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Another new publication is:

Nachhaltige
CAS-Konzepte
fiir den Unterricht

Didaktik und Methodik
des Math ik ichts mit Comp

Fiir CAS-Anfinger, CAS-Fortgeschrittene,
Referenten, Didaktiker

Eberhard Lehmann
Leh-Soft, www.snafu.de/-mirza

Berlin August 2007

Glinter Scheu u.a., ABITUR — Prifungsaufgaben mit Ldsungen, Mathematik CAS,
Gymnasium Baden-Wirttemberg, STARK Verlag

If you know about CAS- related publications then please inform me. Books dealing
with the use of technology in math education in general are also interesting. Josef
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LETTER OF THE EDITOR Pl

Dear DUG Members,

I am sorry for the delay delivering DNL#67. But 1
believe that its contents is worth some days over-
time. We have again much more pages than the
usual 40 — 44 pages. I didn’t want to leave one of
the articles for the next issue. Josef Lechner’s con-
tribution is one of the many ones which waited very
long for publication, here it is at last. Nils Hahnfeld
has been busy as ever and produced new packages
for the handheld. As one of my final diploma pa-
pers at university dealt with conics I was very in-
terested in his CME (Conics Made Easy). 1 could
not resist making suggestions for including addi-
tional features and a very intense communication
has started. You can find a selection of this discus-
sion together with a short presentation of CME.
Differential Equations Made Easy will be presented
in a future DNL.

One highlight in this issue is doubtless Albert
Rich’s visionary paper. I am very happy and proud
that Albert like so many of you keep on communi-
cating within the DUG. It would be great if DUG
members would follow Albert’s invitation for sup-
porting his vision.

Another vision is to transfer as many Derive func-
tionalities as possible to its intended successor, the
TI-Nspire. The TI-programmers promised to do
their best and they are asking for the DERIVE-
people’s input. The DUG can play an important
role in transfering the “DERIVE spirit“ to the
Nspire. (Maybe it is not a pure chance that Derive
SPIRit and NSPIRe have an important part of their
names in common). Bernhard Kutzler presents a
more detailed view on the Nspire. Next releases
should contain one or the other of the DERIVE-
features. Bernhard will continue in the next DNL
with a special example to demonstrate how the
various applications of Nspire can cooperate.

At the occasion of a meeting with the TI-
programmers some of us presented our most appre-
ciated Derive features, which we would like to have
implemented in future versions of Nspire David
Sjostrand showed an excellent example of applying
the ITERATES-command. This and other interest-
ing findings in a triangle are collected in David’s
contribution in this DNL. He extended some ideas
into 3D space (see next DNL).

Another gem is promised for one of the next DNLs:
A. Perotti joined the DUG recently. I remembered
Alessandro’s article on Groebner Bases in an ear-
lier issue of the Intl DERIVE Journal. I wrote a
mail and he immediately answered. He has adapted
his DOS-Derive functions for DERIVE6 and wrote
a full paper. He gave permission to publish it in the
DNL and additionally promised to write an extra
introduction. So we can hope that solving systems
of nonlinear equations applying Buchberger’s algo-
rithm will not remain a ,,.Black Box* for some (or
many?) of us.

You can also find a contribution from Don Phillips,
bringing actuarial math on the handheld together
with some additions for the former DERIVE file.

Peter Liicke-Rosendahl wrote a mail concerning
some ,,gaps‘ in my DNL#15 contribution on Curve
Discussions. We had an interesting exchange of
mails and files and I'll come back to this issue in
the next DNL.

TIME GOES AFRICA. TIME 2008 will be held
22 — 26 September 2008 at Buffelspoort Resort,
South Africa.

Michel Beaudin and I were asked to act as Co-
Chairs for the DERIVE-Nspire-CAS-strand. Michel
and I found it a good idea to have a completely new
group of colleagues in the Program Committee. We
would like to thank alle members of earlier PCs.
They did a great job and they really deserve a
break.

You can find the first flyer and invitation (together
with another announcement) at the end of this
DNL.

Finally 1'd like to draw your attention to the pre-
sented books (unfortunately only in German). If
anybody of you knows about interesting publica-
tions, then please let me know.

By the way, Michel Beaudin provided a paper full
of exercises for his students on the EMTS (in
French). We will publish it in the next DNL.

(Have a also look on SketchUp — page 20!)
Best regards to you all

Download all DNL-DERIVE- and TI-files from

http://www.austromath.at/dug/
http://www.bk-teachware.com/main.asp?session=375059
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The DERIVE-NEWSLETTER is the Bulletin
of the DERIVE & CAS-TI User Group. It is
published at least four times a year with a
contents of 40 pages minimum. The goals
of the DNL are to enable the exchange of
experiences made with DERIVE, TI-CAS
and other CAS as well to create a group to
discuss the possibilities of new methodical
and didactical manners in teaching mathe-
matics.

Editor: Mag. Josef Bohm
D’Lust 1, A-3042 Wiirmla

Austria
Phone/FAX: 43-(0)2275/8207
e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English arti-
cles will be warmly welcomed nonetheless.
Your contributions will be edited but not
assessed. By submitting articles the author
gives his consent for reprinting it in the
DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

December 2007
15 November 2007

Next issue:
Deadline

Preview: Contributions waiting to be published

Some simulations of Random Experiments, J. B6hm, AUT, Lorenz Kopp, GER
Wonderful World of Pedal Curves, J. B6hm

Tools for 3D-Problems, P. Like-Rosendahl, GER

ANOVA with DERIVE & TI, M. R. Phillips, USA

Financial Mathematics 4, M. R. Phillips

Hill-Encription, J. B6hm

Farey Sequences on the T/, M. Lesmes-Acosta, COL
Simulating a Graphing Calculator in DERIVE, J. B6hm

Henon & Co, J. Bohm

Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT
An Interesting Problem with a Triangle, Steiner Point, P. Like-Rosendahl, GER
Overcoming Branch & Bound by Simulation, J. Béhm, AUT

Diophantine Polynomials, D. E. McDougall, Canada

Graphics World, Currency Change, P. Charland, CAN

Precise Recurring Decimal Notation, P. Schofield, UK

Solving an Optimization Problem with the TI-Nspire CAS, B. Kutzler, AUT
Cubics, Quartics — interesting features, T. Koller & J. B6hm

Logos of Companies as an Inspiration for Math Teaching

Exciting Surfaces in the FAZ
BooleanPlots.mth, P. Schofield, UK

What is hiding in Dr. Pest? B. Grabinger, GER

Truth Tables on the Tl, M. R. Phillips

Advanced Regression Routines for the TlIs, M. R. Phillips
Directing Our Suspicions with AHP, C. & P. Leinbach, USA
Where oh Where is IT? (GPS with CAS), C. & P. Leinbach, USA

Groebner Bases, A. Perotti, IT

Embroidery Patterns, H. Ludwig, GER

Inspheres and Exspheres of a Tetrahedron, D. Sjéstrand, SWE
Compléments de mathématiques (profil Génie Mécanique), M. Beaudin, CAN

and others

Impressum:
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Herausgeber: Mag.Josef Bohm
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Conics Made Easy
for TI-89/Titanium and TI-92+/Voyage 200

DUG-Member Nils Hanhfeld offers two new packages for the Tl-handheld devices: CME
(Conics Made Easy) and DME (Differential Equations Made Easy). Both products can be
purchased via Internet: www.ti89.com.

I’d like to present some screen shots from CME. |'ll take the Voyage 200 because of the
larger screen which needs a lot less scrolling the screens.

After loading the Flash Application you are offered a bar with 5 drop down menus. The first
menu gives the most important information about the conics, eg. the ellipse:

ETliFses N i

Cx—haz (g kae

Dy -—= =1 arb.
asy Cd az he
Center: Ch, k).
Focif chifiazs bZ) k3
Uertices: C(hita,k
Eccentricity B<I(az b a1l
If P=Point. F1,F2=Foci.
Thent FF1+PF2=2a

(Enter=0K__» CESC=CAMCEL »

HMAIN LEG AUTO FRE 2730 HMAIN LEG AUTO FRE 2730

i Fiv FEv Far. T B
About. Conics [RRENEFC) =Ry Raly] LA S Tl=F1 [
lilntro
2iCircle
: ipze

1 Farabola
5 Huperbola
EiEccentricit

The most powerful menu is F2 Analyze. You can enter either the coefficients of the equation
of a given polynomial (in rectangular coordinates only) or the full equation (see the example).

|pramiafs: Jrj

' Entsr Equation Y

Az 2+Bxg+Cyg~2+0s+Ey+F =0
Eq.zr [du™24Tmdeg+ Gy 2B+ Ty —20=k]

Exls du2-Ssmsg—Sug ™24+ 24 -F0=0

anut Conlcs Hnsluzw Rntatlnn More [Exit
1t CoeFF1clents(B oy

2iEquation (B=0)
3_CneFF1c{ents(B#B)

Conics M{

Ex2i x™2=y
Ex3: gu2+8x—du=12
Enter=0k ESC=CAHCEL
HRIN DEG AUTO FRE_ 11,30 HRIN DEG AUTO FRE_ 11,30

CME performs a complete analysis of the given conic followed by its plot.

]‘__.E T ]‘____ T T FE T ]
nx'*zoBx-yu-:ywz+|;::cl+:,--.Trn ﬁ i TPr*ngI:IT
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(Enter=0F__ ¢ESC=CANCEL
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CME switches automatically to DEG-Mode.

Comparing the plot with the DERIVE plot (plotting the implicitly given expression) you will
recognize that the Tl-plot has sometimes a scale adapted to the dimension of the conic and
that the Tl-plot shows a nasty gap between the two parts, caused by problems plotting
curves which are close to vertical runs. The ellipse is splitted into two parts.

1) |_Fe~ [E FY FEr | FE*

T T
 f—|Zoon[Trace [Rearaph|Math|0raw| - iy i

1

HMAIN LEG AUTO FUNC

This problem could be overcome by plotting the full conic in parameter form.

Here is a step by step approach for plotting the given conic in parameter form. (The last time
when | performed a calculation like this was when | was 18 writing my end examination in
gymnasium — several years ago ...)

General form F(x y) = A2 + Bxy + Cy™2 + Dx + Ey + F = O

2 2
#1: Flx, vz 4w 4+ 3y + 5ay - 5ax o+ 3y — 20

First of all check the typel

ch_coniciu, dis) =

Prog
dis = 3(3(u, =), yI*2 - 8(u, =, 2):8(u, v, 2)
If dis = 0
#2: "hyperbo1a"
If dis = 0
"allipse"
"parabola”

#3: ch_conic{fix, vJ) = ellipse

Finding the center

d d 59 29
[cr = [SOLUTIONS[—— flx, v) =0 s — Filx, vJ =0, [x, y]}} } = cr = [————, = ————]
# dx dy 7l 7l
1

Ftle, v =l + cr | v + cr J
#5: 1 2

This 1s the conic with 1ts center in the shifted origin:
ithe eguation does not contain any linear terms)

2 2
284w+ 213.xay + 3550y - 1626

#5: ftix, v =
7l

We rotate the coordinate-axes that the axes of the conac
will T1e on the xy-axes, finding first the rotation angle
from tan{2o) = Bf(A-C):
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d d A
2i— — filx, ¥l
dy dx
ATAN
#7: d 2 d 2 1
VP ey |
b dy 3
o — - —
" 2 J 2

We apply the rotation formulae
#8: friz, v) = Ttz .COS{n) — weSIMNCx), =«SIN{x) + yCOSCo)d
2

z
Flex «(f10 - 93 — 7loy (10 + 90 + 3252
#9: friz, v

142

ot . . 3. . ) . fx.y)

Finding the vertices by calculating the ntersection points with the axes:

#10:  wertr{u) = APPEND(SOLUTIONS{u = 0 A v = 0, [x, ¥]1), SOLUTIONSCu = O & x = 0, [x, y13)

200813, 10 + 73170 T
0
71
200813, 10 + 73170
= 0
71
#11: wvertr(frixz, yi) =
2407317 - 813100
0
71
247317 - 813100
0 _
L 71 i
2. 8010726732 0
—2. 801072573 0
#2: wertr(frix, yi) =
0 1.5940611662
L 0 -1.940611662

We can obtain the normal form using Eigenvalues, too. But this was not the way | did it in
1963 in gymnasium. (I'll do this in the next DNL.)
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The parameter form with coordinate axes shifted and rotated

(& length of half axes):
#13: [a:= 2. 801072673, b= 1.

#14: [a-COS(t), b«SIN(t)]

940611662 ]

To obtain the parameter form of the original conic we have to

rotate and shaft back:

COS(-a) — SIN{—a)
#15:  fplt) = [a-COSCtD, b.SINCt)]. + cr
SINC-x)  COS(—a)
2801072673 .,/(5.f10 + 500.COSCt) 970305831+,/(50 — 5. 100 .SINCLD) 55
#16:  fpit) = + + e
10000000000 5000000000 71
2801072673.,f(50 — 5.,/100.C05(t) 970305831 +,/(5.,f10 + 500.SINCLD 35 ]
+ —
10000000000 5000000000 71

Having plotted the conic in parameter form, we want to add the center and the vertices (and
maybe for hyperbolas the asymptotes, too). You can also add the foci.

[ [ COS(—a) — SIN(—a) }J
#17. conpts ;= VECTOR|u + cr, u, APPEND{vertr(frix, w33, [[0O, 0]1)-
SINC—a)  COS(-oo)
JOF7235. 10 + 406500) 59 JU4065. /10 + 325200) 9
355 ' 7 355 o
55 JO77235. 10 + 406500) J04065. /10 + 325200) 39
R 355 355 S
JC406500 — 772350100 5% J0325200 - 4065100 39
#1&: conpts = + -
355 71 355 71
59 Jr408500 — 772350100 JU325200 - 4065100 39
"o 355 ) 355 o
59 39
I n N ]
3,103334232 -2.1&7111775 ]
-1.441362401  1.088520225
#19: conpts = | 1.965681513  1.025010271 _E ;
~0.3037096823 -2.12360182 ' '
| 0.8309859154 —0.5492957746 |

When | worked the first time with CME | missed two options:

- A general conic is given by five points: Enter the points eg in form of a matrix and receive
the equation of the conic containing the points — followed by its analysis + plot.

- All conics can be presented with one common function — in polar coordinates. This would
be a welcome opinion to make students more accustomed with polar forms.
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| suggested Nils to implement these features and he promised to do. 1d like to present how
to find the equation of a conic which is given by five points.

