above screenshot checks if a system of linear equations is consistent or
not, and prints the result on the screen. Since there is no unknown clause in the IF-expression, the
entire (simplified) IF-expression is returned, which can obviously be fairly informative in cases such
as the last SLE (consisting of matrix A in #5 and vector b in #9).

If a system of linear equations =Ax b is consistent, its general solution is given by

 1n n n

+ +

× ×

 = + −

x A b I A A z
 (12)

where z is an arbitrary vector.

 p18

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 D-N-L#56

Note that since the vector n∈z in (12) is arbitrary, we might simply choose =z 0 . Consequently,
one (possibly unique) solution of a consistent system of linear equations =Ax b is always given by

 +=x A b
The following function SOLVESLE either solves a system of linear equations =Ax b where the matrix
A and the vector b have been passed as parameters, or displays a message if the system is inconsistent.

z ≔ VECTOR(VECTOR(APPEND(z, J), i, 1), J, 1, DIM(A`))

SOLVESLE(A, b) ≔
 If A ⋅ MPI(A) ⋅ b = b
 MPI(A) ⋅ b + (IDENTITY_MATRIX(DIMENSION(A`)) - MPI(A) ⋅ A) ⋅ z
 "No solution(s)!"

We now want to compute the solution(s) of the above three systems. We start with system (9). Since A
is a nonsingular matrix, we have 1+ −=A A , and (12) simplifies to

()
1 1

1

+ +

− −

−

= + −

= + −

=

I

x A b I A A z

A b I A A z

A b

for any choice of z. Obviously, the general solution (12) simplifies to a unique solution if A is
nonsingular. Hence

 1
3 51
2 2 2

2 1 05
10

− −
= = = −

x A b

For system (10) we get

 ()
4 2

1 25 5
2 1

1 25 5

1
2

z z
z z

+ + − +
= + − = − + +

x A b I A A z

In this case there is an infinite number of solutions. For example, by choosing =z 0 we get

1
2

+
= =

x A b

 D-N-L#56

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 p19

The above screenshot shows the capability of the function SOLVESLE to handle all three possible sce-
narios in considering a system of linear equations: a unique solution, an infinite number of solutions,
and the case that no solution exists.

Linear Regression and the Moore-Penrose Inverse

We consider the (multiple) linear regression model

1 11 K NN KN × ×××

= +y X uβ (13)

where y is the vector of observations on the dependent variable, X the regressor matrix, β a vector of
parameters, and u a vector of disturbances.
Denoting an estimator of the unknown parameter vector β by β , we have

 =
= −

y X
u y y

β

where y is the estimate of y using β , and u is the vector of residuals.

The most popular estimator for β is the (Ordinary) Least Squares estimator which minimizes the sum of
squared residuals

()

() ()

2

1

min

N

i
i

uϕ
=

=

′=
′= − − →

∑
u u

y X y X β

β

β β

Note that

() () ()

2

ϕ ′= − −

′ ′ ′ ′ ′ ′= − − +

′ ′ ′ ′= − +

y X y X

y y y X X y X X
X X y X y y

β β β

β β β β

β β β

is a convex function since ′X X is a nonnegative definite matrix. Therefore, finding its first derivative

()

()() 2

2 2

∂ϕ

∂
′′ ′ ′ ′= + −

′ ′ ′= −

X X X X y X

X X y X

β
β

β
β

and setting it equal to 0 is necessary and sufficient to determine the minimum of ()ϕ β :

1 1

2 2
K K× ×

′ ′ ′ ′ ′ ′ ′− = ⇔ − = ⇔ =X X y X X X X y X X X yβ β β0 0

The last equation constitutes the so-called system of normal equations.
Under the (usual) assumption that ()rank K=X , which assures that ′X X is nonsingular, we can eas-

ily derive the Least Squares estimator from the normal equations

 () () ()1 1 1− − −′ ′ ′ ′ ′ ′ ′ ′= ⇔ = ⇔ =
I

X X X y X X X X X X X y X X X yβ β β

One might think that the system of normal equations is inconsistent if ()rank K<X . However, this is

not true.

