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ACA 2009 http://aca2009.etsmtl.ca/ 
The meeting is run in a standard format where sessions are held in one or more 2 to 3�hour 
blocks of time. These blocks typically consist of halfhour talks or a one�hour overview and 
half�hour talks. The half�hour slot includes time for questions. 
Session Proposals: Individuals are invited to organize a session. Proposals should be sent to 
the conference program chairs, Michel Beaudin (michel.beaudin@etsmtl.ca) and Michael 
Wester (wester@math.unm.edu). The duties of the session organizers are: • Submit a proposal 
for the session. 

• Invite the speakers. 
• Maintain a web page describing the session and providing talk abstracts. Examples can 
be found on the ACA main website at http://math.unm.edu/aca.html. 

The scientific quality of a special session is the sole responsibility of the session organizers. Each 
session organizing team will issue a call for papers/contributions stating the terms for submitting 
contributions, including the deadline each team has set for receiving. Please check the list of 
approval sessions at http://aca2009.etsmtl.ca/ and consult the link to the session that addresses 
your interests. 
See ACA 2009 website for more details: http://aca2009.etsmtl.ca/ 
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Dear DUG Members, 

I send you my best regards from a wonderful springtime in Austria. 

You may believe it or not, this is the first issue of volume 19 of our DERIVE and CAS-TI News-
letter. Inspecting the list of future contributions you can imagine that we have materials for some 
more volumes. 

Roland Schröder from Celle, Germany, sent a wonderful collection of short projects for class-
room investigations. His first one is a treatment of an ancient way for multiplying integers – 
which offers a nice connection to information technology of today. Just recently I received a mail 
from Roland announcing a German publication of his collection. Please inform yourself on the 
back page. 

Guido Herweyers from Belgium offers a series of introductory papers for the use of NspireCAS. 
Many thanks for that. We will start publishing his papers with the next DNL. 

I have the pleasure to announce two included papers from colleagues who intended to give a talk 
at TIME 2008. Their talk was accepted but unfortunately they both could not participate. Hilde-
gard Urban-Woldron from Austria and Michael de Villiers from South Africa provided their pa-
pers for our newsletter. I am very grateful for that and I am sure that you will enjoy the “Science” 
and the “Function and Proof” as well. Michael de Villiers sent an exciting copy of his “Some 
Adventures in Euclidean Geometry” to Würmla. In the first chapter he describes a “Classroom 
Episode”. I was very enthusiastic about this chapter and asked Michael for permission to translate 
it for the Austrian Teachers. You can find the translated version on www.acdca.ac.at in the very 
near future. 

Thanks to Hildegard and Michael, hope to see you at our next Conference (Malaga 2010). 

The Information Page shows an invitation for participating at ACA09 (Applications of Computer 
Algebra). There is a special “DERIVE Strand”. All colleagues who want to keep the spirit of 
DERIVE alive are very welcome. We also welcome all friends who would like to help transfer-
ring the spirit and the features of DERIVE to TI-NspireCAS. Colleagues who have no experience 
with DERIVE but with the TI-CASs are cordially invited to share their applications and libraries 
with us. 

You might miss Johann Wiesenbauer´s Titbits in this DNL. He wanted to have a perfect paper 
about the “Quadratic Sieve” and this took some days more than intended. So I finished the DNL 
without including his contribution. But I have a new folder DNL74 and started a new document 
dnl74.doc which includes Titibits(37) from Johannes. Many thanks, Hannes, you will have no 
problems with the next deadline. 

Finally I´d like to inform you that our phone number has changed.  

The new number is ++43-06604070480. The old number will be valid for some time, but I don´t 
have the FAX-machine connected any longer. We didn´t receive a FAX for almost two years. 

My wife and I wish you a pretty spring (fall on the other side of the globe). 

 
Download all DNL-DERIVE- and TI-files from 
http://www.austromath.at/dug/ 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group. 
It is published at least four times a year 
with a contents of 40 pages minimum. The 
goals of the DNL are to enable the ex-
change of experiences made with DERIVE, 
TI-CAS and other CAS as well to create a 
group to discuss the possibilities of new 
methodical and didactical manners in 
teaching mathematics. 
  

Editor: Mag. Josef Böhm 
D´Lust 1, A-3042 Würmla 
Austria 
Phone: ++43-06604070480 
e-mail: nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & CAS-TI Newsletter will be. 
 