Starting with the general equation the problem is to solve a system of five linear equations
with five unknowns — this should be no problem for a CAS:

The screen shot shows 5 points (matrix m_), then | call function conic(m_) and receive im-
mediately the equation of the conic — in rectangular form. Finally | plot its graph.

v |1 b RearaphMathlDra [« & |5 3:{—"] Hligréﬁra E5 nfﬁErTPrgsmxlnTc:le?ri ue| |
| z -3 z -3
I - T @ 3
. 7.5 -1.5 Z.508 -1.508
= 6 -1 & -1
= ® coniciml)
o 4552 4 0 (V162 y + TP + 096y + , D45k
Wl g2+ 0448428669 7075 ¥u—1
HAIN FAD AUTO FUHC HAIN FAD AUTO FUHC &30

1 Gd Faw |_ Fav FE [
- E Algebra|Calc DLher‘TPr‘ngDTClean Upﬁ
" zeros] - OroZoeoonddEdEE w T 1w L [GEZTy
{1.223-[Jx2 = 5,107 %+ 6,994 - (690 [x + 4

u { 1.2223920045344 '[sz - 5. 1073260956567#
Dok

L] { 1. 2225920045844 -[sz - 5. 1O73200930667*
Ooke

ansC2o[2]1»2 (x|

HMAIN RAD AUTO FUNC 5720 HMAIN RAD AUTO FUNC

Function conic() is only a transfer of a DERIVE-function. See the function and an “over-
painted” picture of a fountain using the derived equations:

2 2
#1: con(x, v) = a-x + b¥X:yw + -y +de¥ + ey =1

2 2
comic(pts) = CSOLUTIOMSCYECTOR(contv |, v 3, v, pts), [a, b, ¢, d, e]1) -[x L EW, ¥, X, y} =1
1 Z

#2:
1

#3: contc(elll)

2 2
#4 0.0088417.x + »-(0.0020887.y + 0.00067258) + O0.11836.y + 0.15764.y = 1

| was very happy with this function for a long while, but a “bug” is hidden. Do you see what is
missing? No, then try to find the equation of a conic which is passing the origin!

In the meanwhile we had a fruitful cooperation and many of the ideas have been
realized for an updated version of CME.
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In the next DNL I'll include a DERIVE-function (program) performing a complete analysis.

2 2

3 -5

#33: pp = 0 ]
5 0

-3 -1

#34:  conic37tppd

2

2 446y ERY 1242,y 8388 285 4.,f3019.% 223.%
#35: hyperbola, x - - Bix + + =0, - , = + -
95 19 95 3019 3019 15 15
111843019 207 43019 % 223.x 111842019 207 1
= T = + + -
15095 5 15 15 15095 5

Information provided by Bernhard Kutzler:

Hi all,

Did you know that Derive has an entry in Wikipedia - with topical information about the dis-
continuation and replacement with TI-Nspire?

Look at: http://en.wikipedia.org/wiki/Derive computer algebra system

and in German: http://de.wikipedia.org/wiki/Derive

Best regards,
bernhard

Restricted use of Slider Bars in DERIVE

Heinrich Ludwig, Germany

Preparing a visualisation in the frame of an introduction into Graph Theory for my students |
wanted to turn on and off edges connecting nodes using slider bars. This works very easy
presenting the edge as a segment connecting two nodes by a 2 by 2 —matrix and multiplying
the matrix by a factor a with possible values 0 or 1 for a. With a = 0 the segment shrinks to
length 0 and with a = 1 one can observe the full edge.

Everything seems to work properly: one can introduce many slider bars, but ... only the first
nine of them will be really working. | found no way to overcome this deficiency.

DNL: | wrote to Albert Rich and Theresa Shelby. The answer confirmed this restriction. It
would need changing the DERIVE code plus recompiling. Unfortunately we cannot expect a
new release, so we have to live with only 9 working slider bars.
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Ignacio Larrosa Cariiestro

I know that Tl is not continuing the development to Derive, but | expect that this list will con-
tinue alive. Someone may have some explanation for the slowness shown by Derive execut-
ing this function:

With argument k = 2*m + 1, for values of m between 1 and 15 delays it needs only fractions
of a second. But from m = 15 it needs much more time: until 182 seconds for m = 19, and
even to exhaust my patience for m = 20, on a Pentium IV 2800MHz.

k) =
Prog
ki2
1

=&

oop
If INTEGERT (k)

RETURN m
k = keCEILINGCk)
DISPLAY(DIM(FLODR (k) 1)

m o+ 1

#1:

Really alone it should do m iterations, the answer has to be m + 1, as really gives for m less
than or equal to 19.

Thanks in advance,

Ignacio Larrosa Canestro

A Coruna (Espafia)
ilarrosa@mundo-r.com . ,

Albert Rich
Hello Ignacio,

| don't think it strange at all that your function is so slow in computing f(2*20+1). Including

the statement
DISPLAY (DIM(FLOOR(k))),

in the loop of your function displays the number of digits of k for each iteration of the loop.
As you will see the number of digits doubles with each iteration. By iteration 20, multi-million
digits numbers are being multiplied together!

In fact, your function is actually a good example of the high performance of Derive's infinite
precision arithmetic.

Aloha from Hawaii,
Albert D. Rich
Co-author of Derive

Peter Liike-Rosendahl, Germany

Hello Josef,

... I like to read your revised reprints. I am just trying your ,,Discussion of a Curve” from revised
DNL#15. I found out that “terrace points” (= points with f = > = Q) are not recognized properly. The
reason might by that within an IF-condition sign(1) and sign(0) are not distinguished ...

In his next mail Peter sent his proposal using the fact that the sign of the first derivative
changes in a turning point, but does not change in an extremal value with slope = 0.

| implemented Peter’s idea and by the way | tried to improve the “program” from revised
DNL15 to also consider points with vanishing higher derivatives (giving “flat points” ...)

Many thanks, Peter for the fruitful discussion.
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Josef Lechner: All bodies are falling equally fast?

D-N-L#67

All bodies are falling equally fast —
Are all bodies falling equally fast?

Josef Lechner, Viehdorf, Austria

Introduction

More and more we are faced with the demand
on real life applications in teaching mathemat-
ics. But teaching real life applications has the
consequence to deal with complex models. As
one example we will investigate the free fall
under considering air resistance [1], which is
often discussed in school but only rarely really
treated.

Equation of motion

In contrary to free fall in vacuum a body falling
free in the air is not only influenced by the
gravitational force but also by a retarding resis-
tance force, which is described by NEWTON's
formula for the resistance

2
pv
F,=c,A 5

Equation of motion follows

2
m'a:m-g—chp u
2
CWA‘p 2
a=g————v
& 2m
dv c,Ap ,
o w 1
dt & 2m @

The numerical approach

Supported by a CAS (DERIVE, Voyage 200,
TI-92+ or TI-Nspire) it is easy to obtain very
quick a numerical solution. (In this paper we use
the TI-92+ / Voyage 200, but all procedures can
be reproduced using DERIVE or the Nspire.)
When we enter the equation of motion in the
Y=Editor (having set the DIFF EQUATIONS
Mode) we receive the respective direction field
in order to have a first overview. (Drag coeffi-
cient ¢,, = 0.8, cross-sectional area of the falling
body 4 = 0.8 m, air density p = 1.3 kg - m™ and
mass m = 70 kg: the resulting coefficient of the
quadratic expression is 0.006.)

HAIN RRD BUTO DE
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Our initial condition is v(#=0) = 0. So we obtain
the increase of velocity which — as expected —
decreases and approaches a constant value.

tAIN ERD BUTO DE
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- E Zoom|Trace[Regraph [Math|Draw| - IC
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The end velocity which can be seen in the solu-
tion curve will be reached when restistance of
air equals gravity. Equating F, and Fy yields the
end velocity

2
Veml = n g ‘ (2)
¢, Ap

This is in our case
v, #40.63ms™ ~146kmh™".
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Rate of fall as a function of time

For obtaining a presentation of the velocity
function it is necessary to solve the respective
differential equation. To have a better survey we
set bzzw. For solving this DE the TI-
2m

devices provide the function desolve(), which
makes possible to find exact solutions of most
1" and 2" order ODEs.

T Fer Fav |_ Fuw Fg FEv
~ §—|AlackbralCalc Dther‘TPr‘ngDTClean Up
T

= 40, 6290 FEAZETE - 3. 6 146, 264644
s a2
.u.=g_~:;mr_uz UI_g_aGZ-PmU

ldeSDlue(u' =g—b-u2 and u(EI)=EI,t,u]|P
n(l{E-v-[al) - nifB-w+fa)
2-]ba "~
w and vCd»=0.t, v>xlgxd and bh>0l
HAIM

EAD AUTO OE  EAz0

Using desolve() and defining g>0 and b>0 we
receive the desired expression which can be
solved for the velocity v.

I’Fi T Fev Fev |_ Fuw FE FE+ T ]

- E AlgebralCalc DtherTPrngDTClean Up

. snluel In[[Jb-u—Jal] - Inl]b-u+ ]Jal
z-Jbg

u= J—g'tam}%b'g't) and

=-t,uw

E]
2 dB Tt
-—E'ta”?%]b'g't) la=2.81 and b==2350)
40. 629068 - tanh(. 241453 )
d¥tanh{JCh*gr*t> JChr1g=2_8.
]

EAD AUTO LE Mz

-

We can summarize the solution:

W(t) = \/% : tanh(z\/ﬁ )

Back substitution under consideration of
)
\/E _fg2m
b c,Ap

v

end

and

results finally in the velocity function

w(t)=v,, -tanh| -£—¢

end

)

Working with our data we can plot the exact
solution (use the Draw = F6-tool) and observe
an excellent match of both curves.

|’F1"'q:|*|’ Fev T F3vT Fi~ FE 5 T ]
v = |Algebra|Calc Dther‘TF‘r‘ngElTClean Up
I3 -tanhife-g-1) I3
= d -
! b e, !

_ _ .88
[9=39.81 and b=-""—7zp
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B OrawFunc 40, 62067343677 - banhi . 2414525
Dohe
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Now let’s have a look how DERIVE handles the problem:
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#1: DIRECTIDN_FIELD[EB Bl -

1.3-0.8-0.8 2

yo,ox, 0, 20, 20, v, O, 50, 25]

2
'}'l_llxl}'IlOlOl}'

140
2
#2:  SOLWE(DSOLWEL(g - b-y , -1, =, ¥, 0, 01, ¥)
2o0befgex
Jg- (e -1
#3: y =
2o0befgex
Jbe (e + 1)
1.2.0.8-0.8
#4:  S0LWE| DSOLWEL| S.81 -
140

0.432905492. %

40.62905784. (= -1
#5: ¥ =
0. 482905492 - %
= + 1
0. 482905492 . %
40.62506784 . (= -1
#5: TABLE %, 0, 22, 0.05

0.432905492. %
=]

It is interesting that DERIVE does not recognize the tanh in expression #3! We can read in
the DERIVE Online Help: The hyperbolic functions simplify to equivalent expressions involv-

ing exponentials. That is it!

Way of the fall and its acceleration as func-
tions of time

Now having derived the velocity function it is
easy to find the distance of the fall (by integra-
tion) and its acceleration (by differentiation).

Integration of the function delivers the time-
-distance function with s(=0)=0.

1 Fev Fav [ FuT FE 5 T ]
- E Algebra|Calc DtherTPPgnIDTClean Up
t
IJB[E-Lanh(Jb-g-u)]du |g>8 and b2

tnle2 Bt ] Fgt -1
b

Jdrle2 et ] Fgoe -1 e
% -

ol

ansti>lt=0

HAIN DES RUTO

FHE 10430

Collecting the numerator in form of a log-
function enables a better and more “beautiful”
presentation of the desired function:

1 Ve 4]

S([) = Z . 11’1 W .

The calculator does not collect the logarithms by
its own, but we can force it to do so:

Let it find the indefinite integral, then substitute
t and 0 for u and form the difference. The result
is not the same as given in the formula and the

calculator does not transform the expression into
the cosh. We have to support the TIL.

[Fr'm]’ Fer *I’rsv]’ Fi T FE T FE+ T ]
= §=—|Algebra|Calc|dther |[Framld|Clean Up
T T T

b
lJ[E-tanh(Jﬁ-u)]dMg »0 and b A
|¢fE 34
[

Cans{12lu=t)—Cans<1>lu=0>

FHAIN TEG ALTO FRE 13750
Fi T v (i TE TE™
-.-E AlgebralCale CILher*TPr‘gnIDTElean Up
151 B
W —————— “lnf———
R xRV L2 Bh
- b lu=t]-|——%
[ 2-|elb a4 ]
Sl —————
ERCERTT
5
Cans¢1Xlu=t>—<ans{1>lu=0>
1N DES AUTD FHE__L4,/E0

A
1 Gd Fiw | Fuw FE [
vE AlgebralCalc CILher‘TPr‘ngDTElean Upm
PR REERY J
lh|—————
éb2-“:--9-1;, +1
b

. g2 bty
- R Inlcoshi[b-a-t)]
= [

w I RE D] DA C2 R (I ChXg %t 22> D

HAIN DEG RUTD FhE 15,30

Back substitution using again v,,; gives

s(1) =M-ln(cosh(i-tn. 4)
4

vend
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Graphic representation of our special example
leads us to the typical run of a displacement
function under consideration of air friction: the
function is bent to left in the beginning and
changes into a linear function (when the velocity
becomes constant).

T _Fev

- f—|Zaan iy E':{:E

Tr*a-:.e Regr‘aph Math|0raw|-

FUWC

HAIW ERD RUTO

Finally we get the acceleration function as the
derivative of the velocity function.

v{— ngebr*a Calc Dther* PPgnID Clean Up

1 —_—
- hl z- ej_ t J 1nicoshi[h-g-t)]
[5]

l%[g-tanh(]b-g-t)hg *0 and b0

a0
L
wanhCIC(h¥gd¥td €5 1g>0 and b0

HAIW EAD RUTO FUWC 1630

We turn back to DERIVE:

We perform back substitution using v,,, and
obtain the formula for acceleration as a function
of time

£ (5)

cosh? [g . tj
vend

The displayed graph shows the expected run.
Acceleration decreases very fast from the initial
value g to zero.

a(t) =

i
o [Z iz Tr‘ace Regr‘aph Math|Draw|«

1| _Fer

FRIN RAD AUTO FUNC

Of course, end acceleration a,,; and end velocity
Vena can be obtained analytically, too.

1 Few Faw |_ Fav FE FE™
""IZI f—|AlgebralCalc DLherTPPngDTElean Upﬁ

[J_ tanh([B-3- tJ] |g>@ and b2

mlim
s
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5
" lim % o]
t+o | (cash([Ba-t])
L AD¥gIHEI 2 t . wdlgrd and b0l

HilN RAD AUTOD FUMC 18/ %0

]Igm and b @

(Let’s assume that we don’t know about the hyperbolic functions!)