 p20

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 D-N-L#56

Observe that the system of normal equations is essentially a system of linear equations in the notation
of the previous section:
 ′ ′=

x bA

X X X yβ

Using properties (5) and (6) of the Moore-Penrose inverse, it can be shown that the system of normal
equations is consistent without any rank assumption on X:

 ()
+

+

+ +

′

= ⇒

′ ′ ′ ′ ′= =
X

X

AA b b

X X X X X y X XX y X y

Hence, its general solution is given by

()

() ()

()
+ +

+ +

+ +

+ +

= + − ⇒

 ′ ′ ′ ′= + −

= + −

X X

x A b I A A z

X X X y I X X X X z

X y I X X z

β

where K∈z is an arbitrary vector.
The number of solutions, however, depends on the rank of the regressor matrix. If ()rank K=X , it

follows from (7) that + =X X I , and the general solution simplifies to the unique solution

+ +

+

= + −

=

I
X y I X X z

X y

β

i.e. the Least Squares estimator is simply the product of the Moore-Penrose inverse of the regressor
matrix and the vector of the observations on the dependent variable.
If, however, ()rank K<X , we have an infinite number of solutions. Therefore, it is not the consis-

tency of the system of normal equations that is guaranteed by assuming X to be of full column rank,
but the uniqueness of its solution.

Finally, this straightforward method of computing the Least Squares estimator is demonstrated by
means of an example. We want to apply linear regression analysis to predict the number of O-ring
failures to be expected when the space shuttle Challenger was launched on January 28, 1986.
O-ring failure is when an O-ring, which seals the gaps between the parts of the solid fuel rocket mo-
tors, leaks. There had been 24 previous space shuttle launches. During 17 of them no O-ring failure
occurred, while during the remaining 7 launches there were between one and three O-ring failures.
The table below provides the number of failures and the ambient temperatures before launch, sorted
according to temperature.

 D-N-L#56

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 p21

failures t [temp. in °C] temp. in °F failures t [temp. in °C] temp. in °F

3 12 53 0 21 70

1 14 57 0 21 70

1 14 58 0 22 72

1 17 63 0 23 73

0 19 66 2 24 75

0 19 67 0 24 75

0 19 67 0 24 76

0 19 67 0 24 76

0 20 68 0 26 78

0 21 69 0 26 79

1 21 70 0 27 80

1 21 70 0 27 81

The following screenshot shows an algebra window and a 2D-plot window. The first three expressions
in the algebra window are the contents of the file T4Data.mth. Expression #1 defines a 24 2× -matrix
Data, which was entered in transposed form to save space (unfortunately, this requires simplification
of Data prior to plotting the points in the 2D-plot window). In expressions #2 and #3 the data are rear-
ranged according to the definition of the linear regression model (13). X denotes the regressor matrix,
containing a column of ones (for the y-intercept), and a column with the observations on the independ-
ent variable (temperature in Celsius), y denotes the vector of observations on the dependent variable
(number of failures).
Expression #4 is the formula for the computation of the Least Squares estimator using the Moore-
Penrose inverse. Approximating #4 yields #5, which is in turn used to define and finally plot the
straight line which is the result of the Least Squares estimation.

 p22

Karsten Schmidt: Moore-Penrose Inverse of a Matrix
 D-N-L#56

Considering the relatively high coefficient of determination (2 0.3R =), and the fact that the slope
parameter is statistically significant (at the 1%-level; both values not shown in the screenshot), the
above result is fairly reliable.
Since the pre-launch ambient temperature on January 28, 1986, was 1− °C (31°F), the prediction from
the above regression would have been

 ()2.629 0.105 1 2.734failures = − − =

i.e. 2 or 3 O-ring failures were to be expected according to our regression result. Nevertheless, the
space shuttle was launched. Less than two minutes into the flight, due to O-ring failure, leaking fuel
was ignited by a rocket engine, and Challenger exploded.

Reference

Schmidt, K. (2003), An Introduction to the Moore-Penrose Inverse of a Matrix, The DERIVE-

Newsletter #50 (June 2003), 12 – 18.