 
 
Next issue:  June 2009 
Deadline  15 May 2009 

 
Preview:  Contributions waiting to be published  
 Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER 
 Wonderful World of Pedal Curves, J. Böhm 
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER 
 Financial Mathematics 4, M. R. Phillips 
 Hill-Encription, J. Böhm 
 Simulating a Graphing Calculator in DERIVE, J. Böhm 
 Henon & Co, J. Böhm 
 Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT 
 An Interesting Problem with a Triangle, Steiner Point, P. Lüke-Rosendahl, GER 
 Overcoming Branch & Bound by Simulation, J. Böhm, AUT 
 Diophantine Polynomials, D. E. McDougall, Canada 
 Graphics World, Currency Change, P. Charland, CAN 
 Cubics, Quartics – interesting features, T. Koller & J. Böhm 
 Logos of Companies as an Inspiration for Math Teaching 
 Exciting Surfaces in the FAZ / Pierre Charland´s Graphics Gallery 
 BooleanPlots.mth, P. Schofield, UK 
 Old traditional examples for a CAS – what´s new? J. Böhm, AUT 
 Truth Tables on the TI, M. R. Phillips 
 Advanced Regression Routines for the TIs, M. R. Phillips 
 Where oh Where is IT? (GPS with CAS), C. & P. Leinbach, USA 
 Embroidery Patterns, H. Ludwig, GER 
 Mandelbrot and Newton with DERIVE, Roman Hašek, CZ 
 Snail-shells, Piotr Trebisz, GER 
 A Conics-Explorer, J. Böhm, AUT 
 Practise Working with times 
 Huffman-Code with DERIVE and TI-CAS, J. Böhm, AUT 
 Tutorials for the NSpireCAS, G. Herweyers, BEL 
 Some Projects with Students, R. Schröder, GER 
 
 and others 
 
 
Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag.Josef Böhm 
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Peter Lüke-Rosendahl, Germany 

Hello Josef, 
… I like to read your revised reprints. I am just trying your „Discussion of a Curve“ from revised 
DNL#15. I found out that “terrace points” (= points with  = 0f f′ ′′= =  = 0) are not recognized prop-
erly. The reason might by that within an IF-condition sign(1) and sign(0) are not distinguished … 

In his next mail Peter sent his proposal using the fact that the sign of the first derivative changes in a 
turning point, but does not change in an extremal value with slope = 0. 
I implemented Peter´s idea and by the way I tried to improve the “program” from revised DNL15 to 
also consider points with vanishing higher derivatives (giving “flat points” …) 

Many thanks, Peter for the fruitful discussion. 
 
Guido Herweyers, Belgium 

Dear Josef, 
I attach a paper which we used at our Introductory Workshops for TI-Nspire. If you find it suitable for 
the DERIVE and CAS-TI Newsletter, then I can send some more materials for publication in our jour-
nal. 

Best regards from Belgium, 

Guido 

DNL:  
Dear Guido, 
Thanks for your paper. They are really very suitable and I am looking forward to receiving the other 
papers. It would be great to include them into future issues of the DNL. 

Many thanks, Peter for the fruitful discussion. 
 
Nils Hahnfeld, Virgin Islands 

Did you ever make music with the TI-89? Try http://www.ticalc.org/pub/89/asm/sound/   
I´d like to hear “Leise rieselt der Schnee” (a German Christmas song about soft falling snow), because 
we don´t have any. 
 

More User Forum on the back page 
 
 

Elliptic Integrals as an easy to follow Iteration Process 
(easy to follow, but not easy to prove!) 

 
Browsing in my old books on programming I found a nice example for performing an iteration algo-
rithm in the field of integration. In [1] is written that Gauß used the method of arithmetic – geometric 
mean to calculate an elliptic integral of the first kind: 

Gauß showed that for 
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Then Ell_I(a,b) = Ell_I(a’,b’). Proceeding until a’ and b’ are very close, then _ ( , ) .
2

Ell I a a
a

π′ ′ =
′

 

This is a nice occasion to demonstrate either the ITERATES-function together with appropriate LIST 
operations in DERIVE and/or working in SEQUENCE-Mode on the TIs. 

 
 

Compare the calculation times. 
 
Here is the iteration using the sequence mode on the TI-92/Voyage 200 

 

   
 

        Josef Böhm 
 

[1]  D. Herrmann, Programmieren von Mikrocomputern 11, Vieweg 1984 
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Prof. de Villiers intended to attend TIME 2008 in South Africa. Although being in south 
Africa he couldn´t make it to the Conference and give his lecture. I found his abstract 
very interesting and asked him later if he would provide his paper – or a similar one – for 
our newsletter. I am very grateful that he answered immediately and gave permission to 
reprint one of his many publications. His ideas are not fixed to one piece of software. You 
can replace Sketchpad with all dynamic geometry programs (Cabri, …). I recommend 
visiting Prof. de Villiers´website. It is a rich resource for all of you who are loving ge-
ometry. Josef 
 
http://mysite.mweb.co.za/residents/profmd/homepage.html 

 
 

Excerpt from Introduction to De Villiers, M. (1999). Rethinking Proof with Sketchpad.  
Key Curriculum Press. (All Rights Reserved). 

 

THE ROLE AND FUNCTION OF PROOF WITH SKETCHPAD* 
Michael de Villiers, University of Durban-Westville 

Introduction 

The problems that students have with perceiving a need for proof is wellknown to all high school 
teachers and is identified without exception in all educational research as a major problem in the 
teaching of proof. Who has not yet experienced frustration when confronted by students asking "why 
do we have to prove this?" The following conclusion by Gonobolin (1954:61) exemplifies the prob-
lem: 

"... the pupils ... do not ... recognize the necessity of the logical proof of geometric theo-
rems, especially when these proofs are of a visually obvious character or can easily be 
established empirically." 