2. b Jg-

Jg- (e

#22. w(t) =

2-0bfg- t
Jbe (e + 1)

We substitute for b = g fwithw_=v_end):

2
[E-J(gfv_ Tofg-t J_]
Jg-le =

w(t) =
#23: 2
g [ 2oflgive 1edget J
—|-le +
2
w_
#24: w_ e Real (0, =)
2eg-tfv_
v_- (e - 1)
#25: w(t) =
2eg-tiv_

a + 1

#26:

#27:

#28:

#29:

t
sCE) = [ wiu) du
a
2eg-tfv_
2 = 1
v_ oL —  + —
2 2
s(t) = - v
g
S(U) =0
2-9.81.t/40.63
2 = 1
40.63 .ll| ———— + —
2 2
- t.40.63
9.81
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400
s(t)
200
T
2 4 G 8 10 12 14
d
#30:  alt) = — w(t)
dt
2eg-tfv_
dug-e
#31: alt) =
2eg-tiv_ 2
(e + 1)
2eg-tiv_
d.g.e
#32:
2eg-tfv_ 2
(e + 1)
2-9,81.t/40.63
4.9 8l.2
#33:
2-9,81.t/40.63 2
(e + 1)
10
alt)
5
T
2 4 G & 10 12
#34: [g :e Real (0, =), b:e Real (0, «)]
2. byt
Ja- (e - 1] Ja
#35: Tim = —
two 2.0bjget Jb
Jbe (e + 1)
Tim alt) = 0

#36:
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Time of the fall as function of height of fall

Determination of the inverse of the time-
distance-function does not lead to the desired
result.

|‘F1 ‘|’ FE¥ [ FE FET
- E Algebra|Calc Dther‘TPr‘ngDTElean Upﬁ

ln(coshfb.lb_-g-t]] =t

PR =R N
wvetlnCcosh(J(h*gl*t ) h=s,.t>
HMAlM ERD AUTO FUMC 1220

L snlue[

The reason for this incapability of solving the
equation is the ambiguity of the arcosh(x):

E Fu FE™
- E Zoom|Trace|Regraph|Math

1:ClrDOraw
25 OrawFunc

tOrawfo
St 0rawParm
gilrawslp

7
]

MAIN KAD_AUTO FUNC

We have to support the CAS by deciding for the
upper branch of the arcosh-function — negative
times don’t make any sense in connection with
our model — then for x > 1:

arcosh(x) = 1n(x + m)

So we get from

Josef received a letter from a German teacher,
Madeleine:

Completion: “Madeleine’s Problem”

Two parachutists, Klaus and Egon, leave the
plane in an altitude of 2000m and they open
their parachute in an altitude of 200m above the
ground. Their drag coefficient ¢,, is 0.45, the
density of air (1.29 kg/m’) decreases at a rate of
5% per 100 m difference of altitude. Klaus
keeps his body vertical and his acting cross sec-
tional area of his body is 950 cm®. Egon is lying
horizontally on the air bed, spreads his arms and
legs reaching a cross sectional area of 7500 cm’.
They both have a weight of 80 kg. Calculate the
time which they need to reach the the moment of
opening their parachutes and give reasons for
your procedure.

cosh(\/@-t) =e”
\/@'t =ln(e[” +/e” —1)

finally

t(s)= \/;_gln(eb‘“ ++/e?” —l).

And after introducing v,,; we obtain the formula
for the fall(=drop) time

gs 2gs
v 2 2
t(s)=—2L.In| e" +Ve" —1|.
g

We will compare the graphs of the functions for
fall time with and without air resistance for 0 to
100 m.

F= Fu FEx ' _F&™ (FF EE
Trace|RegraphMath|Oraw |- f/q HH

Fall time with
air resistance

1 5
- E S0

Fall time without

air resistance

HHIN EAD AUTO FUKC

Reference

[11 G. Hepperger, Der freie Fall unter Einwir-
kung des Luftwiderstands, Wissenschaftli-
che Nachrichten, September 1991, BMUK,
Wien.

There are two forces acting on both parachutists:
2

p-v

F,=m-g (Weight) and F, =c, -A4-

We have to consider that air density increases
approaching the ground (g and c¢,, depend also
on the altitude, but this shall be neglected here).

Leaving the plane in an altitude of H = 2000 m
we can describe the density p as a function of
the fall distance s:

2000—-s

p(s)=1.29-0.95 10
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The resulting equation of motion is
H-s
. 100 4,2
m.azm.g_cw.A.W%,

(H is the altitude of the jump). This leads to the
following differential equation:

H—-s(t)

Py -0.95 10 .5'(t)’ — g =0.

c, A4

s"(t)+

For our — Madeleine’s — problem two differen-
tial equations have to be solved — one for Klaus
and another one for Egon:

Klaus:

s"(t) + 0450093 9. 0.95200'00_;(” ~-5'(t)’ -9.81=0
Egon:

s"(t) +M.1.z9.0.95200?£m —-5'(t)’ -9.81=0

The initial conditions are s(0)=0 and v(0)=0.

The DEs can be solved numerically (eg by ap-
plying the Runge-Kutta-method. For editing
these DE’s on the TIs one has to take into ac-
count some conventions:

y1 corresponds with sgq,s (1% DE)

y2 corresponds with Vga,s (1% DE)

y3 corresponds with sz (2" DE)

y4 corresponds with sz, (2™ DE)

After entering s* and v’

2000 -yl
Hzlﬂ.l_zg{_gﬁj YTE] .922.’
16
giZ=a
Vg3 =ud
JiZ=a

2" CEd=., 00—yl 000 ¥y2~2+9 . 81)
PRI FAD ALTH TE

we can read off the requested times on the
graphic screen — at least approximatively.

|’F1 *I’rzv]’ F= T Fu TFSvTrsvTF? Tra]
- E Zoom|Trace |Regraph|Math|Draw|« f IC
) -

fall distance 1800

uci 1806, 373
TRIN EAD AUTO [13

Acitvate y1’ and y3’ in the Y=-Editor.

We can get a more accurate estimation using the
table:

TG fz (& &
- f—|Setup|isii Header‘Ti
t 1 ]

20,200 (1794, 321228, 16
20,210 1795, 85[1228, 33
20, 220 (1797, 39[1229, P
20,230 (1792, 9211270, 48

20, 240 231,25

20,250 (1202, 011232, 02
20260 (1805, 541232, B0
20270 (1805, 031235, 57

v1=1800.4670335446

HAIW ERD RUTO DE

1 Fz B &l
- E Setup|isii Header‘Ti
t K]

28,090 [30
28,060 [F013.42[1797, 12

1. 931736, 43
3
28,070 [F014. 90[17°97, 79
[
7

28,080 [F016.39[1798, 46
22,090 [Fo17.88(1799, 14
22,100 [Foi9.3717ee, 21

22,110 SBEB.SSFMQ
28,120 [Fez2k. 34[1801. 15
v3=1800.4804268774

HAIN KAD RUTO DE

We can read off a time of 20.2 seconds for
Klaus and 28.1 seconds for Egon. y1 and y3 are
the values of their falling distance. It is obvious
that Egon needs more time

So the problem is solved — at least numerically.

It is interesting to investigate the time — velocity
diagrams of both jumpers:

Fi Trzv]’ Fx T Fu TFSvTrsvTF? Tra]
- E Zoom|Trace|Regraph|Math|0raw| Fﬁ IC

w
Klaus
160

"“-.-‘_-“

Egon

HAIW EAD RUTO OE

We can recognize the braking influence of the
increase of the air density during fall time.

Finally we will have a look at the distance-
velocity diagrams. At first it seems that we can-
not have both diagrams in one graph window:

1 Fer | F% Fu FEx | FE™ [F7 FE
- E Zoom|Trace|Regraph|Math|0raw| IC

v Klaus

T //_/—
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FAIH EAD ALTO (13

Fi Trzv]’ F¥ ]’ & Trh]’rsv]ﬁ' Tra]
- E Zoom|Trace|Regraph|Math|Draw| - iy IC
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All these graphs are easy to create by using the
Axes-Menu (F7) in the Y=-Editor. In Axes
CUSTOM you can assign variables to the axes
as you like. (The screen shot demonstrates how
to set F7 Axes > CUSTOM in order to obtain
the distance-velocity diagram for Klaus.

I’Fi Trzv‘l’ F3 TF-. Trsv]’ FE™ T Fr T ]
va ZoomfEdit] < [Al1l|Stule|Axes..

SFLOTE
Plot Z2al-" = csimuolabibser] wsimulakibveroz]

Flot /© HHES

oo Axes. . CUSTON?
T M1z

Hil=E U g E[I-}

yz i Enter=5AUEY CESC=CAHCEL »
ui2=d
y2'Ctd="_45% 095-160%1 . 29%C. 9.,

UZE « AMWD + TO OFEMW CHOICES

The differential equations and DERIVE:

And with a little trick we can display both
graphs on the same axes: Save both curves as
separate pictures (F1-Menu > Save Copy as)
and load both into an empty graph window.

1 Few | F¥ & FEw |_FE™ [F7 L]
- E Zoom|Trace [Regraph|Math|Draw|- f:? IC

Y Klaus

100 //_—

Egon

109 )
RN FAD AUTO TE

We follow the advice given in the Online Help how to treat second order differential equations
in order to obtain a numerical solution.

Expressions #17 and #18 deliver a table similar to the Tl-table (increment = 0.1). We can
extract the coordinates for the desired solution curves or at first extract some rows of the
table to have an estimation for the time needed until opening the parachute (after 1800 m):

0.45.0, 085 (2000 - s)f100 2
#17: klaus := RE[ [+, 8.81 - .1.28-0.85 - |, [t, s, v], [0, 0, 0], 0.1, 500
160
0.45.0.75 (2000 - s)f100 2
#18: egon := RE|[v, 9.81 - -1.29.0.95 - |, [t, s, v], [0, O, 0], 0.1, 500
160

The first column shows the time t, the sec-
ond one the distance s and the third one
gives the velocity v.

We plot time the time-distance diagram, then
the time-velocity curve and finally the veloc-
ity-distance graph by selecting the respec-
tive columns of the matrices klaus and egon.

#23: klauws COL [1, 2]
#24: egon COL [1, 2]

#25: 1800

SELECT(1?50 = w
#19: 2

< 1850, v, klaus)

20 1763.940123 153 3687157 |

20,1 17792899096 153 .6273766

20.2 17594666328 153 . BF790L8

#20:

20,3 1R10.085305 154.1202846

20.4 1RZL. 480117 15435445954

20.5

1840.535932 154 5805225 |

SELECT(1790 = w
#21: 2

< 1810, v, egon)

28 1793 .353126 67, 26166913
#22: 28,1 1800.072986 67.135538086

28,2 1806730255 67.0009584855

. 2500
distance
2000 K laus ""f
1500
1000 Egon
500
time
-1a -5 5 10 15 20 25 30

=500
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welocit
4 200
#26: klaus COL [1, 3] . Klaus
#27. egen COL [1, 3] 100
50
Egon . time
10 -5 5 10 15 20 25 30 3% 40 45 50
_En
250
welocity w
200
klaus
150
#28:  klaus COL [2, 3]
100
#28: egon COL [2, 2] Egon
5
distance =
200 400 600 800 100012001400 16001800 2000 2200 2400 .
—GhA

Endexamination 2001, Gymnasium Amstetten, Lower Austria

a) The acceleration acting on a parachutist is equal to the acceleration due to gravity minus the re-
verse acting brake acceleration caused by the air, which is proportional to the square of the fall
velocity (prop. factor = 0.006).

Set up the respective differential equation and give its solution as v(¢) with v(0) = 0.
(g = 10m/s; Work in Exact Mode!)

b) Find the respective time-distance function with s(0) = 0: How far did the parachutist fall until the
parachute opened, if he stayed 5 seconds in free fall? Which is his fall velocity at the moment
when the parachute opens?

Show that s(¢) = ln(COSh(bt\/ b-g))

also describes the distance falling down.

c) Which end velocity could be reached? Using the #-s-function find an expression for the end veloc-
ity.

d) Describe the run of velocity applying a restricted growth function. Choose an appropriate prop.
factor that the function matches the velocity function from above as accurate as possible.

e) Extra Credit: Increasing altitude is accompanied by a decreasing air density, which even influ-
ences parachuting. Leaving the airplane in an altitude of 2000m above ground this influence can
be modelled by

2000-s
b(s)=0.003-0.95 ' .
Solve the resulting DE approximatetively in the DE-Mode and give a sketch of the resulting ve-
locity function.

Remarks: This example uses the many features of the TI-92/V 200 in a high degree. The idea for this example
gave a question posed by a certain Madeleine (German teacher) some time ago. She asked if a parachutist might
become slower during his/her dropping down to earth. As part e) shows, he/she might because of the braking
effect of increasing air density.

Part a) cocnsits of setting and (exact) solving a DE. This could be done without CAS, but then we had to leave
other parts of the example.

Parts b) and c) aks at one hand for several basic Calculus techniques, and at the other hand students have to
demonstrate their competence inshowing the equivalence of not elementary expressions. This compentence is
very important in the frame of a CAS supported math education.

In part d) the students shall show their capability of modelling and finally
part e) makes use of the TI's capability of solving DEs approximatively.
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A Repository of Mathematical Knowledge

Albert D. Rich, Applied Logician
17 August 2007

Having not heard from me in a while, Josef recently asked what | have been up to since
Texas Instruments terminated development of Derive. The following is my response:

No longer having to worry about customer expectations and upward compatibility has had a
tremendously liberating influence on me. | am now free to follow the math wherever it leads,
and it leads to some pretty interesting and unexpected places.

For example, it is now clear to me that a new arbitrary-element-of operator, along with open
and closed intervals, is essential for representing the infinite sets that can arise when solving
equations or simplifying Boolean expressions. This in turn leads to the need to algebraically
simplify expressions involving infinite sets (including intervals) and the arbitrary-element-of
operator. Since set theory provides the foundation for all mathematics, computer algebra
systems (CAS) need to spend as much effort simplifying sets as they have traditionally done
with scalars and vectors.

| am in the process of collecting and categorizing the elemental transformation rules (mathe-
matical factoids) necessary to intelligently automate the simplification of mathematical ex-
pressions. Each rule must not only include the domain over which it is valid, but the circum-
stances under which it actually simplifies an expression. Otherwise, application of the rule
can make things worse or even lead to an infinite regress. This issue is more fully described
in my talk “Automating the Simplification of Mathematical Expressions” delivered at the Visit-
ME 2002 conference held in Vienna, Austria [".

The knowledge in current computer algebra systems is hard-coded in conventional pro-
gramming languages. To add new knowledge to such systems, a mathematician first has to
teach a programmer the required math. Then the programmer has to translate the math into
computer code. Each step in this process is time-consuming and fraught with the possibility
of error.

Instead, | propose building a repository of mathematical knowledge, the contents of which
will be open and accessible to all. Rather than code, the knowledge will be abstracted in the
form of transformation rules stored in a tree-structured discrimination net. Mathematicians
and scientists will be able to add new rules to the net, generalize existing ones, and fix or
delete invalid ones.