Artificial and Real Fountains

Picture: Fountain in St. Petersburg, Russia (Tania Koller)

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p23

Kvadratisk programmering
Et eksempel på et valgfrit emne i symbolsk matematik

Quadratic Programming
An Example for an Optional Topic in Symbolic Mathematics

Bjoern Felsager, Denmark

Netop fordi symbolske programmer arbejder med vilkårlige udtryk kan man lige så nemt lave kvadra-
tisk programmering, som lineær programmering (eller en hvilken som helst anden form for program-
mering!). Det er jo alligevel de samme faciliteter, man trækker på! Her vil vi se på nogle eksempler på
kvadratisk programmering hentet fra en standardlærebog for handelsgymnasiet (Søren Antonius et
al.):

En produktion af to varer A og B er underlagt betingelser, som kan udtrykkes ved følgende
uligheder, hvor x er antal enheder for A og y er antal enheder for B:

Production of goods A and B underlies some restrictions which can be expressed by
the following inequalities for number of units x of A and number of units y for B.

2x + 3y ≤ 240
2x + 2y ≤ 180
4x + y ≤ 240

x ≥ 0
y ≥ 0

Af de tre første betingelser følger, at de kritiske x-værdier (dvs. skæringen med x-aksen) er 120, 90 og
60, ligesom de kritiske y-værdier er 80, 90 og 240. Altså skærer polygonområdet x-aksen i 60 og y-
aksen i 80. Vi starter derfor med at vælge grafrummet

-10 ≤ x ≤ 70 og -10 ≤ y ≤ 90 .

Vi indskriver derefter kriterierne

og tegner kriterieområdet:

The restrictions describe a region which has
its boundaries in critical x- and y-values.

The intersection points of the boundary-lines
result in a polygon.

The points on the axes are easy to find. But
we need also the intersection points of the
restriction lines.

 p24

Bjoern Felsager: Quadratic Programming
 D-N-L#56

Det kan også betale sig at indskrive ligningerne
for radområdet, så vi fx bestemme skærings-
punkterne:

Ved at benytte Solutions i stedet for Solve får
vi skæringspunkterne ud på koordinatform, så de
kan tegnes direkte:

By using Solutions instead of Solve we ob-
tain the intersection points in coordinate form
and the points are immediately ready for plot-
ting.

Vi har styr på kriterieområdet!

Under passende antagelser bliver den samlede omsætning nu givet ved det følgende kvadratiske udtryk
i x og y:

2 2

(,) 20 25
3 4
x yf x y x y= − + −

Det er altså denne funktion vi skal maksimere i polygonområdet, så vi ser på nogle niveaukurver, fx
niveaukurven gennem (25,25), dvs. kurven med ligningen f (x, y) = f (25, 25) . Faktisk kan vi lige så
godt tegne en familie af niveaukurver f (x, y) = k, så på basis af værdien af f (25,25) gætter vi på et
passende interval af familieparameteren k.

Under certain circumstances revenue is
given by the following quadratic expression:

2 2

(,) 20 25
3 4
x yf x y x y= − + −

We try to find the maximum value for this
function without violating the restrictions. We
inspect so called level curves (contour curves
of the surface f), eg the level curve contain-
ing point (25,25). This is a curve with equa-
tion f (x,y) = f (25,25). But we can also create
a whole family of level curves f (x,y) = k with
appropriate interval for parameter k.

Now in times of slider bars we can present the family of level curves

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p25

Det kunne godt se ud som om niveaukurverne er ellipser, samt at centrum for disse ellipser ligger inde
i kriterieområdet. Vi kan bakke analysen op med et tredimensionalt billede af grafen for omsætnings-
funktionen sammen med niveaufladen for (x, y) = (25,25), dvs. z = 760,41666…

The level curves are ellipses with their center within the feasible region. We can perform a
3D-analysis plotting the revenue surface together with the level plane for (x,y) = (25,25),
i.e. z = 760.416... (and we can also introduce a slider bar for level planes z = k).

Det er sværere at få kriterieområdet med, fordi kriterieligningerne giver anledning til lodrette planer.
Vi må derfor indskrive dem på parameterform (og sætte parameterintervallerne fornuftigt!):

We want to add the boundaries which appear as vertical planes. For plotting them we have
to rewrite them in parameter form and set meaningful intervals for the parameters.