According to Afanasjewa in Freudenthal (1958:29) students' problems with proof should not simply 
be attributed to slow cognitive development (for example, an inability to reason logically), but also 
that students may not see the function (meaning, purpose and usefulness) of proof. In fact, several 
recent studies in opposition to Piaget have shown that very young children are quite capable of logical 
reasoning in situations that are real and meaningful to them (Wason & Johnson-Laird, 1972; Walling-
ton, 1974; Hewson, 1977; Donaldson, 1979). Furthermore, attempts by researchers to teach logic to 
students have frequently provided no statistically significant differences in students’ performance and 
appreciation of proof (Deer, 1969; Walter, 1972; Mueller, 1975). More than anything else, it seems 
that the fundamental issue at hand is the appropriate motivation of the various functions of proof to 
students. 

The question is, however, "what functions does proof have within mathematics itself which can 
potentially be utilized in the mathematics classroom to make proof a more meaningful activity?" The 
purpose of this section is to describe some important functions of proof, and briefly discuss some im-
plications for the teaching of proof. 
 
 
* This section is a revised version of an earlier article by the author titled “The role and function of proof in 
mathematics,” Pythagoras, Nov 1990, 24, 17-24. It is reproduced here with permission of the Association for 
Mathematics Education of South Africa (AMESA). 



   p 6   
 

Michael de Villiers: The Role and Function of Proof  

  D-N-L#73  
 
The functions of proof in mathematics 

Traditionally the function of proof has been seen almost exclusively as being to verify the correctness 
of mathematical statements. The idea is that proof is used mainly to remove either personal doubt or 
the doubt of skeptics, an idea that has one-sidedly dominated teaching practice and most discussions 
and research on the teaching of proof. For instance, consider the following two quotes: 

"a proof is only meaningful when it answers the student's doubts, when it proves what is 
not obvious." (bold added) - Kline (1973:151) 

"the necessity, the functionality, of proof can only surface in situations in which the stu-
dents meet uncertainty about the truth of mathematical propositions." (bold added) - 
Alibert (1988:31) 

Hanna (1989) and Volmink (1990) also appear to define proof only in terms of its verification function 
as follows: 

"a proof is an argument needed to validate a statement, an argument that may assume 
several different forms as long as it is convincing." (bold added) - Hanna (1989:20) 

"Why do we bother to prove theorems? I make the claim here that the answer is: so that 
we may convince people (including ourselves) ... we may regard a proof as an argument 
sufficient to convince a reasonable skeptic." - Volmink (1990:8; 10) 

Although many authors (e.g.Van Dormolen (1977), Van Hiele (1973) and Freudenthal (1973) and 
others) have argued that one's need for deductive rigour may undergo change and become more so-
phisticated with time, this is also argued from the viewpoint that the function of proof is mainly that of 
verification. For example: 

"... to progress in rigour, the first step is to doubt the rigour one believes in at this mo-
ment. Without this doubt there is no letting other people prescribe oneself new criteria of 
rigour." (bold added) - Freudenthal (1973:151) 

Many authors have also proposed specific stages in the development of rigour, e.g. Tall (1989:30) 
proposes three stages in the putting up of a convincing argument, namely the convincing of oneself, 
the convincing of a friend and the convincing of an enemy. Although extremely useful distinctions, it 
considers only the verification function of proof. 

However, as pointed out by Bell (1976:24) this view of verification/conviction being the main 
function of proof "avoids consideration of the real nature of proof", since conviction in mathematics 
is often obtained "by quite other means than that of following a logical proof." Therefore the actual 
practice of modern mathematical research calls for a more complete analysis of the various functions 
and roles of proof. Although I lay claim to neither completeness nor uniqueness, I have found the fol-
lowing model for the functions of proof useful in my research over the past few years. It is a slight 
expansion of Bell's (1976) original distinction between the functions of verification, illumination and 
systematization. The model is presented here (in no specific order of importance) and discussed fur-
ther on: 

∗ verification (concerned with the truth of a statement) 
∗ explanation (providing insight into why it is true) 
∗ systematisation (the organization of various results into a deductive system of axioms, major 

concepts and theorems) 
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∗ * discovery (the discovery or invention of new results) 
∗ * communication (the transmission of mathematical knowledge) 
∗ * intellectual challenge (the self-realization/fulfillment derived from constructing a proof) 

Proof as a means of verification/conviction 

With very few exceptions, mathematics teachers seem to believe that only proof provides certainty for 
the mathematician and that it is therefore the only authority for establishing the validity of a conjec-
ture. However, proof is not necessarily a prerequisite for conviction—to the contrary, conviction is 
probably far more frequently a prerequisite for the finding of a proof. (For what other weird and ob-
scure reasons would we then sometimes spend months or years trying to prove certain conjectures, if 
we weren't already convinced of their truth?) 