This is analogous to the way users add knowledge to Wikipedia, the popular on-line encyclo-
pedia. But to solve problems using Wikipedia, or any reference manual for that matter, the
reader must manually find and then apply the required knowledge. In the repository | envi-
sion, the knowledge is in a vastly more useful form since the rules appropriate for particular
problems are automatically found and applied.
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| have no desire to create and sell yet another system in the already crowded CAS market.
Rather, my intent is to prove the viability of using a discrimination net to store mathematical
knowledge. To provide a proof-of-concept of this paradigm shift, the following components
needs to be built:

1. Astarter kit" of transformation rules sufficient for doing mathematics up to college level
calculus and vector algebra. This will probably require 5000 to 6000 rules. Thus far |
have collected about 4300. The rules are expressed in standard math notation as linear
strings of text.

2. A computer program that can transform these text strings into parse trees, and then build
a discrimination net by inserting the parse trees at the appropriate place in the net.

3. A computer program that can simplify mathematical expressions by repeatedly finding
and applying applicable rules in the discrimination net until no more rules apply.

Iltems 2 and 3 will be a challenging, but relatively straight-forward, programming project since
all the mathematical knowledge is encapsulated in item 1. They can be written in any mod-
ern programming language (e.g. Java) that provides automatic garbage collection of linked-
list data structures and libraries for infinite precision arithmetic. Using such a language has
the advantage of making the repository platform independent. Since the rules are stored in a
discrimination net, the appropriate rule to apply can be quickly found in log n time, where n is
the number of rules in the system. So efficiency should not be a problem so long as the
rules are carefully crafted.

Once the advantages of such a repository become recognized, | am convinced it will be
adopted as the 21st century standard for storing mathematical and scientific knowledge in a
readily accessible form. Hopefully one or more DUG members will help me make this ambi-
tious project a reality.

"You can find this lecture among the files which accompany this DNL. Thanks Bernhard Kutzler for
permission to include this paper.

As I wrote in my Letter of the Editor, it would be great if DUG members would help realising Albert’s
ambituous plans. Josef

Do you know Google’s SketchUp, which is a
great program for modelling 3D objects.
SketchUp can be downloaded for free from
Google’s websites. One of my students, Dr.
Erwin  Rybin, delivered an excellent
SketchUp tutorial and permitted its publica-
tion. You are invited to download this tuto-
rial.lt is a pdf file written in German, but it
contains so many pictures that you might
understand it even with little or no knowl-
edge of German.

Pantheon in Rome, rebuilt with SketchUp.
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Don Phillips provided an extended contribution on Actuarial Math with DERIVE 6 in
DNL#57. Here is the version for the handheld. Don sent a grouped file for the
TI-89/TI-Titanium. It was no problem to install the files on the TI-89/Titanium and on the
TI-92+/Voyage200 as well. In Don’s paper there are only TI-89 screens — according to
the title of the contribution. The TI-92-screens might be a bit better readable. | don’t want
to print the whole paper, because there are many similarities with the DNL#57 paper but
it will be among the zipped files accompanying this DNL. 1d like to give a selection of ex-
amples comparing the DERIVE procedures with the Tl-procedures.

When Don sent the paper he wrote that he “added a few extra things that weren't in his
Derive file”.I tried to reproduce these “extra things” for DERIVE. Let’s start with Don’s in-
troduction.

Actuarial Math on the TI-89/T1-92+/Voyage 200 —

—and DERIVE as well

MacDonald R. Phillips
don.phillips@gmail.com
July, 2006

The TI group file, actuary.tig, provides a set of basic functions, such as D, N, S, C, M, and R, for
computing the actuarial present values of life insurance and life annuities, as well as premiums and
contributions. It assumes a basic working knowledge of actuarial mathematics. The calculations here
represent net, not gross, premiums and contributions; i.e. they do not include the expenses of the in-
surance company or agent commissions, etc. (The complete TI-89 paper is among the files).

To set up the custom menu for the actuarial functions,
change to the ACTUARY folder and run the MENU pro-
gram. Press F1, 1 to access the CommFunc().

Fav Fyr FE- 0
s B QSHNNUITIEghDU HNHﬁ]ﬁ

Es B
e

100
tClrHome
Custmoff

o e Done

menul>
TYFE OF USE £314 + [ENTERI=OK AMD [EXCI=CAMCEL

Enter the assumptions:

As noted, the mortality tables and age setbacks are entered

Fi= Fewr Fzr Fyr FE- B
in a 2-row matrix. Be sure to enclose the mortality table [ro61s rabies s " aslvunlTreslpol il |

(1313

names in .

The names of the four mortality tables in-
cluded with the program are located under F2. You can

= pEnL) Dok
use them to enter the names in the matrix. If you add other . -:.c\mmFun-:.[ 2:;:22: §]= £.2, ta, 1:39]
1 : Dok
mortality taples to you.r calculator, you can edit the MENU N FL TS LI LU MR TEI 5
program to include their names under F2. ALTHREL a0 B —

The a2000m and a2000f tables are the annuity tables #864
and #863 in the Society of Actuaries Table Manager Soft-
ware.

Fzr Fyr FEw 3
= b E!STFINNUITIESTFIDU FINNm

Jimupl994
4:fuplasd

It takes a good three to five minutes to calculate all the
commutation functions for X, Y, and J. As the program is

) Done
running, it displays ‘Processing x...’, etc., until it is done. ,m[mmm AR FESCT= AL
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The other functions under F1: Tools are Extrapol(), Curlnfo(), and ID(i, nth, mth). The Extrapol()
lets you choose between a uniform distribution (udd) and a linear distribution (lin) of deaths between
integral ages.

Curlnfo() displays a list of the current assumptions. Press ENTER when you are done reviewing the
assumptions.

ID(i, nth, mth) converts between interest rates or discount rates compounded nthly to rates com-
pounded mthly. For instance, a 6% annual effective rate of interest is equivalent to 5.84106...% com-
pounded monthly.

Finally, qxmy returns the age difference between x and y and % is simply the percent function. I just
like having it in a convenient place and Custmoff restores the menu bar.

e Fi=| Fzr (=] Flyr FEr B
s Tools|Tables(Fs & Qs|AMMUITIES|JADY AMM|E

CERRITIN

= i [ gefa

"mupl994" B]
0]
=)

"fuploog"
Int. Rate

B H = midig.1,12) 5. 2410805724

To = to " idig,1,%) 58268903124
Radix = 10000EGEEE midig, 12, -12)

0. 97R1492537
ACTUARRY RO AUTD FUNC_B/40 T | |HIZTIJHR'|' DEGALTO FUMC 2430

A 6% annual effective rate of interest is equivalent to 5.84...% compounded monthly, to 5.82...%
compounded continuously and to a 5.97...% discount rate compounded monthly.

1. Life Annuities

There are 10 commutation functions for basic annuities. A T e
They all take at least two arguments: age and person. Per- DR
son is entered as X, y, or j and is always the last argument
entered. The three basic annuity commutation functions
are Dx, Nx, and S. These are used to compute annual an-
nuities.

TVFE DR UZE €414 + [ENTER]I=OK AWD [EZC]1=CAMCEL

Dxm, Nxm, and Sm compute annuities payable mthly, e.g., monthly, quarterly, etc. sDx and sNx are
used to compute annuities payable yearly that increase by a given percentage each year; the s stands
for a salary scale. And sDxm and sNxm are used to compute annuities payable mthly that increase
each year by a given percent.

Example 5: Suppose X, age 25, wants to provide for a retirement annuity of $2,500 a month when he
retires at age 65. What is the APV (Actuarial Present Value) of this deferred annuity? If X wanted to

1 Fzw Fxw Fyw 3 FE™
3 2500-12-MM(65, 12) 2574 27E14 vﬂ AlgebralCalc DLher‘TPr‘ngDTElean Upﬁ
D(25)
2500-12-NM(6S, 12 o 20012 (En, 12,00 25784, 23
#35: = 1641.925657 e
N(25) _ N(GS) = 250012 - nemleS, 12, =) 1641, 97
ML 25 , ®) — nx(B5, %)
2500-12-HM(65, 12 250812 - hxen(eS, 12, =)
#36: ¢ : = 1687.477924 " RiZS, 12, %) — PRMCES , 12, %) 1687, 45
MM(25, 1207 - NM(55, 12) WA Cemt 25,12 O nxmibh5 12 . w2
ACTURRY Fab aUTO FUMC 3

Thus, to receive $2,500 a month for life when he reaches age 65, X would only have to pay
$25,784.23 at age 25. X’s contribution to his retirement fund would be $1,641.93 payable at the be-
ginning of each year until he was age 64. Or, X could make an annual contribution of $1,687.48 with
1/12"™ ($140.62) payable at the beginning of each month until he was age 64 and 11 months.
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Now, suppose X wanted to make annual contributions that [F[a1 f2nea[-51c [t her Pramio|c1em Us] |
. , ) L
increased by 10% a year to his deferred annuity. Here we | _ z5o@-12-nxm(es, 12, Leam. 48
. . . 25, 12, w2 — nxmE5, 12, «) -
have to use the commutation functions that incorporate a 2500 12 - NXMCES o 12 5 %)
A 25,

salary scale. =TS, 10, %) - =helEs, 10, 0 D

. . . . , =dx0 25, 10, x)
X’s contributions begin at $298.84 when he’s 25 and end |, 555 54112015005 .(1.1)40 e

at $13,525.33 when he’s 64.

ACTUARY EAD AUTO FUMC /40

Let’s take this calculation apart. First, the 2500%12 is the annual pension or annuity. Second,
Nxm(65,12,x)/Dx(25,x) is the APV at age 25 of the pension. Next, (sNx(25,10,x) —
— sNx(65,10,x))/sDx(25,10,x) is the APV at age 25 of a 40-year term annuity of 1 that increases by
10% a year. Divide the APV of the pension by the APV of the annuity of 1 gives the beginning an-
nual contribution to fund the pension which will increase by 10% each year following the first year.

This last problem was not posed in DNL#57 and both functions snx() and sdx() don't have
their equivalents in the DERIVE utility file. | tried to add these two functions making it easier
for me by assuming nontruncated tables.

sc age
#0: SDlage, sc, tab:=x) := |1 + .Dlage, tah)
100

DIM(tab) - 1
#41: SMHlage, sc, tab = x) := r 50071, sc, tahb)
1=age

2500-12-MM(B5, 123

Dr25]
#d2: = 295 8411200
snl25, 1001 - sn(AS, 100

=d(25, 10)

40
#43: 208 84112001.1.1 = 13525.32662

2. Advanced Annuities (all following examples are from the Handheld-Paper)

The advanced annuity functions are located under
F5: ADV ANN.

TYFE OF USE £314 + [ENTERISOK AWD [ESCISCAMCEL

Example 7: nEx(age, n, person) is the endowment func-  ([0¢®[s) aebra|c51c other [Franto|ciesn up

tion; it is the APV of 1 to be received in n years. What is
the APV of a $10,000 endowment to be received by X age
35 in 5 years, if he’s still alive?

nEx is not implemented in the DERIVE version, we
: ial B QEHE - hexiFS L 5, ®) Fd3E. 15
will do thist 10000%nex (35,5, %)

RCTURRY KAD AUTO FUNC 1/ 40
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Mew Function NEX

Example 7

#74:

MEX{age, n, tab = =) :=

Dfage + n, tab)

Dlage, tab)

10000.-MEX(35, 5) = 7436.149361

#75:

Example 8:

#76 1500.CaM{s, 12) = 6522.070426
#77 1500.CaMis, -12) = 6490, 477659

Example 8: CaM(n, mth) is the present value of an annuity due certain of 1 payable mthly. If mth is

negative, it is an annuity immediate, not an annuity due. Since this is an annuity certain, it is good for

all ages and persons. What is the present value of an annuity due of $1,500 payable monthly for 5

years? The annual interest rate, of course, is 6%.

If this was an annuity immediate, the present value
would be 6490.48

These values can be computed with the Finance App,
too:

Fi T Fev [ TE 54 T ]
TE AlgebralCalc DtherTPPngDTClean 1]

ES22. 07
5430, 45

= 5E0 - can( S, 120
] S0E - camid, —12)
1500*cam¢5, ~125

ACTURRY ERD AUTO

FUNC 2’40

The annual annuity of $1,500 is payable monthly which is $125/month. It is received for 5 years or 60

months.

The payments are made at the beginning of the month and the 6% interest rate is com-

pounded annually (left) and if the payments are made at the and of the month (right):

[Tc:é‘lrs CDF‘:;U‘LE' ]

P 2 7
PMT=123. 000
FlU=a, aaa
Ppi=12.000
CpY=1.000
PMT:END [[=EIR

Fresenk value

[annj:'ivl = CDF‘:;U‘LE' ]

H=&0. DE
I¥=5. 00

RN -E4090, 475
FMT=125. 000
FU=0. Qg
PpY=12. 000
CpY=1. 000

PMT:[=2f] EBEGIM

Fresent value

Instead of Finance App we can use TVM for Derive 6 from DNL#55:

™Mie0, &, pv, 125, 0, 12, 1, 1) =

M &0
IR(%) &
iy -6522, 07042711008
PMT 125
Fyf 0
PeY 12
CpY 1
L Fayment BEGIN J
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N 60 ]

IR(%) 6
«PY¥ 6480, 477609871334
PHT 125
T™WM(60, 6, pv, 125, 0, 12, 1, 0) =

Fv 0
PEY 12
CpY 1

[ Payment END |

Example 9: CLM(age, n, mth, person) computes the
APV of an n-year certain-and-life annuity of 1 pay-
able mthly for a person age x. What is the APV of a
10-year certain-and-life annuity of $25,000 payable
quarterly for Y age 65? (In this case Y receives the
$25,000 for 10 years, alive or dead, and for the rest
of her life after 10 years if alive.)

Example 10: CLI12(age, n, person) computes the
APV of an n-year certain-and-life annuity of 1 pay-
able monthly for a person age x. If the above annu-
ity were payable monthly instead of quarterly, the

APV would be $292,729.67.

Example 11:

Fi T Fer *I’rsv]’ ruvT FE T FE+ T]
va Algebra|Calc|Other|PramI0|Clean Up

= 5E0 - can( S, 12) ES22.07
=500 can( S, -12) 5430, 48
mSEEE - CImCES, 10, 4, u) 29465981

25000%c1m{65 .10, 4, 4>

ARCTURRY EAD RUTO FUHC ZA40

The APV is $ 294 659.81.

Fi ‘l’ v (i TE TE™
-.-E AlgebralCale CILher*TPr‘gnIDTElean Upﬁ

5E0 - can(S, 12) ESZ2.07
=500 can( S, -12) 5430, 48
mEA0E0 - clmieS, 10, 4,490 294659, 51
mPEEEE - cl12065, 18, J) 292729.67

25000%c112<65 .10, w2

ACTURRY ERD RUTO FUHC 4/40

JSM(age, percent, mth) computes the APV of a joint-and-survivor annuity payable

mthly. It assumes that the annuity belongs to person X and person Y receives a survivor annuity if X

dies. Age is the age of X, percent is the percentage of X’s annuity Y receives if X dies, and mth is

how often the annuity is paid each year. For example, X age 60 retires and receives a pension of

$65,000 a year payable monthly at the end of each month. X’s partner Y receives 55% of X’s pension
if X dies. X is 2 years older than Y. What is the APV of the pension?