Planen med ligningen 2x + 3y = 240 tegnes altså med parameterfremstillingen

2, ,
3

(120)x zx ⋅

− 0 ≤ x ≤ 70 , 0 ≤ z ≤ 1000

 p26

Bjoern Felsager: Quadratic Programming
 D-N-L#56

Vi kan beregne toppunktet for det kvadratiske polynomium f (x, y) ved at løse toppunktsligningerne i x
henholdsvis y. Det gøres nok nemmest ved at differentiere:

DIF(f(x,y),x) = 0 og DIF(f(x,y),y) = 0

Ved at løse disse to ligninger med hensyn til x og y finder vi altså den optimale produktion:

We can find the top of the surface f (x,y) by means of calculus and solving the respective
equations we obtain the optimal production plan.

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p27

Som forventet ligger toppunktet inde i kriterieom-
rådet og den maksimale omsætning er altså givet
ved f (30,50) = 925 .

The top of the surface lies within the feasible
region and the maximum revenue of 925 will
be reached by producing x = 30 units of A
and y = 50 units of B.

Bemærkning: Vi kan også finde toppunktet mere geometrisk ved at se på skæringen mellem niveau-
kurverne og en familie af vandrette henholdsvis lodrette linjer. Vi løser altså ligningen for niveau-
kurverne f (x, y) = k med hensyn til y (henholdsvis x):

Comment: One can find the top point by geometric means only. We solve the general level
curve f (x,y) = k for y (and for x):

Efter en passende expand af løsningsudtrykket ses da netop at y-værdierne ligger symmetrisk omkring
50 og tilsvarende fås at x-værdierne ligger symmetrisk omkring 30. Tegner vi linjerne x = 30 og y = 50
ser vi da også netop, at der er tale om symmetriakserne for ellipserne:

Applying the appropriate EXPAND-command on the solutions we recognize symmetry of the
curves with respect to x = 30 and y = 50.

 p28

Bjoern Felsager: Quadratic Programming
 D-N-L#56

There is an additional way to visualize the region of possible solutions:

Dette afslutter det første eksempel, som var simpelt, netop fordi toppunktet lå inde i kriterieområdet.
Vi følger op med et nyt eksempel, hvor toppunktet ligger udenfor kriterieområdet!

The result of our first example was not so difficult to find because the vertex of the surface is
within the boundaries. We proceed with an example with the vertex lying outside of the criti-
cal region. We just change the revenue function on one place.

Eksempel 2: Vi prøver så at se på, hvad der sker, hvis vi ændrer omsætningsfunktionen en anelse til
2 2

(,) 20 25
5 4
x yf x y x y= − + −

Det ændrer niveaukurverne, så de nu har centrum udenfor polygonområdet:

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p29

The vertex is outside of the boundaries.

I stedet skal vi derfor bestemme maksimumspunktet, som det punkt på randen af polygonområdet,
hvor niveaukurven netop tangerer polygonområdet, dvs. hvor niveaukurven slipper kriterieområdet.
Først må vi da finde ud af hvilke af begrænsningsfunktionerne der er tale om. En trace viser, at det er
den anden af kriteriefunktionerne (2x + 2y = 180):

For finding the maximum point we have to
find a point on the borderlines of the feasible
region (- the circumference of the polygon)
which is also a point of an osculating level
curve. At first we can try to find an approxi-
mative solution by using Trace mode. We
trace along the second constraint line and
estimate the osculating point of a possible
level curve.

One estimate could be (44.3, 45.7).

We proceed by applying implicit differentiating function f1(x,y) which gives the slope in any
point. We try to find a level curve which has not only a point with 2x + 2y = 180 in common,
but also the slope in this point.