The well-known George Polya (1954:83-84) writes: 
"... having verified the theorem in several particular cases, we gathered strong inductive 
evidence for it. The inductive phase overcame our initial suspicion and gave us a strong 
confidence in the theorem. Without such confidence we would have scarcely found the 
courage to undertake the proof which did not look at all a routine job. When you have 
satisfied yourself that the theorem is true, you start proving it." (bold added) 

In situations like the above where conviction prior to proof provides the motivation for a proof, the 
function of the proof clearly must be something other than verification/conviction. 

In real mathematical research, personal conviction usually depends on a combination of intui-
tion, quasi-empirical verification and the existence of a logical (but not necessarily rigourous) proof. 
In fact, a very high level of conviction may sometimes be reached even in the absence of a proof. For 
instance, in their discussion of the "heuristic evidence" in support of the still unproved twin prime pair 
theorem and the famous Riemann Hypothesis, Davis & Hersh (1983:369) conclude that this evidence 
is "so strong that it carries conviction even without rigorous proof." 

That conviction for mathematicians is not reached by proof alone is also strikingly borne out by the 
remark of a previous editor of the Mathematical Reviews that approximately one half of the proofs 
published in it were incomplete and/or contained errors, although the theorems they were purported to 
prove were essentially true (Hanna, 1983:71). Research mathematicians, for instance, seldom scruti-
nize the published proofs of results in detail, but are rather led by the established authority of the au-
thor, the testing of special cases and an informal evaluation whether "the methods and result fit in, 
seem reasonable..." (Davis & Hersh, 1986:67). Also according to Hanna (1989) the reasonableness of 
results often enjoy priority over the existence of a completely rigourous proof. 

When investigating the validity of a new, unknown conjecture, mathematicians usually do not 
only look for proofs, but also try to construct counter-examples at the same time by means of quasi-
empirical testing, since such testing may expose hidden contradictions, errors or unstated assump-
tions.In this way counter-examples are sometimes produced, requiring mathematicians to reconstruct 
old proofs and construct new ones. In the attaining conviction, the failure to disprove conjectures em-
prically plays just as important a role as the process of deductive justification. It appears that there is a 
logical, as well as a psychological, dimension to attaining certainty. Logically, we require some form 
of deductive proof, but psychologically it seems we need some experimental exploration or intuitive 
understanding as well. 
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Of course, in view of the well-known limitations of intuition and quasiempirical methods themselves, 
the above arguments are definitely not meant to disregard the importance of proof as an indispensable 
means of verification, especially in the case of surprising non-intuitive or doubtful results. Rather it is 
intended to place proof in a more proper perspective in opposition to a distorted idolization of proof as 
the only (and absolute) means of verification/conviction. 

Proof as a means of explanation 

Although it is possible to achieve quite a high level of confidence in the validity of a conjecture by 
means of quasi-empirical verification (for example, accurate constructions and measurement, numeri-
cal substitution, and so on), this generally provides no satisfactory explanation why the conjecture 
may be true. It merely confirms that it is true, and even though considering more and more examples 
may increase one's confidence even more, it gives no psychological satisfactory sense of illumina-
tion—no insight or understanding into how the conjecture is the consequence of other familiar results. 
For instance, despite the convincing heuristic evidence in support of the earlier mentioned Riemann 
Hypothesis, one may still have a burning need for explanation as stated by Davis & Hersh (1983:368): 

"It is interesting to ask, in a context such as this, why we still feel the need for a proof ... 
It seems clear that we want a proof because ... if something is true and we can't deduce it 
in this way, this is a sign of a lack of understanding on our part. We believe, in other 
words, that a proof would be a way of understanding why the Riemann conjecture is true, 
which is something more than just knowing from convincing heuristic reasoning that it is 
true." 

Gale (1990:4) also clearly emphasizes as follows, with reference to Feigenbaum's experimental dis-
coveries in fractal geometry, that the function of their eventual proofs was that of explanation and not 
that of verification at all: 

"Lanford and other mathematicians were not trying to validate Feigenbaum's results any 
more than, say, Newton was trying to validate the discoveries of Kepler on the planetary 
orbits. In both cases the validity of the results was never in question. What was missing 
was the explanation. Why were the orbits ellipses? Why did they satisfy these particular 
relations? ... there's a world of difference between validating and explaining." (bold 
added)) 

Thus, in most cases when the results concerned are intuitively self-evident and/or they are supported 
by convincing quasi-empirical evidence, the function of proof for mathematicians is not that of verifi-
cation, but rather that of explanation (or the other functions of proof described further on). 