The APV is $751,319.59. Notice that mth is nega-
tive. This is because the annuity is paid at the end of
the month instead of the beginning of the month.

JS12(age, percent) computes the APV of a joint-and-
survivor annuity payable mthly at the beginning of
the month. What is the APV of the above pension?

I‘Fi T Fev Trsv]’ruv]’ [ T 5 T]
va AlgebralCalc|Other|PrgniId|Clean Up

B ESHEE - jemlEeS, 55, 120
mESEE - i 12065, 530

F31319.59
FIE736.26

6L000%j=12 65 553

ACTUARY

FAD AUTO FUHC z/40

The APV is $756,736.26, over 5,000 more than if it was paid at the end of the month. This is reason-

able since X gets his pension sooner rather than later.

25000-CLM{BS, 10, 4, v = 2546559,8150

25000-CL12(65, 10, v) = 282726 6685
£5000. ISM(65, 55, -12) = 751318.5514

65000-1512(65, 55 = 756736, 2578
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Example 12: sLM(age, mth, scale, person) computes the APV of a life annuity that increases each
year by a scale factor and is payable mthly. Y is age 55 and purchases a life annuity of $1,000 that
increases by 2.5 percent a year and is payable at the end of each month. What is the APV of this annu-
ity?

The APV is $17,758.35. If there was no scale factor, the APV would be $13,406.23. This can be
confirmed with the basic commutation functions.

If this annuity was paid monthly at the beginning of each month, the function sL.12(age, scale, person)
could be used to compute it.

As usual, the APV is a little higher because the payments come at the beginning instead of the end of
the month.

SLM and SL12 are new!

w2 lAl sebralcsie [0fher [Pramiolc1ean Up 1000-5LM(55, —12, 2.5, y) = 1775835241

1000-5LM(55, -12, O, v) = 13406.22575

1000 s1M(SS, ~12, 2.5, u) 17752, 35 ] _
" 1000 s1M(SS, -12, 0,9 13486, 23 1000-WH(S5, 12, ¥) = 13406, 22575
1000 - rxm(55, 12, u) - '
. TTSE 1346, 23 D55, w)
1000 5112(55, 2.5, u) 17877 34
1000%5112¢55 . 2.5 _u) 1000-5L12(65, 2.5, v] = 17877.33719
RCTUARY EAD AUTO FUMC 4/40
3. Pensions
Under F6 are some basic functions for computing ﬂF‘Er-EITEIr-_lS LIFE T INS ]
the normal cost and actuarial liability of basic pen- ST
sion.
(These functions are not included in the actuar-
ial file from DNL#57. Some of them make also
use of the TVM-file from DNL#55.) :nzz”:%) 211
TVFE OF USE £3¥t4 + [EMTERI=0K AHD [ESCI=CAMCEL

The normal cost (NC) of a pension for any given year is the actuarial value of the part of the total pen-
sion benefit assigned to the year following the valuation date, assuming valuation at the beginning of
the year. The actuarial liability (AL) is the current value of past normal costs.

Example 13: Traditional Unit Credit (TUC)

The TUC cost method is usually used with pension plans that provide a flat pension benefit, such as
$50 a month per year of service. The normal cost of this type plan is computed with the NCUC(bx,
mth, cage, rage, person). ‘bx’ is the annual pension benefit earned in the following year, ‘mth’ is how
often the pension is paid, ‘cage’ is the persons current age, ‘rage’ is the expected retirement age, and
‘person’ is X, Y, or J.

X earns a pension benefit of $75 a month for each year of service. If X age 35 expects to retire at age
65, what is the NC of his pension in the following year? What is the pension plan’s actuarial liability
if X was hired at age 30?
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The NC is $1,396.91. Notice that this is the amount (& [penETons] 1rE TThs|
that must be put into the pension plan at the begin-
ning of the year to fund the benefit earned during the

—

year. Since the benefit is yet to be earned, there is no

liability associated with it until the end of the year. N cuciPS 12, 12, 35, &5, % 1396, 91
MCUCC?5%12 12 3565, %)

RETURRY RAD AUTO FUMC 1./40

To find the actuarial liability use the [ enSTons] 1rE Ths|

—

ALUC(bx, mth, eage, cage, rage, person) function
where ‘eage’ is the entry age into the pension plan.

" pouc(FS-12, 12, 35, 85, 1) 1396, 91
®aluc(Po-12, 12, 30, 35, 65, x) 5354 . 34

ALUCC?5*12,12,30,.35.65 . x>

RETURRY RAD AUTO FUMC 240

The AL is $6,984.54. This is 5 times the NC for X’s (& penETons|L 1rE Ths| ]
6" year of employment. There is no liability for the

6" year because it has yet to be earned.

B pouc(FS-12, 12, 35, 85, x) 1396.91
®aluc(?S-12, 12, 30, 35, 65, =) &984 . 54
m 1396, I7REFYEIS -5 £984. 54

1326.90726778973 %5

ACTURRY RfD AUTO FUHC 40

And in DERIVE:
NCUC(75.12, 12, 35, 65, x) = 1396.907267
ALUC(75.12, 12, 30, 35, 65, x) = 6984.536338

1396 907267.5 = SEEEREEGEERR

Example 14: Projected Unit Credit (PUC)

The PUC cost method adds the use of a salary scale to the TUC method. The PUC assumes that the
pension benefit earned in any year is based on the final salary or final average salary. Final salary is
the salary in the year preceding retirement.

X age 40 earns a pension benefit each year equal to 2% of his final salary. His current salary is
$45,000 and is expected to increase by 2.5% a year. He was hired at age 30 and expects to retire at
age 65. What is the NC of his benefit earned in the following year and what is the AL?

The NCUC() and ALUC() functions along with the final average salary function, FAS(cs, g, cage,
rage, yrs). ‘cs’ is the current salary, ‘g’ is the expected growth rate of the salary, ‘cage’ is the current
age, ‘rage’ is the retirement age, and ‘yrs’ is the number of year’s salary to be averaged. Use 1 for
‘yrs’ if only the final salary is to be used.

I’Fi T Fev [E FE G4 T ] I’Fi T Fev [E FE G4 T ]
- E Algebta|Calc Dther‘TPr‘ngDTElean Lp - E Algebta|Calc Dther‘TPr‘ngDTElean Up

" fas0d400n, 2.5, 48, 635, 1) 81392667731

™ 21392, 6677ILZ17 - 2% 1627. 253355

® houct 1627.85, 12, 48, 65, =) 3397, 749420
" fas043000, 2.3, 40, 63, 1) 81392, 867731 B ncucl 2% - fas(45008, 2.5, 40, 65, 1), 12, 40k
= 21392, 667731217 - 2N 1627, 853355 3397, FOE422

LO000.2.5,.40,.65.1>.12,40,65 x|

RETURRY KAD AUTO FUMC 2/z0 RETURRY KAD AUTO FUMC 4/20

The final salary is $81 392.67. The pension benefit earned in the following year is 2% of the final
salary or $1 627.85. The NC is therefore $3 397.76.
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: 1 Fer M FE 5
Everythlng can be put tOgCthCI‘ at once. - E Alasbra|Calc|0ther |PramI0|Clean Up

" faz(43000, 2.5, 40,63, 12 21392, 667731
The AL is $33 977.56. B RIE92 66V VIIZLIV - 2% 1627, 833355
B hcuch 1627, 83, 12,40, 65, =) 3397.749420
B poucl2X - fas(43000, 2.5, 40,65, 13, 12, 40
3E97.7Ie422

B 5luc2¥ - fas(43000, 2.5, 40,65, 13, 12, 30
IFAFF. 564220

wed 5 40 65,1312, 30,4065, x3

RCTUARY EAD AUTO FUMC 5430

Example 15: Entry Age Normal (EAN) Cost Method

The Entry Age Normal normal cost is such that at age e, the entry age into a pension, the present value
of all future normal costs equals the present value of all future benefits. The entry age normal method
requires an estimate of a person’s full retirement benefit.

X age 45 plans to retire at age 65 and receive a pension of $500 a month. He was hired at age 35.
What are the NC and AL?

To compute the NC use the NCEANLD(br, mth, eage, rate, person) function where eage is the entry
age into the pension plan. The LD stands for level dollar; i.e. the normal cost will be the same amount
every year (unless assumptions change and then a revised normal cost is computed). (If assumptions
change and normal costs are revised, a supplemental liability may be created which may be funded
through supplemental costs added to the normal costs.)

1 Fir Fzr Fir Fyr FE* B
The normal cost is $650.57. [rdals[rableslps & ns[Anmd 1T 1ES DG A

ALEANLD(br, mth, eage, cage, rage, person) is used

to compute the actuarial liability. B pceanld{S00-12, 12, 35,65, =) B30, 37
B gleanldlSO0-12, 12, 35,45, 65, )

. 9158, 44
The AL is $9,158.44. aleanld(500%12 12 .35 .45 65 x|

RCTUARY EAD AUTO FUMC 2430

The Entry Age Normal cost method usually uses a salary increase function when the benefit is based
on a final salary or final average salary. When salaries are assumed to increase, the normal cost is
defined as a level percentage (LP) of salary. When this is the case NCEANLP(br, mth, sc, eage, cage,
rage, person) and ALEANLP(br, mth, sc, eage, cage, rage, person) are used to calculate the NC and
AL.

X age 35 plans to retire at age 65 and receive 1% of his final monthly pay rate per year of service. His
current salary is $2,000 per month and he was hired at age 25. His salary increases 5% each year.
What is the normal cost and actuarial liability?

X’s final average salary is $98,787.25,
His annual retirement benefit is $39,514.90 (1% of final salary times forth years of service).
And the NC for the year is $1,700.50.

This represents 7.085 percent of his current salary. Assuming salary projections do not change, the
NC of future years will be 7.085 percent of the projected salary for that year.

The AL is $18,008.99.

You can check all calculations on the next screen shots. Needs some calculation time on the handheld.
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3. Life Insurance

Premiums for life insurance may be calculated with
the functions under F6 and then F3: LIFE INS.

Fer 2,
[WAEINE L IFE THS

® C1rHaome Doke

TYFE OF UZE €314 + [EMTERI=0K AMD [EXCI=CAMCEL

The basic life insurance functions are Cx(age, person), Mx(age, person) and Rx(age, person). Mx() is
the sum of Cx()’s from age to the end of the mortality table. And Rx() is the sum of Mx()’s from age
to the end of the mortality table.

Cx() is defined as (I — Le1)*v*"", where 1, is the number of persons living at age x. Cx() therefore
represents the number of persons dying from age x to age x + 1 times an interest rate factor evaluated
at age x + 1. It is used to calculate the value of life insurance paid at the end of the year of death. Cx()
is rarely used in life insurance calculations because most people buy more than just a one-year term
insurance. Mx() is mostly used.

Example 16: Whole Life Insurance
What is the APV or net single premium of a whole life insurance policy of $100,000 payable at the
end of the year of death for Y age 25? The APV of a whole life policy is given by Mx/Dx.

The APV of the policy is $4,460.37.
If Y wanted to pay annual premiums on this policy at the beginning of each year for as long as she
lives, what would they be?

The annual premiums would be $264.26. Notice that Mx is divided by Nx where Nx represents a life
annuity.

Monthly premiums payable at the beginning of each period would be $22.64.

100000-M(25, ¥) Tanls|TableslPs & os|anndiT1ES A0 Ay
= 4460, 370067
D25, ¥l
TEEEGHE - M=l 25, g
100000-H [:25 ' }":] ] iﬂDDdEIXEfES ,(I;:lﬁ ) e
- . 25y
P— 264, 26075926 T 264, 2608
! - 1EAHEE - Mzl 25, ) 27 . 64754
100000-M(25, ¥) NN ISP ETTI L PR
= 22.564336579 ACTURRY “FAL AOTD FUWE B30

12-HMC25, 12, )



p30 MacDonald Phillips: Actuarial Math on the Handheld D-N-L#67

Example 17: Term Insurance

Y want to insure her life for $1,000,000 during her working years from age 25 to age 65, payable at
the moment of death. But she only wants to pay annual premiums for 20 years. What is the amount of
the annual premium? For this is example use the Mxm(age, mth, person) function with mth set to co.
For life insurance, mth determines when the benefit is paid. A positive number means that it is paid at
the end of the period of death. A negative number means that it is paid at the beginning of the period
of death. For example, if mth = 12, the death benefit is paid at the end of the month of death. If mth =
1, it is paid at the end of the year of death. And if mth = oo, it is assumed to be paid at the moment of
death. If you noticed that the sign of mth means the reverse for life annuities, you are correct. Again,
this is a consequence of the mathematical definition of the actuarial functions.

Fiw= Fzw Fzw Fyw FEw B
[rools[Tables|Ps & Gs[AHNOITIES [0 FIHHm

1000000. (MM(25, w, w1 — MM(E5, =, ¥]1)

= 1230 800745
MCZ5, w) — N(45, ¥) 1080808 (mmi 25, ©, u) = nxnlEs , @, u)
HE(25, 9 — =045, J)

1230.8007
The annual premium is $1,230.80. 65 m 33 Cnx{25 w3 nx(45, u)}

ACTUARY KRD BUTD FUNC 150

Example 18: Increasing Insurance

What is the APV of a life insurance policy that pays $10,000 the first year if death occurs and in-
creases by $10,000 each year after to X who is age 35? What about Y who is age 35 (DNL#57)?

|‘F1T Fer T FE, T
4 [PEMSIOMS|LIFE IHS ]

10000-R(35)
——— = 33520.07425

) Ci(35)
LEOEE - Fxi 35, =)
T 33520, 0743

10000 - (35, u) 10000-R(35, )
D LLLL=ER ] 28970, 1045 '

dx( 33, W) = 28870.10447

10000%Rx{35, 3 /7dx{35 v D(35. )
ACTURRY KD AUTO FUMC /%0 1 y

The APVs are $33 520.07 and $28970.10.

5. Non-integral Ages and the Uniform Distribution of Deaths

All the commutation functions accept non-integral ages, e.g. 50.5 or 32.3. Their values are calculated
on the assumption that deaths during the year follow a uniform distribution (the variable Extrapol() is
set to udd). However, if you want a straight liner interpolation between non-integral ages, set Ex-
trapol() to lin. If non-integral ages are used with function such as Nxm() or Mxm() where
abs(mth) > 1 and assuming udd, there are small relative errors in the calculations. Towards the end of
the mortality table the errors can become large. If non-integral ages are used only when abs(mth) = 1
or if only integral ages are used when abs(mth) > 1, there is no error given the uniform distribution of
deaths assumption.
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7. Q’s and P’s

The Q’s and P’s associated with actuarial math are the e

Fer E:
rabtie: 8
e

probabilities of dying and living. (In actuarial textbooks
they are always lower case. I use upper case because the
TI-89 does not do subscripts.) The Q’s and P’s menu is
under F3.

u ClrHome
ClrHome
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Ix(age, person) returns the number of persons living at the beginning of age x for person X, Y or J.
The ages extend from age o to age o, the beginning and ending ages of the current mortality table.
The number of persons at age o is the number chosen for the radix of the mortality table, in this case
1,000,000,000. For instance, the number of persons X living at the beginning of age 65 is
866,252,268.952.