Randkurven har altså ligningen y = 90 – x, og dermed hældningen –1. For at finde hældningen af ni-
veaukurven differentierer vi ligningen for niveaukurven, idet vi opfatter y som en funktion af x.
Hældningen for kurven er altså givet ved kommandoen:

IMP_DIF(f1(x,y),x,y) (with x,y as default settings)

Vi finder da:

 p30

Bjoern Felsager: Quadratic Programming
 D-N-L#56

Dermed har vi fundet en oplagt kandidat til den produktion, der giver den maksimale omsætning, som
altså viser sig at være:

x = 400/9 og y = 410/9,

med den maksimale omsætning givet ved

f (400/9, 410/9) = 1113.8888….

Vi kan checke løsningen grafisk ved dels at tegne det optimale punkt, dels tegne den tilhørende ni-
veaukurve:

So we found a candidate for the maximum revenue in x = 400/9 and y = 410/9 with gaining a
revenue of 1113.9. We can check this easily by plotting the respective level curve.

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p31

Øvelser til kvadratisk programmering

Bemærkning: En klassisk introduktion til kvadratisk programmering kan man fx finde i

Mogens Ditlev Hansen: Matematik - Økonomi – Optimering (Abacus 1987)

Der er gode diskussioner/eksempler i kapitel 4 samt en del supplerende opgaver, fx

Øvelse 1: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved

2 2(,) 3 18 2 28f x y x x y y= − + − +

hvor produktionen er underlagt betingelserne:

2x + 5y ≤ 45
5x + 2y ≤ 60
x ≥ 0 , y ≥ 0

Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.
Bestem maksimum for kriteriefunktionen.

Øvelse 2: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved

2 2(,) 18 3 36f x y x x y y= − + − +

hvor produktionen er underlagt betingelserne:

x + 3y ≤ 21
5x + y ≤ 35
x ≥ 0 , y ≥ 0

Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.
Bestem maksimum for kriteriefunktionen.

Øvelse 3: Omsætningsfunktionen (kriteriefunktionen) for en virksomhed er givet ved

2 2(,) 10 120 10 220f x y x x y y= − + − +

hvor produktionen er underlagt betingelserne:

x + 2y ≤ 18
2x + y ≤ 18
x ≥ 0 , y ≥ 0

Tegn produktionsområdet samt en familie af niveaukurver for kriteriefunktionen.
Bestem maksimum for kriteriefunktionen.

I like this contribution very much and would like to add two more worked examples (Josef).

 p32

Bjoern Felsager: Quadratic Programming
 D-N-L#56

Example 1:

2 2(,) 3 4 2 2 Maximum
2 7

2 4
, 0

f x y x y x xy y
x y

y x
x y

= + − + − =
+ ≤

− ≤
≥

Solution curve in blue

 D-N-L#56

Bjoern Felsager: Quadratic Programming
 p33

Maximum is 12 when for x = 3 and y = 2.

Do you miss a Minimumproblem? Here it is:

Example 2:

2 2

(,) 2 Minimum
2 2

2 3 6
4 5

, 0

x yf x y x y

x y
x y
x y

= + − − =

+ ≤
+ ≤

≥

 p34

Bjoern Felsager: Quadratic Programming
 D-N-L#56

We make the 2nd boundary line to a tangent of one circle of the family of circles with centers
in (1,2) which form the level curves. We could do this without calculus, too.

Minimum = -2.03 for x = 0.765 and y = 1.059.

Reference: The Operational Research Problem Solver, REA, New York 1985

 D-N-L#56

L. Kopp: A Tool for Generating Tree Diagrams
 p35

A Tool for Generating Tree Diagrams
Lorenz Kopp, Neumarkt, Germany

Base figure is a circle kr with radius r and center M_.

Meaning of the variables: [ax, ay] starting point, dx, dy increase of x and y to the next circle
(1st point right on the top = slope triangle). Radius r is considered.

Two Branches: one, two, three or four experiments

The first two generations:

 p36

L. Kopp: A Tool for Generating Tree Diagrams
 D-N-L#56

Some hints for plotting the trees:
Window Tile Vertically, Plot region 0 ≤ x ≤ 8, -4 ≤ y ≤ 4, Set Cross 4,0 and Cross on Center.
Switch off Axes, Labels, Grids.