In fact, for many mathematicians the clarification/explanation aspect of a proof is of greater im-
portance than the aspect of verification. For instance, the well-known Paul Halmos stated some time 
ago that although the computer-assisted proof of the four colour theorem by Appel & Haken con-
vinced him that it was true, he would still personally prefer a proof which also gives an "understand-
ing" (Albers, 1982:239-240). Also to Manin (1981:107) and Bell (1976:24), explanation is a criterion 
for a "good" proof when stating respectively that it is "one which makes us wiser" and that it is ex-
pected "to convey an insight into why the proposition is true." 
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Proof as a means of discovery 

It is often said that theorems are most often first discovered by means of intuition and/or quasi-
empirical methods, before they are verified by the production of proofs. However, there are numerous 
examples in the history of mathematics where new results were discovered or invented in a purely 
deductive manner; in fact, it is completely unlikely that some results (for example, the non-Euclidean 
geometries) could ever have been chanced upon merely by intuition and/or only using quasi-empirical 
methods. Even within the context of such formal deductive processes as axiomatization and defining, 
proof can frequently lead to new results. To the working mathematician proof is therefore not merely a 
means of verifying an already-discovered result, but often also a means of exploring, analyzing, dis-
covering and inventing new results (compare Schoenfeld, 1986 & De Jager, 1990). 

For instance, consider the following example. Suppose we have constructed a dynamic kite with 
Sketchpad and connected the midpoints of the sides as shown in Figure 1 to form a quadrilateral 
EFGH. Visually, EFGH clearly appears to be a rectangle, which can easily be confirmed by measuring 
the angles. By grabbing any vertex of the kite ABCD, we could now drag it to a new position to verify 
that EFGH remains a rectangle. We could also drag vertex A downwards until ABCD becomes con-
cave to check whether it remains true. Although such continuous variation can easily convince us, it 
provides no satisfactory explanation why the midpoint quadrilateral of a kite is a rectangle. However, 
if we produce a deductive proof for this conjecture, we immediately notice that the perpendicularity of 
the diagonals is the essential characteristic upon which it depends, and that the property of equal adja-
cent sides is therefore not required. (The proof is left to the reader). 

 
Figure 1 

 
In other words, we can immediately generalize the result to any quadrilateral with perpendicular di-
agonals (a perpendicular quadrilateral) as shown by the second figure in Figure 1. In contrast, the gen-
eral result is not at all suggested by the purely empirical verification of the original hypothesis. Even a 
systematic empirical investigation of various types of quadrilaterals would probably not have helped 
to discover the general case, since we would probably have restricted our investigation to the familiar 
quadrilaterals such as parallelograms, rectangles, rhombi, squares and isosceles trapezoids. 
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The Theorem of Ceva (1678) was probably discovered in a similar deductive fashion by gener-

alizing from an "areas" proof for the concurrency of the medians of a triangle, and not by actual con-
struction and measurement (see De Villiers, 1988). However, new results can also be discovered a 
priori by simply deductively analysing the properties of given objects. For example, without resorting 
to actual construction and measurement it is possible to quickly deduce that AB + CD = BC + DA for 
the quadrilateral ABCD circumscribed around a circle as shown in Figure 2 by using the theorem that 
the tangents from a point outside a circle to the circle are equal. 

 
Figure 2 

 
Proof as a means of systematisation 

Proof exposes the underlying logical relationships between statements in ways no amount of quasi-
empirical testing nor pure intuition can. Proof is therefore an indispensable tool for systematizing 
various known results into a deductive system of axioms, definitions and theorems. Some of the most 
important functions of a deductive systematization of known results are given as follows by De 
Villiers (1986): 

∗ It helps identify inconsistencies, circular arguments and hidden or not explicitly stated as-
sumptions. 

∗ It unifies and simplifies mathematical theories by integrating unrelated statements, theorems, 
and concepts with one another, thus leading to an economical presentation of results. 

∗ It provides a useful global perspective or bird's eyeview of a topic by exposing the underlying 
axiomatic structure of that topic from which all the other properties may be derived. 

∗ It is helpful for applications both within and outside mathematics, since it makes it possible to 
check the applicability of a whole complex structure or theory by simply evaluating the suit-
ability of its axioms and definitions. 

∗ It often leads to alternative deductive systems that provide new perspectives and/or are more 
economical, elegant, and powerful than existing ones. 

Although some elements of verification are obviously also present here, the main objective clearly is 
not "to check whether certain statements are really true", but to organize logically unrelated individ-
ual statements that are already known to be true into a coherent unified whole. Due to the global per 
spective provided by such simplification and unification, there is of course also a distinct element of 
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illumination present when proof is used as a means of systematization. In this case, however, the focus 
falls on global rather than local illumination. Thus, it is in reality false to say at school when proving 
selfevident statements such as that the opposite angles of two intersecting lines are equal, that we are 
"making sure". Mathematicians are actually far less concerned about the truth of such theorems, than 
with their systematization into a deductive system. 

Proof as a means of communication 

Several authors have stressed the importance of the communicative function of proof, for example: 

"... it appears that proof is a form of discourse, a means of communication among people 
doing mathematics." (bold added) - Volmink (1990:8)  

"... we recognize that mathematical argument is addressed to a human audience, which 
possesses a background knowledge enabling it to understand the intentions of the speaker 
or author. In stating that mathematical argument is not mechanical or formal, we have 
also stated implicitly what it is ... namely, a human interchange based on shared mean-
ings, not all of which are verbal or formulaic." (bold added) - Davis & Hersh (1986:73). 