Px(age, person) gives the probability of a person of age x living one year. For Y age 25 the probabil-
ity of living one year is 0.999687. Px() = l+1/1x

Qx(age, person) gives the probability of a person of age x dying in the next year. For Y age 65 the
probability of not being alive at age 66 is 0.009286. Qx() = (Ix — lx+1)/1x

crm(age, person) returns the central rate of mortality of a person of age x. For Y age 65 the central
rate of mortality is 0.009329316014. crm() = (I — Ix+1)/LLx(age, person) where LLx() is defined be-
low.

crm for DERIVE is new! [rol=|Tabieslps & aelamiTIES/RDd ANy

Tx(B5) = BGHZLZ268 .9

Px(25, v] = 0.9996360000 ® 1065, X SEEZT2265, 952

m (25, ) . 999EET
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Qx(65, y) = 0.009285599913 " crmlES, Ul LBE9ZZY
crm(B5, v) = 0,008328316026 E:ﬁ:rr:'f(ﬁﬁ’y)nnn AUITH FIINE 5750

nPx(age, n, person) gives the probability of a person of age x living n years. For X age 34 the prob-
ability of reaching age 58 is 0.945032212698.
nPx() = lysn/lx

nQx(age, n, person) of course is the probability of a person of age x dying before reaching age x+n.
For X age 34 the probability of dying before reaching age 58 is 0.054967787302.
nQx() = (Ix — Lun)/Lk

tnQx(age, t, n, person) returns the probability of a person of age x living t years and then dying in the
next n years. For Y age 34 the probability of living 10 years and they dying in the next 5 years is
0.005590571447.

tnQx(age, t, n person) = nPx(age, t, person) * nQx(age+t, n, person)

LLx(age, person) gives the number of life-years lived by the I, persons who attain age x over the year
from age x to x+1. On the assumption that deaths are uniformly distributed, LLx() = (I + I+;)/2. For
example, the number of life-years lived over the year by the X persons who attained age 45 is
970,159,731.358 years.
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Tx(age, person) returns the total future lifetime of the 1, persons who attain age x. The total future
lifetime of the X persons who attained age 45 is 3,367,321,573.8 years.
Tx()=1/2+ L +...+1,

elx(age, person) gives the complete expectation of life of a person age x. For Y age 65 the expected
life is 20.69 years.
elx() = Tx()/1x()

nPx(34, 5& — 34) = 0.9450322126

T ol ote ot Frontolc1emy U] |
nlx(34, 58 — 347 = 0.05490778731 LT, O T UFITE

L=t LT e ] L EREES
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B 1145, FE15973E1. 358
£x(45) = 336732815712 " Lx(45, ) 336732815738

B alxieS, gl 20691672
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7. Conclusion

I hope you’ve enjoyed this brief excursion into actuarial mathematics. This is only a taste of what the
field has to offer. If you have any questions, comments, suggestions please email me at
don.phillips@gmail.com.
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TI-Nspire CAS = Successor of Derive!?

by B Kutzler

TI-Nspire CAS is a powerful new mathematics tool suited for teaching and learning. It combines several appli-
cations under one roof: A computer algebra system (CAS), a graphing software, a dynamic geometry system, a
spreadsheet, a text editor, and a data & statistics package.

calc graphics| dyn. spread- data text
geo- sheet &
metry statist.
TI-Nspire

The Calculator application is a computer algebra system (CAS) based on the code of the handheld Voyage200.

The Graphs & Geometry application is a double application. It is a graphing application as known from graphing
calculators such as the TI-83 or TI-84. It is also a dynamic geometry application as known from dynamic geo-
metry products such as Cabri Geometry. Having both applications integrated with each other creates a powerful
“geo-graphical” environment which goes far beyond what the individual applications usually offer.

The Lists & Spreadsheet application is a spreadsheet as known from programs such as Microsoft Excel com-
bined with a list editor as known from the Voyage200.

The Notes application is an easy-to-use word processor which allows modes and styles particularly useful for
annotating mathematical and educational work.

The Data & Statistics application is an easy-to-use package for statistical analysis with features as known from
programs such as Fathom.

The seamless integration of these key technologies is one of the major strengths of TI-Nspire CAS. The indivi-
dual technologies have been on the market for quite some years and have been tested in the classroom. Litera-
ture is available on that and there is strong evidence for each of these technologies that their proper integration
into teaching and learning is beneficial for students. TI-Nspire CAS integrates all of these technologies into a
powerful mathematics teaching and learning environment. This integration of well established technologies into
one tool is a quantum leap and takes us into a new dimension of supporting students in understanding and learn-
ing mathematics.

g

TI-Nspire CAS is the proclaimed successor of Derive. Some Derive users deny this with the argument, that TI-
Nspire CAS still lacks several of the Derive features. Is TI-Nspire CAS the successor of Derive — or is it not — or
can it become its successor? I consider TI-Nspire CAS the successor of Derive and will provide my arguments
in this article.

g

Some people agonize about the fact that Derive is not further developed. What does the history of Derive have
to say about this?
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Soft Warehouse was founded 1979 by Albert D Rich and David R Stoutemyer as a partnership, later it got
incorporated as Soft Warehouse, Inc. with offices in Honolulu, Hawaii. Soft Warehouse released their first CAS
product in 1979. It was called muMATH-79 and ran on 8080 and Z80 computers with as little as 48K bytes of
memory running the CP/M operating system. Later versions were muMATH-80 and muMATH-83.

In October 1988 Soft Warehouse, Inc. released Derive as the successor of muMATH. Derive was a DOS
program running on PC compatible computers with a minimum of 512K bytes of memory. In 1996 Derive for
Windows was released. It had a GUI Windows interface, a 32-bit math engine kernel, and ran on PC compatible
computers running MS Windows and NT. In 1999 David and Albert sold their company, and with it Derive, to
Texas Instruments Incorporated.

The authors of Derive wrote in their “Brief History of the muMATH/Derive CASs” the following sentence:
“Rather than just refining and improving muMATH, we decided that an entire re-write was needed. Derive is
the result. Instead of being written in muSIMP, Derive is written directly in LISP, specifically muLISP.”

After 9 years of muMATH the authors decided that it is time to do a quantum leap into a new technology by
rewriting their CAS know how.

After 19 years of Derive it seems reasonable to do the same. Derive has been a key to changing the world of
teaching and learning mathematics. Derive has changed the life of many teachers and students and has triggered
many new developments, including the development of the legendary TI-92 handheld. But, the design of Derive
is from the 80s, which makes it more and more difficult to keep up with the more and more sophisticated desires
of users in the new millenium. It is time for a quantum leap into a new technology by doing another rewrite. And
this has happened with the development and release of TI-Nspire CAS.

b3
Some people agonize about the fact that some features of Derive are not (yet) available in TI-Nspire CAS.

muMATH had some nice features which were not available in Derive. For example, muMATH was an open
source code product written in muSIMP. The user could look at the programs and functions and could write their
own programs and functions. Derive was written in muLISP. The program code was not available any more to
users, nor could they do any programming in the first version(s) of Derive.

It is true, that several Derive features are not (yet) available in TI-Nspire CAS. But it is also true that there
are very many powerful features in TI-Nspire CAS which were not available in Derive, although quite a few of
them were on the “Derive Wish List” for many years — and probably some of these features we never would
have seen in future versions of Derive, simply because the design of Derive did not allow for their implementa-
tion. Later in this article we will look at the “Derive Wish List” and look at features on this list which are al-
ready available in TI-Nspire CAS.

In April 2007 a “Derive-TI-Nspire Transition Conference” was held in Austria with about 20 Derive experts
from all around the world working with about 10 people from the TI-Nspire CAS development team, including
David Stoutemyer. The goal of this meeting was to pin down those Derive features which should go into future
versions of TI-Nspire CAS.

In 1988

- Derive was the proclaimed successor of muMATH,

- Derive was an entire re-write in another language,

- Some features of muMATH were not available in Derive Version 1.

In 2007

- TI-Nspire CAS is the proclaimed successor of Derive,

- TI-Nspire CAS is an entire re-write in another language,

- Some features of Derive are not available in TI-Nspire CAS Version 1.

History repeats!

g
A famous quote says: “The revolution eats its children”. This has proven true throughout history — and mathe-
matics is not any different from other parts of life (even if non-mathematicians often doubt that; but, yes, mathe-

maticians are humans, too!). While we see changes of products, there is also continuity. The continuity facor
here is David Stoutemyer. David is the author of muMATH, David is the original author of Derive (until Albert
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Rich took over, who is the original author of muLISP, the language in which Derive was written), and David is
the original main author of the CAS code of TI-Nspire CAS. So “David’s CAS Code” is the “immortal soul”
which already sees its third reincarnation. Isn’t this a proof that reincarnation exists? Why grief about death
when evidently there is resurrection? The new “body” looks different, the new “body” speaks a different lan-
guage, the new “body” sometimes acts different, but the new “body” has the same soul! The new body is very
young and very strong, lives in a promising and supportive environment, and definitely has got everything it
needs so that it can learn a lot and grow stronger and stronger in the years to come.

g

In the previous 19 years the activities around Derive created the “Derive Spirit”. This spirit lives through people,
hence it is still alive, it will stay alive, and it will continue to improve the way we teach and learn mathematics.
The embodiment of the “Derive Spirit”, the “Derive community” is united by the vision to use CAS for making
mathematics more accessible to students. This vision is a pedagogical version of the original vision of the Derive
authors “to make computer algebra widely available to the masses on small computers”.

One of the Derive community’s main propositions was that the tool is only a means to reach the goal. We
always advocated the use of Derive when its use supports the reaching of a (given) teaching goal — one should
not use Derive (or any other tool) for its own sake. Let’s stick to our vision — rather than to a product!

A glass half filled with beer can be considered half empty or half full, dependent on whether your attention is
on the full half or on the empty half. It’s the same here. The change from Derive to TI-Nspire CAS can be seen
as having lost Derive or as having won TI-Nspire CAS — with all its current capabilities and with its potential for
the future. We go out to teachers and preach innovation. We ask them to allow for changes in their way of teach-
ing. Now we are challenged to allow for a change of the product, which, in fact, is a change to a new format of
“David’s CAS Code”.

The Derive community has a great history of influencing (could we say “d(e)riving”?) the further develop-
ment of Derive. Having had to speak to a small team of only two programmers made communication easy and
decision chains short. Sometimes we saw a bug fix or a new feature over night — while other features never
made it, because we were not “convincing enough” ... Small teams have their advantages — and large teams
have their advantages too. Clearly, in a large team decisions take longer, but with a large team there is more
“power” behind development, so that more wishes can be fulfilled. And there is also more “power” behind mar-
keting the product, including hot line support, teacher training, etc. TI-Nspire CAS definitely can become much
bigger than Derive ever could have become. And this is good for our vision ...

g

During my years of being responsible for Derive, I compiled a list of features which Derive users from around
the world had asked for. Most items on this list are for the user interface and the interface to other technologies.
Relatively few items are for changes to the CAS engine. This reflects the fact that many users thought that the
CAS engine was pretty satisfactory for their purpose, they just wished for more comfort and more flexibility in
connecting to other tools. In fact, quite a few items from this Derive Wish List would have been very difficult, if
not impossible to be implemented in Derive. Some items from this list are already available in TI-Nspire CAS,
others could well be seen in future versions, because the new design of TI-Nspire CAS allows for these features.
Following is a selection from the Derive Wish List and my comments regarding their availability in TI-Nspire
CAS.
g

“Manipulate the graphics window with the mouse (change scales, move origin, ...)”:

The TI-Nspire Graphing application offers a lot of options for changing the window settings.

- You can grab the plane and shift it, thus panning it within the window:

12.84 1Y 18.29 |V

-20 2 20

-8.31 2 31.69
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- You can click on an axis’ maximum or minimum value, and then change the value via the keyboard:

X X X
@ E

- You can use the Window Settings command from the Window menu, and then enter the values you want.

Window Settings
Zoom - Box

Zoom - In

Zoom = Out

Zoom — Standard
Zoom - Quadrant 1
Zoom — User

@ Zoom — Trig

!@ Zoom — Data
Zoom - Fit

- You can use one of the many zoom commands from the Window menu.

- You can grab any of the tick marks of an axis, and then change the scale factor by dragging it:

12.84 1Y 7.21 {¥
B — X 0.5 X
L= |
2 20 .5 11.23

- You can click on the axis, and then right click for the context sensitive menu. The Attributes command
opens a graphical menu in which you can change the appearance of the axis (display it with or without ar-

rows). This menu also offers previews to the most important zoom commands from the Window menu.

Recant ¥

Attributes L
Hide &xes 5|

Show Grid
-

Zoom »

“Data exchange with Cabri products”:
Cabri Geometry is the technological basis of the Graphs&Geometry application, so basically now you have
both technologies (and more) within one product.

“Simple drawing options with ruler, compass, and protractor”:
This is exactly what the Graphs&Geometry application offers through the Cabri technology.

“More links between the algebra and the graphing window (such as transferring graphical data)”:
In an TI-Nspire Graphing or Geometry window you can store a value such as a coordinate or a measurement
(of a length, an area, a slope, an angle, or an integral) in a variable.
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Store War
(BB = -0.18681] 4.48352)

1]
4

This variable and, hence, its value, can be used in any other TI-Nspire application.
Alternatively, you can link a value in a Graphs&Geometry text box to any variable which was defined in any
other TI-Nspire application.

=tare War

vv=7

Link Ta: [}: P1a

This variable/value can be transferred to geometrical objects as a distance. Hence, distances in a Graphing or
Geometry window can be controlled from any other application.

b3
“Update the algebra expression when moving the graph”:

In TI-Nspire you can grab a curve and change it. The function’s equation will change with it.

1(x)=2.02-sin(1x] f1(x)=1.93-sin(0.88+x]

2 1 flx)=sinlx) 5% ¥ 2 /\\ ?ﬁ\ 412 / x
A v A VAR VARV" |V, IFA VAR W

This feature is available for the following classes of functions:
- linear function y =5
- linear function y=a-x+b
- quadratic function y =a-(x—b)* +c¢
- exponential function y =e"“**" +¢
- exponential function y=b-e** +¢
- exponential function y =d-e*“*"" +¢
- logarithmic function y=a-In(c-x+b)+d
- sinusoidal function y =a-sin(c-x+b)+d
- cosinusoidal function y =a-cos(c-x+b)+d

“Animation of graphics”:
The Graphs&Geometry application offers a tool for animation. This tool can be applied to “independent”
points on an object such as a segment, a ray, a line, a circle, or a curve. By the nature of the dynamic geome-
try application, all objects dependent on this point will be animated together with the point.
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“Dynamic interactive graphics (change a point and the regression line changes)”:
In the Data&Statistics applications you can grab points of a data plot or a scatter plot, move them, and then
see the changes of dependent objects such as regression lines or regression curves. Also the numeric repre-
sentations, for example in the spreadsheet, change accordingly.