My tip: Set Option Display Grids Intervals 14,8 (Josef)

See tree23(0,0,2,2) with comments (annotations):

The maximum tree with four generations of branches tree24(0,0,2,2):

 D-N-L#56

L. Kopp: A Tool for Generating Tree Diagrams

 p37

We provide some other fundamental types of trees:

Two generations with three branches.

tree32(0,0,2.5,2.5)

1st generation 3 branches, 2nd generation
2 branches: tree3121(ax,ay,dx,dy)
tree3121(0,0,3,3)

1st generation 2 branches, 2nd generation
3 branches: tree2131(ax,ay,dx,dy)
tree2131(0,0,1.5,2.5)

vertically zoomed out

Finally you can use this tool to create your
special tree.

Assume you would like to have a decision
tree according to the sketch!

 p38

L. Kopp: A Tool for Generating Tree Diagrams
 D-N-L#56

Warning: More solutions may exist

I received an email concerning the various different answers when solving equations using different
CAS-calculators, different OS, different modes. In many cases you find a warning: More So you
never can be sure, if there are other solutions in addition the shown ones.

Some time ago I published a DERIVE-tool to overcome this problem for many cases. So I adapted this
program for the handheld devices and made of MYSOLUTIONS a function mysol(equation, variable,
lower_bound, upper_bound, step). The equation which caused the discussion was ex = x4.

For my experiments I took another equation which has much more solutions.
Compare the solve-output with the mysol-output:

Josef

 D-N-L#56

Johann Wiesenbauer: Titbits (29)
 p39

Titbits from Algebra and Number Theory (29)

by Johann Wiesenbauer, Vienna

In the first place, as for the last column of this series, which dealt with Josephus per-
mutations from a programming point of view, I want to apologize to Stefan Welke again
for having overlooked that he had already written a treatise on exactly the same topic.
In fact, using a new feature of delete() in Derive 6, he could achieve an impressive per-
formance, and there was little to add as you can read yourself in the accompanying De-
rive file to the Titbits(28).

Nevertheless, I hope that the derivation of the nice formula for the "survivor" in the
special case s=2 depending on n, was interesting enough. By the way, I doubt, if there is
a similarly simple formula for the general case, but I’m convinced that there should be a
way to write a very fast program to compute the number of the survivor for general
numbers n and s. In view of the fact that I have not yet programmed it myself, it may
be a little audacious, but nevertheless I would like to pose this as a challenge for those
intrepid readers, who "fear neither death nor devil", when it comes to programming in
Derive.

Speaking of a challenge, this reminds me of the nice problem posed by Steven Schone-
feld in the ACDC column in the DNL #55, p40. As you can read there, this problem
served as an introductory challenge for people who wanted to get hired by Google as
engineers. In fact, as you can easily check yourself this problem has been discussed on
many newsgroups and many solutions in different languages were presented on this oc-
casion. What follows is my solution of this nice problem in Derive 6.

 p40

Johann Wiesenbauer: Titbits (29)
 D-N-L#56

And here a few remarks as to the programming:

Basically, the program searches for the first n occurrences of d-digit primes in the
decimal representation of the positive real number c, which is assumed to be irrational,
where only the first s (by default 1000) decimal places after the decimal point are used.
Here the primes should have really d digits, i.e. leading zeros are not allowed. Further-
more, blocks may exceed that bound of s digits as long as their start is within this
bound. As a nice consequence, always s blocks are checked for primality not depending
on the value of d and leading zeros are not allowed, hopefully all in perfect agreement to
what Steven demanded in his challenge. Ok, maybe not quite, because I set n:=1 by de-
fault, which yields only the first occurrence of a d-digit prime, while Steven seemed to
be more interested in all occurrences within the given bound, which you get by setting
n:= inf. Furthermore, the routine returns also the locations of the starting digit of the
primes, but it’s easy to suppress this information, if you are not interested in it, as
shown in the examples below.