Similarly, Davis (1976) has also mentioned that one of the real values of proof is that it creates a fo-
rum for critical debate. According to this view, proof is a unique way of communicating mathematical 
results between professional mathematicians, between teachers and students, and among students 
themselves. The emphasis thus falls on the social process of reporting and disseminating mathematical 
knowledge in society. Proof as a form of social interaction therefore also involves subjectively negoti-
ating not only the meanings of concepts concerned, but implicitly also of the criteria for an 
acceptable argument. In turn, such a social filtration of a proof in various communications contributes 
to its refinement and the identification of errors, as well as sometimes to its rejection by the discovery 
of a counter-example. 

Proof as a means of intellectual challenge 

To mathematicians proof is an intellectual challenge that they find as appealing as other people may 
find puzzles or other creative hobbies or endeavours. Most people have sufficient experience, if only 
in attempting to solve a crossword or jigzaw puzzle, to enable them to understand the exuberance with 
which Pythagoras and Archimedes are said to have celebrated the discovery of their proofs. Doing 
proofs could also be compared to the physical challenge of completing an arduous marathon or triath-
lon, and the satisfaction that comes afterwards. In this sense, proof serves the function of self-
realization and fulfillment. Proof is therefore a testing ground for the intellectual stamina and ingenu-
ity of the mathematician (compare Davis & Hersh, 1983:369). To paraphrase Mallory's famous com-
ment on his reason for climbing Mount Everest: We prove our results because they're there. Pushing 
this analogy even further: it is often not the existence of the mountain that is in doubt (the truth of the 
result), but whether (and how) one can conquer (prove) it! 

Finally, although the six functions of proof above can be distinguished from one another, they 
are often all interwoven in specific cases. In some cases certain functions may dominate others, while 
in some cases certain functions may not feature at all. Furthermore, this list of functions is by no 
means complete. For instance, we could easily add an aesthetic function or that of memorization and 
algorithmization (Renz, 1981 & Van Asch, 1993). 
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Teaching proof with Sketchpad 

When students have already thoroughly investigated a geometric conjecture through continuous varia-
tion with dynamic software like Sketchpad, they have little need for further conviction or verification. 
So verification serves as little or no motivation for doing a proof. However, I have found it relatively 
easy to solicit further curiosity by asking students why they think a particular result is true; that is to 
challenge them to try and explain it. Students quickly admit that inductive verification merely con-
firms; it gives no satisfactory sense of illumination, insight, or understanding into how the conjecture 
is a consequence of other familiar results. Students therefore find it quite satisfactory to then view a 
deductive argument as an attempt at explanation, rather than verification. 

 
Figure 3 

It is also advisable to introduce students early on to the discovery function of proof and to give atten-
tion to the communicative aspects throughout by negotiating and clarifying with your students the 
criteria for acceptable evidence, the underlying heuristics and logic of proof. The verification function 
of proof should be reserved for results where students genuinely exhibit doubts. Although some stu-
dents may not experience proof as an intellectual challenge for themselves, they are able to appreciate 
that others can experience it in this way. Furthermore, in real mathematics, as anyone with a bit of 
experience will testify, the purely systematization function of proof comes to the fore only at an ad-
vanced stage, and should therefore be with-held in an introductory course to proof. It seems meaning-
ful to initially introduce students to the various functions of proof more or less in the sequence given 
in Figure 3, although not in purely linear fashion as shown, but in a kind of spiral approach where 
other earlier introduced functions are revisited and expanded. The chapters of this book are organized 
according to this sequence, and a few approaches to spiraling through the sequence are suggested in 
the Foreword. 
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Michael sent a great booklet about investigations of quadrangles. The first chapter is a fictual 
report of a geometry class on quadrilaterals and their properties. I asked Michael for permis-
sion to translate this chapter for our teachers and he agreed, many thanks for that. You can 
find this translation on the ACDCA-website www.acdca.ac.at. 
 
Part of this discussion between teacher and students is finding the hierarchy and connec-
tions between the different kinds of quadrilaterals (quads). This is the proposed structure: 
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ABSTRACT  
Mathematics, as the language of numbers, is an important tool in science classes, but science is not 
generally considered as a tool for teaching mathematics. This article presents examples incorporat-
ing science concepts and problem solving in math classes using a motion detector (Calculator 
Based Ranger, CBR) and technology from Texas Instruments (TI-Nspire-CAS-handheld or. TI-
Nspire-CAS-computer software). Real world data collection tools and Nspire introduce students to 
many fascinating concepts in mathematics and give them interactive ways to visualize relation-
ships and patterns and enhance critical thinking. The author is investigating the mathematical and 
pedagogical potential of using TI technology (Graphical calculator, Voyage, Nspire) in combina-
tion with Vernier sensors and probes as devices to collect various kinds of data and of using the 
software to serve as a powerful analysis tool, helping students to build mathematical models. Ex-
periences have been made in grade 9 to 11 (15- to 17-year old students) are reported. The use of 
technology seems to effectively enhance students’ learning. Students are actively engaged in 
learning as they make predictions, take measurements, analyze their data and make decisions 
about presenting their work. They are challenged to display their individual talents and mathe-
matical abilities in real world problem solving situations.  