7.5 Q: 7.5 7.59
3.95,6.27
6 Q &
o™
Y45
3
o o
1.514 T T
1 2.5 4
cl
by
“Import Excel data”:

In the Lists&Spreadsheet application you can paste data which previously was copied into the clipboard from
an Excel document.

A B
1 1 12
2 3 13
3 5 14
4 L

g

“Dynamic algebra documents (also called ‘history refresh’; when you change an algebraic expression, then
all objects depending on it shall be updated)”:

The TI-Nspire Calculator does not offer such a feature, but one can build a problem solving template in the
Lists&Spreadsheet application (in which most Calculator/CAS features are available). Therefore by the na-
ture of a(n algebraic) spreadsheet, this gives a dynamic algebra document. The following two screen images
show a template for computing the coordinates of the point of intersection of two lines given by their equa-

tions.

first line 2*x+3%y=5 first line ¥arx+bry=7
second line B*x—13%y=21 second line b*x—3*aty=2
first variable K first variable X
second variable |y second variable |y

%x=64/25 and y=.. ®*=(21*a+2*b)/(6..
x—coord intPnt 64/25 x—coord intPnt  |(21*a+2*b)/(6*a..
y—coord intPnt -1/25 y—coord intPnt  |-(4*a-7*b)/(6*a..

The current version of TI-Nspire CAS still has limitations which prohibit an extensive exploitation of this
very powerful capability. For example, cells cannot contain lists or matrices. But the mechanism is there, so
all it needs is removing some of these limitations.

by
Other wishes which are already fulfilled in the current version of TI-Nspire CAS include:

- “Compute all solutions of trigonometric equations”

solve(sin(x)=i,x
2

5-
X=2"n T'TIZ+6—TEOI‘ X=2'n T'n+g
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- “Offer a simple function for solving ordinary differential equations”

deSolveliy':yi—xey)

}*=c1"ex—x—1

g

It always takes courage to do quantum leaps such as from muMATH to Derive or from Derive to TI-Nspire. |
guess there is nobody in the “audience” of this article who would oppose the statement that the quantum leap
from muMATH to Derive was a great step forward and definitely worth having been done. This quantum leap
also resulted in a significant increase of users. There are many more Derive users than there were muMATH
users. With the technical and commercial power of Texas Instruments behind TI-Nspire CAS it is very likely
that soon there will be many more TI-Nspire CAS users than there are Derive users. And isn’t this what we
wanted to achieve with all our activities of promoting the use of CAS for teaching and learning mathematics?

g

In a follow-up article I will demonstrate how easy it is in TI-Nspire CAS to combine its applications to create a
“holistic” experience of solving an optimization problem geometrically, graphically, and algebraically.

As Bernhard mentions in his last paragraph he sent a second paper demonstrating the
Nspire. At this occasion 1°d like to invite all of you who have been working and experimenting
with the Nspire (either handheld or PC-version) to share your findings with us. | also repeat
asking for TI-92+, TI-89 and V 200 papers. Just recently checking Nils Hahnfeld’s CME (see
page 3 and reproducing Josef Lechner's “Falling Bodies” | was again fascinated by the
power of the handheld. Come on and share your treasuries (and your problems, of course).

| send my “hand held regards”,

Josef

I met David Sjéstrand in March when we discussed which features of DERIVE we
would like to find in future versions of TI-Nspire. One of many points was, that we
miss ITERATE and ITERATES as a powerful tool — even in times of program-
ming, because of its didactical value. David presented a fine example and |
asked him leaving it for the DNL. He agreed without hesitating and he sent an-
other paper dealing also with triangles:

Hi Josef,

here is my paper again. I would be interested to know if Corollary 1 is already known. I didn’t know
this until I was working with this paper. Perhaps you or some of the readers of the DNL know.

Best regards,
David



p40 David Sjostrand: Points of Interest in a Triangle D-N-L#67

Incenter, Excenters, Orthocenter, Centroid and
common Intersection Points in a Triangle
David Sjostrand, Onsala, Sweden

Let ABC be a triangle. In this paper we often identify a point P with the vector OP.

Definition 1:

TinetA, B, %, yd) = (A - B Joix-AJ-(A —-B vy -AD)=0

2 z 1 1 1 2z
D is a point lying between the points 4 and B on the line passing 4 and B dividing the segment AB in
two parts in the ratio a/b, where a,b >0, counted from B.

A+bB A+bB
Then b(B—D):a(D—A)QD:%. It is obvious that the point %is on the line
a+ a—+

passing 4 and B for any real numbers a and b such that a +b # 0

Definition 2:

A and B are two points in the plane and a and b are real numbers @ and b such that a + b # 0, then the
A+bB

point D = a—b divides the line segment 4B in the ratio a/b counted from B.
a+

In Defintion 2 D is an arbitrary point on the line passing 4 and B.

We will use Derive to prove

Theorem 1
The lines
bB+cC C+aAd A+bB
line(A,—c,x,yj , line(B,u,x,yj and line(C,a—,x,yj are concurrent and
b+c c+a a+b
: ) ) .. aA+bB+cC
their common point of intersection is ———— .
a+b+c

Proof:

We make the following definitions in Derive
[A =[al, a2], B := [bl, b2], C == [c],c2],a:=a,b:=Db, c:=c]
If we simplify

biB + ahA arh + o )
SOLUTIONS|| Tine|C, ———— =, v |, Tine|B, —— =, v ||, [%, ¥]

b+ a

b«B + c.C aA + bB 7
SOLUTICONS| | Tine| A, —— %, v |, Ting|C, — », v ||, [», ¥]
b J

b + ¢

and

we receive in both cases

aral + bbbl + il ara?2 + bib2 + o2
, which is equal to

a+b+c a+b+c

aA+bB+cC
a+b+c
Q.ED.
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There is a converse of Theorem 1:

Theorem 2

4, is on the line passing B and C, B, is on the line
passing C and 4 and C, is on the line passing 4
and B.

If the three lines line(A, 4 ), line(B, B, ) and

Zine(C, Cl)are concurrent, there are three real

numbers a, b and ¢, such that

1:bB+CC’ B :cC+aA and C :aA+bB

1
b+c c+a a+b

Figure 1

Proof:
bB+cC

b+c
Since B, is on the line passing C and A there exist real numbers ¢, and a such that

Since A, is on the line passing B and C there exist real numbers b and ¢ such that 4, =

£(ch +a,A)
cC+aAd c cC+aAd c
B = = = where a =—a,.
¢ +aq E(C1+a1) c+a G
cl
A+bB
The lines line( A, 4,), line(B,B,)and line(C,a—bj are concurrent according to Theorem 1.
a+
A+bB
Therefore C, = @z
a+b

Q.E.D.

Corollary 1
AC, B4, CB _

The lines line(A, 4 ) , line(B, B, ) and line(C, o ) are concurrent if and only if =
CB AC BA

Proof:

It follows from Definition 2 and Theorem 1 and Theorem 2 that lines line(A, 4 ) , line(B, B, ) and

C
Zine(C ,C ) are concurrent if and only if there are real numbers a, b and ¢ such that b—c divides
+c

BC 1n the ratio b/c counted from C.

cC+ad

c+a

divides CA4 in the ratio c¢/a counted from A.
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aA+bB
a+b
AC, B4, CB b c a

divides CA4 in the ratio a/b counted from B.

Since =——— =1 Corollary 1 is proved.
CB AC BA c ab
Q.E.D.
Corollary 2
A+bB+cC
Ifa= |B -Cl,b= |C— A| and ¢ = |A —B| , the incenter of the triangle ABC is arrooTer
a+b+c

Proof:
bB+cC
opret divides BC in the ratio b/c counted from C.

b+c
CC;aA divides CA4 in the ratio ¢/a counted from A.

c+a

A+bB
a b divides AB in the ratio a/b counted from B.

a+b

bB+cC
If a= |B -C|,b= |C—A| and ¢ = |A—B| then the lines line[A,b—c,x,yj ,
+cC
C+ad A+ bB
line(B,ﬁ,x, yj and line(C ,a—b,x, yj are the angle bisectors of the triangle ABC.
c+a a+

The incenter of a triangle is the common intersection point of the angle bisectors of the triangle.
Now the Corollary 1 follows from Theorem 1.

Q.E.D.

Lemma

Let ABC  be a  triangle and

a=|B-C|, b=|C— 4| and c =|4- B
If AD is the bisector of the exterior angle
BAF, then D = M .
-b+c
Proof:

BE 1is parallel to CF. Therefore BE = BA and the triangles BED and DCA are similar which gives

CD b
—— =— and consequently:
BD ¢

_ —bB+cC

¢(D-C)=b(D-B)=D e

Q.E.D.
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Corollary 3
The excenters of the triangle ABC are
—aA—-bB+cC aA—-bB—cC
) and
—a—b+c a—b-c
—aA+bB—-cC
—a+b-c
Proof:
. . . . . . —-bB +cC
The excenter, F, is the intersection point of the bisector of ZDBA, line A,b—, X,y |and the
~b+c
—aAd+cC
bisector of ZLBAF, line(B,u,x, yj )
—a+c
—bB +cC
According to Theorem 1 the intersection point of line(A,b—c, X, y) and
~b+c

. —aA+cC . —aA—-bB+cC
linel B,————— x,y |is —8M8M8M .

—-a+c —-a-b+c

We have to take care of the case that b = c. In this case the bisector of the exterior angles of 4 is paral-
lel to BC. The equation of this bisector is

(C -BI(x-A)-(C -Blly-A)=0
2 2 1 1 1 2

You receive the excenter as the intersection point between this bisector and

B +aA
line(C,b—a, X, yj using Derive:
b+a

af + bh.B
SOLVEH'Hne[C. - ¥, yJ, (C -BJefx-A)-(C -B I (y-A)C= o], [x, y]]
2 2 1 1 1 2

a+b

= ALY =

[ aral + bbbl - 13 araz + belb2 — <22 }
¥ =
a a

3

{a-aHb(bl—cl) a~a2+b(b2—c2)}_[a-a1+b-bl—c-cl a-a2+b-b2—c-02}:

a a a+b-c ’ a+b-c
—aA-bB+cC
—-a-b+c

By symmetry we conclude that the formulas for the excenters are as we have stated in Corollary 2.
Q.E.D.
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Remark
If you let a = b = ¢ in Theorem 1 you receive the well known formula for the intersections point of the
aA+bB+cC adA+aB+aC A+B+C

a+b+c  a+a+a 3

medians of a triangle,

Corollary 4

The altitudes of a triangle are concurrent.
Proof:

Let A4, BB, and CC, be the altitudes of the triangle ABC.

Then

ccosB

A1 divides BC in the ratio counted from B.

bcosC
acosC

B, divides C4 in the ratio counted from C.

cCOS
and

bcos A
C1 divides 4B in the ratio counted from 4.

acosB
ccosB acosC bcosA

Since = 1 the altitudes are concurrent according to Corollary 1.

bcosC ccosA acosB

Using ITERATES for finding the midpoint of a Triangle

Plot a sequence of triangles, Tn, where the vertices of Tn are the midpoints
of the sides of Tn-1. TO = F 1= a given triangle.

-1 3
2 3
#1: BN
-2 =2
-1 3

If we make the below defintion of f we have that Tn = f({Tn-13.

P +F P +F P +F P +F
1 2 2 3 3 1 1 2
#2 fIPY = . i '
2 2 2 2
IT we plot the below expression we receive the triangles TO, T1,... T20.

#3: ITERATES(fix), =, P, 20)

The below express-ion gives the median from A to BC in the triangle ABC,
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B +C
o=p
Z Z
2
#4:  MEDIANCA, B, C) iz y = x - A Y+ A

B+ C 1 2
- A
2 1

1

The below expression gives the medians of TO,

medians = [I'I'IEDIAN(P . P, P ), MEDIANCP , P, P}, MEDIANCP , P , P ]]

#5: i 2 3 2 3 1 3 1 2

The medians of T0 are cbviously the medians of Tn for all n.

Let 5n be point in the 1interior or on the boundary of Tn.

It 15 obvius that the sequence Sn 15 convergent. Let Tim S5n = M. It 15 obwious
that M 1= the unigue point belonging to all Tn. Since all the medians intersect
Tn for all n they must all pass M.

{See the plot of #5 on the next page.}

Thus we have proved that the medians of a triangle intersect 1in one point, M.

T

Let Pn,1, Pn,2 and Pn,3 be the wvertices of Tn. We have that
Fr,1+Pn, 2+Pn, 2 = (Pn-1,1+Fn-1,23/2 + (Pn-1,2+Fn-1,323/2 + (Pn-1,3+Pn-1,13/2 =
= Prn-1,1+Prn-1,24+Prn-1,2 = PO, 1+P0O, 24+F0, 3,

On the other hand Tim Pn,k = M.
Therefore 3M = Tim{Pn,1+Pn,2+Pn, 3> = Tim{PD,1+P0,2+F0,3) = PO,1+P0,2+P0, 3.
We have thus proved the wellknown formula M={A+B+C) /3.

Let M be the intersection point of the medians,
We can see that Tim Tn = M when n tends to infinity.

F +F +F

1 2 3 1 4
#w: — |- — —
3

3 3

We can varify that M 1s given by #6 by verifying a vertice of T20 with #6

#7:  (ITERATE(f(x), x, P, 200) =

[ 349523 1398103 }
1

1048576 104R576

F +F +F
1 2 3 7 g
#5 ———————————— - (ITERATEC(f(x), =, P, 2001 -
3 1

3145728 I 3145728
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Titbits 34

or Polynomial Arithmetic for the Advanced

(c) Johann Wiesenbauer, Vienna University of Technology

On quite a few occasions I have been dealing with polynomial arithmetic in the past (for
example, cf. my Titbits 13, 17, 25, 26). As this is a very important and fundamental
topic, indeed, hopefully you won't object to my resuming it once more. To be more pre-
cise, I would like to put together a number of basic polynomial routines that could be
used in a Derive-implementation of the celebrated Schoof-algorithm for point counting
on elliptic curves of the form y*2 = x"3 +ax +b mod p for some prime p, although this
algorithm (and some refinements like the SEA-algorithm) are covered in depth only in a
future issue of this series. Hence, to some extent this is also a continuation of my
Titbits 30, where I already listed a number of important tools regarding computations
on those elliptic curves.