 D-N-L#56

Johann Wiesenbauer: Titbits (29)

 p41

In particular, these computations show that there are 42 10-digit primes which start
not later than the 1000-th digit after the decimal point. Is this in agreement with what
we had expected? Sure! After all, due to the prime number theorem the density of
primes near a positive real number x should be about 1/ln(x). Hence, we would expect
about 1000/(10 ln 10) ≈ 43.43 10-digit primes for s=1000, which is not too far away
from the actual number above, indeed! More generally, the dependency of the number
of d-digit primes on s and d can be roughly described by the function

Closely related to the problem above is the problem of finding the starting location(s)

of any string d of digits within a given positive irrational number c, e.g. e, π , 2 , etc. In
fact, it is not very difficult to modify the program above accordingly.

 p42

Johann Wiesenbauer: Titbits (29)
 D-N-L#56

There is a small subtlety, you should be aware of, though: Trailing zeros, which had been
cut off by Derive when approximating c-floor(c), must be appended again. This is done
by the line

in the program above. (Note that this cutting off of trailing zeros didn’t bother us in
the first program, since we were looking for strings representing primes only!)

Well, what about the distribution of 0-9 within say the first 10000 digits of π after
the decimal point? Here you are!

Now that the year 2004 is coming to an end (hopefully it was a good year for you and
your family!), we could ask whether it is contained in the decimal representation of π
starting not later than 10000 digits after the decimal point? Wanna bet?

StringSearch(pi, "2004", 1, 10000) = [7235]

Yes! By the way, this bet hasn’t been extremely risky, as the chances of a failure are
only about 1/e ≈ 36.79%, assuming that π is normal, i.e. its decimal places form a
“good” pseudorandom sequence. (Most mathematicians believe this to be true, although
no rigorous proof is known!)

Let’s turn to a completely different topic now, which should have already been part of
my talk in Montreal, but it turned out that there was not enough time for it. It deals
with the so-called discrete logarithm problem (DLP for short) with many important ap-
plications in modern cryptography (Diffie-Hellman key exchange, ELGamal cryptosys-
tem, DSA etc).

In its most general form it can be stated as follows. Given a finite cyclic group G of or-
der n, a generator α of G and an element β∈G, find the unique integer x, 0 ≤ x < n, such
that xα =β. This integer x is called the discrete logarithm of β to the base α and is de-
noted by βαlog . The most important examples of G are the multiplicative groups of a

finite field Fq, where q is either a big prime or a big power of 2 (the "classical" DLP), or
groups emerging from the theory of elliptic curves (ECDLP).

 D-N-L#56

Johann Wiesenbauer: Titbits (29)
 p43

Basically, there are algorithms for solving DLP that work in any group G and others,
which take advantage of special features of the given group.

A prominent member of the first category is the so-called baby-step giant-step algo-
rithm by Shanks. Using the notations above, this is an algorithm that takes O(√n) group
operations to compute the solution x of xα =β by carrying out the following steps:

1. Set n ← ceiling(n) and i ←0.

2. Compute the values jα , j=0,1,…,n-1 and store them in a list. Furthermore, set
α ← n−α .

3. Compare β with all elements in the list above. If β = jα for some j, then return
x=in+j.

4. Set β ← α β, i ← i+1 and go to step 3.

In order to implement a simple example let’s specify the group G as the prime residue
class group mod p for some prime p and let α be an element of order n for this group.
Now a program that computes discrete logarithms αβlog in this group could look like

this. (Note that the fourth parameter n can be omitted, if it is unknown or α is chosen
to be a primitive root of G, as in the example below. In both cases n will be set p-1.)

 (11.2s)

 p44

Johann Wiesenbauer: Titbits (29)
 D-N-L#56

Another method of this general flavour is Pollard’s ρ -method for solving the DLP. If

you are familiar with Pollard’s ρ -method for the integer factoring problem, then you

already know the general idea behind it. As for the details, have a look at the following
program. (Note that unlike the first program the exact order n of α must be known and
cannot be omitted here!)

 (5.89s)

Originally, this algorithm was only designed for the case, where n is a prime, although
our adaption works also in the case, where n is composite. Nevertheless, in the latter
case you should rather use the algorithm by Pohlig-Hellman, which is particularly good,
if n is very “smooth” (see example below)!

 (0.02s !!)

Believe me, I would love to go into details, but there is simply no space left! If you are
curious though, you will find them in http://www.cacr.math.uwaterloo.ca/hac/ anyway.