 
1. INTRODUCTION AND FRAMEWORK 

The use of technology in mathematics is for the purpose of enhancing teaching and learning. “Tech-
nology should be used in the teaching and learning of mathematics and science when it allows one to 
perform investigations that either would not be possible or would not be as effective without its 
use.”(BRYAN, 2006, p. 231). 
 
With science-related experiments, mathematics concepts and skills can be effectively strengthened 
while illustrating real world applications. Equipment to collect and process data allows students to 
have more time to perform repeated data collection trials and for conceptual analysis of the experimen-
tal data. Research indicates that the use of sensors/probes is effective, particularly in the area of 
graphical interpretation. Thornton and Sokoloff (1990) found in an early study that students using 
real-time graphs improved their kinematics graphing skills and their understanding of the qualitative 
aspects of motion they observed, compared to students using delayed-time graphs.  
Currently, new technological tools are widespread in most classrooms now, but just the presence of 
technology cannot by itself bring educational change. With regard to pedagogy, teachers who want to 
use technology effectively face new challenges. The author’s interest is the impact of new technolo-
gies in the curriculum and the study of the consequences of this impact on the teaching and learning 
processes. Students’ cognitive processes are analyzed when they are confronted with an open problem 
(i.e. when not provided with a predefined algorithm to solve it). The interest is on the evolution of 
students’ cognitive abilities from an empirical approach to various mathematical activities, which in-
volve experiences such as observing, noticing details, modifying and identifying invariants, to more 
abstract ones, which lead to applied mathematical knowledge enabling the student to “make sense” of 
the information and doing some research on their own. 
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The current article, showing issues related to the effective teaching and learning of Mathematics with 
real-world data using technology, is part of the author’s framework of research; its goal is to form a 
theoretical didactic basis of learning and teaching theories for new media. The use of graphical calcu-
lators does not require new didactics, but teachers have to be aware that learning with graphical calcu-
lators follows its own rules and functions differently compared to the classical methods of teaching. 
This highlights challenges and limits when organizing the learning process with data collecting and 
analyzing activities. The development of students’ skills depends both on pedagogical interventions 
and on the creation of appropriate learning objects. The technology can only serve as a “raw material”.  
Understanding of teaching and learning processes and assessment of the potential of new media are 
the theoretical foundation of the author’s practical work in answering the question “How does the 
practice of teaching change by the use of new media and technology?”  The success of teaching with 
new media and technology has to be evaluated as well as the concepts forming the basis of these new 
methods.  
 
It is assumed that students will have a stronger relationship with data measured by themselves instead 
of reading them in a textbook. Compared to the traditional instruments used in the classroom, e.g. 
thermometer or stop watches, more data can be more precisely acquired and the shape of the corre-
sponding curves is obtained easier and faster. Thus, students need less time for data acquisition and 
have more time at their disposal for analysis, investigation and interpretation of data. Students can 
investigate reproducibility and variability in the so-called what-would-be-if scenarios, which is an 
additional benefit. Students can analyze the data both algebraically and graphically and associate these 
relationships with mathematical functions. Thus they can use the data to model representative func-
tions and discover the physical meaning of different coefficients and parameters. 
 
 
2. TECHNOLOGY-SUPPORTED MATHEMATICS ACTIVITIES  

 
The following three practical examples were used in the class-
room and demonstrate the methodical–didactical potential of 
the combination of simple data acquisition and advanced data 
processing with the help of Nspire (see. Fig. 1). Concepts of 
physics can be tested by visualization and interpretation of data 
and mathematical models can be developed to describe physi-
cal experiments. The CBR (Calculator Based Ranger) in com-
bination with Nspire offers a learning environment for experi-
menting, modelling, analyzing and visualizing real world data.  
The students involved in the study were Austrian Secondary 
School students (15-17 years old). The tasks used in the study 
were real world open problems, which differ from traditional 
tasks of the form “prove that”. The students are asked to ex-
plore the situations, make conjectures and finally prove them. 
 

 

 
Figure 1. TI Nspire (a learning environment 
for mathematics and science) 
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ACTIVITY 1: THE INCLINED PLANE – WHAT GALILEO WASN’T ABLE TO DO 
 
Students determine, like Galileo had done in the early part of the 17th century, the mathematical rela-
tionship between the angle of an incline and the acceleration of a cart down a ramp by using a motion 
detector to measure the speed and acceleration of a cart rolling down an incline. By extrapolating the 
acceleration vs. the sine of the track angle graph they mathematically obtain the value for free fall 
acceleration and discuss the validity of extrapolation the acceleration value to an angle of 90°.  
Galileo was able to measure the acceleration only for small angles, because his time devices were not 
precise enough, and used these data in extrapolation to determine a useful value for the acceleration of 
free fall.  
Students experience that their experimental equipment is precise enough to make things visible Gali-
leo  could not even could dream of.  
 