Let's start with the 4 fundamental routines polyrem(uyv,p,x), polyquot(u,v,p,x),
polygcd(u,v,p,x) and polypower(u,nyv,p,x). In all cases u and v are two polynomials in
Zp[x], i.e. the polynomial ring over the residue class ring Zp for the prime p. While the
first two are supposed to compute the remainder and quotient of the division uiv, the
output of the third and fourth should be the gcd(u,v) and the polynomial power u”k mod
v, both again in the ring Zp[x]. As for the last routine we assume w.l.o.g. that v is
normed, i.e. has got 1 as the leading coefficient.

Using basically the routines from the Titbits 25 quoted above, a first implementation
could look like this:

polyremu, v, p, x) i=
Frog
#1: u := FACTORCREMAIMCER(u, v, %), Triwial, =)
POLY_MODCNUMERATOR LY - INVERSE_MODCDENOMINATORCUY, pl, p)

polyquotiu, v, p, x) =
Frog
#2: u iz FACTORCQUOTIENT(w, +, =), Triwial, =1
POLY_MODCMUMERATOR (L) - INVERSE_MODCDENOMINATOR WY, pl, p)

polygedu, v, p, %, r_) =
Frog

u = POLY_MODCw, p)

v = POLY_MODOw, p)

Loop
#3: Itfv=0

RETURN wu
r_ iz palyremiu, v, p, %)

WRITE(POLY_DEGREE(r_, =))
U
W

=
=




D-N-L#67 Johann Wiesenbauer: Titibits 34 pa7

polypoweriu, k, v, p, %, u_:= 1] :=
Loop
It k=20
RETURN wu_
#4 If ODD7 (k]
u_ = POLY_MODCREMAIMDER (u-u_, w, xJ, pl
POLY_MODCREMAINDERCu-u, v, x1, p)
FLOOR(k, 22

u
k

In fact, they do work, as the examples below show.

#5: oz POLY_MODCS-RANDOM_POLY(x, 3, 7], 7)

3 2
#a Wiz ded + 6w + Bk + 5

#7: u o= POLY_MODCA-w. RANDOM_POLY (x, 7, 77, 7
10 2] & 3] 5 4 3 2z
##5 Uiz bex + % + 3% +2%x +2&% +4w +xH +3FH +6x+6
#4 . w o= POLY_MODCZ2.w. RANDOM_POLY(x, 7, 731, 7
10 & 7 5 4 3 z
#10: v = G-x + B + 3w +Bew +dexw + 3w+ 2w+ Bex

3 2
#11: polwgedlu, v, 7, %) = 8% + 5% + G-x + 3

#12: polyged(polyquotiu, w, 7, %), polyquotly, w, 7, %), 7, %] = 2

#13: v iz POLY_MODCINVERSE_MODCS, 71-w, 7)

10 & 7 5 4 3 2
#14: vz x + % +dx +¥ + 3w +4x + 5w +x

2] B 7 5] 5 4 3 2
#15: polypowerfu, 10, v, 7, x) = 2.%x + 2% +5.%x +4.x + 5% +x +2:x +6-x +6x+1

10 2] B 7 f 5 4 3 2z
#156: POLY_MODCREMAINDERCW |, v, =), 7] = 2-x + 2:x + 5x +4x +5x +x +2-x +6:x +6x+1

There are a number of objections though. A minor one is that the outcome of
polygcd(u,v,p,x) is usually not normed, i.e. it hasn't got 1 as the leading coefficient, as
this is a common convention for gcd's of polynomials. There is an easy remedy for this
problem, namely by "norming" the divisor polynomial before each division in the euclid-
ean algorithm, as this was already carried out for v above before the computation of
polypower(u,10,v,7 x)

polyged(u, v, p, x, d_, r_J :=
Frog
u o= POLY_MODCu, p)
Ifu=20
RETURN POLY_MOD(v, pl
Loop
v iz POLY_MOD(w, gl
Ifw=20
#17: RETURN w0
d_ := POLY_DEGREE(w, =)
WRITE(d_)
o= LIMOCw fa™d_, =, =)
v iz POLY_MODCINYERSE_MODCr_, pl-w, pl
r_ := REMAINDERCL, v, =)
u
W

W
r
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3 2

#18: polygediu, v, 7, %1 =% + 2:% + 2% + 4

A far more serious problem with respect to our goal is the poor performance of the
routines above, if u and v are polynomials of a "large" degree, say of degree about 1000
or even more. (For example, the corresponding computations fiir polygcd(u,v,p,x) would
take some quarters of an hour, rather than some seconds, as the interested reader can

easily check himself by following the pattern abovel)

In the following I'm trying to fix this problem by setting up my own polynomial arithme-
tic based on the the vector representations of the involved polynomials. In order to
ease the change between the polynomial representation and the vector representation
of a polynomial I will first provide the routine polytovec(u,p,x) as well as its inverse

vectopoly(u,x).

polvtovec(u, p, x) =
Prog
u = POLY_MODCu, p)
Ifu=20
RETURM []

#19 u = MODESUBSTCTERMS(U + pe (x™POLY_DEGREECW) - 11/(x — 117, x, 1J, g

Loop
If FIRST(u) = O
RETURH wu
u := REST(u)

a_
#20: wvectopoly(u, x) := u-¥ECTOR(x , j_, DIM{w) - 1, 0, -1}

Furthermore, we need some basic operations for polynomials represented as vectors,
such as the product vecmult(u,v,p) of two polynomials u and v and the remainder

vecrem(u,v,p) of the division u:v (as always in Zp[x]!)

vecmult(u, «, p, 5_) :=
Frog
If DIM(u) < DIMCw)
[5_ = u, wi=w, v:i=5s_]
s=_ = O-u
v = REVERSE(w)
Loop
Ifwv=1[]exit
#21: s_ = ADJOINCO, s_ + FIRST(wl-u)
u = APPENDCu, [0]3
v iz REST(w)
s_ = MOD(s_, p)
Loop
s_ = REST(s_)
If FIRST(s_) # O
RETURN =_

#22.

vecremiu, v, p, k_ = 07 :=
Frog
If DIMCu) < DIMOw)
RETURN u

Loop
If DIM(w) = DIM(u) exit
k_ + 1
v 1= APPEND(v, [0]D

Loop
u = MODCw — FIRST(u)-w, pl
u = REST(W)
k_ =1

It k_ =« 0 =1t
v = DELETE(w, -1)
Loop

If FIRST(u) = O
RETURN wu
0
RETURN wu

u = RESTCU]

Now I'm going to replace the routines polygcd(u,v,p,x) and polypower(uk,v,p,x) above

with the following new implementations.
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polyged(u, v, p, x, k_ =0, £, v_) =
Frog
u = polytoveciu, p, x)
v iz polytovec(v, p, xJ
If DIMCu) < DIMOw)
[t_ = w, wi=w, vi= t]
Loop
Ifv =[]
RETURN wectopolyiul
t_ = INVERSE_MODCFIRST(v), p)
v oz MODCE_-v, p)
Loop
If DIM(w) < DIMOu)
Prog
k_ + 1
v = APPENDCw, [O])
#23: exit
t_ = u
Loop
If FIRST(t_) = O
t_ = MODC(+_ - FIRST(t_)-v, p)
t_ = REST(t_)
Ifk_=0eant

w = DELETE(w, -1)
k_ -
Uiz v
Wi
Loop
If v =[]
axit
If FIRST(v] = 0O exit
w 1= REST(w]

3 2
#24: polygediu, v, 7, x1 =x + 2:x + 2-x + 4

polypower(u, k, r, p, %, ¥, u_:= [11) :=
Frog
u = polytoveclu, p, x)
ro= polytovecir, p, )

Loop
#25: If k=20
RETURN wvectopolylu_)
If ODD7 (k)
u_ = vecrem(vecmult(u, u_, pl, r, pl
u = wvecremCvecmultlu, w, pl, r, pl
k := FLOOR(k, 27

g 2 7 6 5 4 3 2

#26: polypower(u, 10, v, 7, x) = 2:x + 2% + 5% +4.x +5.%x +x +2:x +6x +6x+1
Again we got the correct result for our examples above and already now a noticable in-
crease of performance can be seen, though the full power of these small gems of pro-

gramming will become only visible when dealing with huge polynomials as the reader
might again check himself.

As for our goal, namely to provide all necessary tools for a later implementation of
Schoof's algorithm, we need some further tools concerning computations on elliptic
curves. The first routine of this sort computes the so-called division polynomials
w(n,a,b,p,xy). They are of the form nf(x)y , if n is even and of the form f(x), if n is odd,
where f(x) is some normed polynomial in x, whose zeros are exactly the
x-coordinates of all n-torsion points (x,y) of E withy # O in the algebraic closure of Zp.
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In particular, it easily follows from this that the degree of f(x) grows like n"2/2. (To
be more precise, this degree is at most (n"2-1)/2, if n is odd, and at most (n"2-4)/2, if
n is even. Furthermore, those bounds are sharp if and only if p is not a divisor of n.)

Win, a, b, p, %, ¥, u_J =

Prog
Ifn<3
RETURN noy*MAXCD, n — 1)
Ifn=23
RETURN POLY_MOD(3.x"4 + G.2.x"2 + 12.b.x - 22, p)
I'Fn:4

RETURN POLY_MODC(x6 + 5.a-x™4 + 20.b.x*3 - 5.2"2.%"2 - 4.a.bax - 8:b"2 - a*3) 4.y, p)
#27! If EVEN?(nJ
Prog
U_ = Lpl:nfrz + 2| a, I3! P X Y)'chnfz - ll a, |:’I PoXy Y:‘Az
u_ = winf2 - 2, a, b, p, %, ¥Iinf2 +1, a, b, p x, y)“Z
POLY_MOD(W(n/2, &, b, p, x, wlwu_+(p + L2/02:yD, pJ
Frog
u_ = plln + 3242, a, b, pyox, ydep(ln - 1272, a, b, p, x, ¥y)'3
u_ =l o+ 12/2, a, b, opoox, wd"3plin - 320/2, a8, b,op,ox, ow)
POLY_MOD(REMAINDER(u_, v"2 — x*3 — awx — b, vJ, p)

16 14 g 7 2
H#28: i, 1, 2, 7, %) = Bax oy + 4w 0y + R ey o+ 3ax ooy + 5ax oy 4y

21 14 7
#29: 7, 1, 2, 7, %) =6x +5x +3x +1

Among other things, those division polynomials can be used to compute the x- and y-
coordinate of the additive power nP of a point P=(x,y) on E over the algebraic closure of
Zp, where P must not be an n-torsion point. Since x and y are variables here, those co-
ordinates are rational polynomials in x and y, where the exponent of y is again at most 1.
They are computed by the following routines.

npx(nl a, bl poox, 5ot }l'_:l =

Frog
5_ = '-PE” -1 a b, p = }"_:]-LP':H +1, a, b, p, %, }"—j
If ODD7(n)
#30: s_ e (™3 + a-x + b))y "2

t_ = "P[:nl a, b| PyoXy :*"—:]ﬂ2
If EWENT(n]

t_ e (%3 + a-x + By "2
POLY_MOD(x-t_ - s_, p)/POLY_MOD(t_, g)

npyl:nl a'I bI pl xl }rl 5—I t—] =

Frog
5= '-PE” + 2| 3, bl Pyo¥y y]-tp(n - ll a, bl PyoX, }':Ihz
5= I:'":II—\YI-—Ml:IDI:S— - LP(FI - 2| a, bl PoXy }":]-LIJ(I"I + j-| a, b| PyoXy }":]'ﬂzl p:]
#31: t_ = deywepin, a, b, p, x, wI™3
If EVENT(n)

t_ e (x*3 + a-x + B2
s_/POLY_MOD(t_, p)

S 7 & 5 4 3 2
¥ +2-x +4x +2-% +x +4x +5x +x+ 3
#32: nPx(3, 1, 2, 7, %) =

B 5 5 4 3 2
2% o+ ¥ +4w + 2% o +x +4x o +x+1

12 10 =] 2 7 5 3 2
yoldow +dx + 3w +5x +dex + 5w + 5 +2ex o+ x+ 5]
#33: nPy(3, 1, 2, 7, %) =

12 10 9 B ¢ 5 3 g

3w +4w + 2w +5w +x o+ 2% +5x +B6B.%x +x+ 3

By now, we have accumulated the most important ingredients of the Schoof's cele-
brated algorithm for point counting on the elliptic curve E:y"2=x"3+ax+b mod p. How-
ever, as already mentioned, due to lack of fime and space I will postpone a discussion
and an efficient implementation of this algorithm until the next issue.
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Surface #2: (¥ +y* +2°)" =x" +’

Surface #2 in DERIVE presented applying functions from polycontour .mth (DNL#63) and
IMPLICIT Peter.mth (DNL#64).

2 2 22 2 2
WECTOR(ContourPts_20((x +v +2 ) - -v% , 1, -1, 1, -1, 1, 0.05, 0.05), 1, -0.5, 0.5, 0.1}

2 2 22 2 2
VECTOR(ContourDots_X¥{{x +v +2 3 -% -v , 1, -1, 1, -1, 1, 0.05, 0,053, 1, -0.5, 0.5, 0.1}

ImplicitDetsi{x +vy +2z ) == +vy , [-1, -1, -0.5], [1, 1, ©.5], 0.05)

2 2 2 2 2 2
VECTORContourPts_2Y(ix +vy +z ) - x -y , 1, -1, 1, -1, 1, 0.025, 0.025), 1, -0.25, 0.25, 0.05)

2 2 22 P 2
ImplicitPts((x +v +2 3 == +vy , [-1, -1, -0.5], [1, 1, 0.5], 0.05)

AL

a 01.**?" YR ".LA"._

ol g AL N5
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D-N-L#67

Surface #2 in DPGraph

Surface #2 in MuPAD

FAZ - Flache #2

_plot (plot::Implicit3d{ (z"2+y"24+2"2) *2=x"2+v"2,
x=-1..1,y=-1..1,z=-1..1,
Mesh = [21,21,21], AdaptiveMeszh = 3},
Scaling = Constrained)

Surface #2 in Autograph 3.20




The Mathematics Education into the 21St Century Project

together with

The University of Applied Sciences (FH), Dresden (Germany)

are proud to announce our

10th (Anniversary!) International Conference

“Models in Developing Mathematics Education

September 11 - 17, 2009
Dresden, Saxony, Germany

in cooperation with

Saxony Ministry of Education

Chairman
Dr. Alan Rogerson, International Coordinator of the Mathematics in Society Project

(Poland).
Prof Dr Fayez Mina, Dept. of Curriculum & Instruction, Faculty of Education, Ain

Shams University (Egypt).

You are invited to attend our project conference to be held in the historic and beauty-
ful city of Dresden, Germany.

The chairman of the Local Organising Committee will be Prof. Dr. Ludwig Paditz of
the Dresden University of Applied Sciences.

For ALL further conference details and updates please email arogerson@inetia.pl .
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