Before conducting this experiment, students should have been introduced how to use the sine and co-
sine functions to resolve vectors into perpendicular components.  
 
 

 
 
Figure 2. Representation of forces as vectors 
in a free-body diagram 

 
In this activity, students first use a free-body force-diagram to 
investigate the forces acting on a mass placed on an inclined 
plane.  
 
Students explore the relationships between the coefficient of 
friction, the critical angle, the gravitational force, and the nor-
mal force and shall predict the acceleration as a function of the 
ramp angle and finally compare their predictions to their ex-
perimental results. 
  

 
Students’ exploration can be guided by questions: 

 What is the relationship between the angle of an inclined plane and the normal force/the gravita-
tional force/the frictional force on an object resting on the plane?  

 What happens to an object on an inclined plane when the net force is greater than zero? 

 What is the relationship between the magnitude of the normal force and the magnitude of the 
gravitational force? 

 
Students then vary the angle of the inclined plane and observe the changes in the forces acting on the 
object. They also discover the effect of changing the coefficient of friction.  
A next question can lead them to a real world experiment to evaluate and compare their mathematical 
calculations with real world data: Newton's second law of motion can be expressed with the equation 
F = ma. What is the acceleration of a 200 g object for a coefficient of friction of 0.3 and an angle of 
4º?  
 
By performing the experiment and analyzing the data they get further interesting insights in mathemat-
ics and science concepts.  Students perform a series of experiments much as Galileo did with inclined 
planes. As the angle of inclination of the inclined plane is increased, the object’s acceleration also 
increases. As the angle of inclination approaches 90°, the value of the acceleration becomes closer and 
closer that of gravitational acceleration.  
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Figure 3. Acceleration of a cart on an inclined plane  

Students collect distance and time 
data for a cart rolling down an 
incline using a CBR (see Fig. 3 on 
the left side) connected to a TI 
Nspire handheld or using Nspire 
computer software.  
Then they construct the best-fit 
parabola for the data and construct 
a tangent to the parabola.  
 

 
They capture data about the slope of the parabola at various points and graph the results. Then they 
use those results to explore the relationship between the displacement and velocity functions and be-
tween the angle of the inclined plane and the acceleration of the cart. 
 
A sample data set for a ramp at an angle of approximately 1.7° is shown in Fig.4 (see dotted points). 
Students should describe the shape of the graph and find out that the data appear to lie along a parab-
ola. After students have made their predictions, they enter their predicted formulae y = x²) into the 
formula bar and adjust the graph by hand until the parabola matches the data as closely as possible. 
Why does the parabola not fit the whole set of  experimental data? 
 
For exploring the velocity of the cart, students have different possibilities: They construct a tangent to 
their best-fit parabolas and capture slope and time data or they simply plot a velocity versus time 
graph.  
 

Figure 4. Acceleration of a cart on an inclined plane 
 

Figure 5. Velocity - time graph for the motion of the 
cart 

 
Next students plot the velocity versus time data using the TI Nspire application “data and statistics” 
and find the best fitting movable line describing the data or simply use linear regression.   

How does the acceleration coefficient for the equation for this line (see Fig. 5) compare with that in 
the equation for f1(x) in Fig. 4?  

What does this indicate about the relationship between the equation for displacement and the equation 
for velocity? 
What would a plot of acceleration vs. time look like? What would a plot of velocity vs. displacement 
look like? 
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The data collected in activity 1 provide students with the information they need to calculate average 
velocity of the vehicle and to reach conclusions about its instantaneous velocity at any point and its 
change in velocity or acceleration and how velocity and acceleration depend on the angle of the ramp.  
For small angles they can find out, that they must not assume the acceleration is constant, even when 
they have been told to ignore air resistance when solving physics problems involving free fall. The use 
of technology enables students not only to make air resistance “visible” and perform different experi-
ments but encourages students to build mathematical models including air resistance as a drag force 
for simulating real world phenomena and getting deeper insights: The motion of a cart on an inclined 
plane does not follow simple formulas used in school physics.  
Under ideal circumstances the force Fnet (see Fig. 1) is calculated by )sin(gmFnet θ⋅⋅= and because 

θ does not change for a certain ramp - related ramp Fnet and therefore the acceleration 

)sin(θ⋅== g
m

F
a net only depends on g and the angle of the inclined plane. But in the real world forces 

such as friction or air drag result in deviations from the pure model: 
 If the cart begins to move, wheel-related friction is a force working in the opposite direction 

and proportional to the perpendicular force Fnorm.  
 Also the velocity-dependent air drag works in the opposite direction; its value is 

2
air vkF ⋅−= . 

 Factor k depends on the cross-section area and on the cart design. 
 
Cart acceleration is then not a constant value, but decreases with increasing velocity according to: 

2
fric v

m
ka)sin(ga(v) ⋅−−⋅= θ  The time-distance relation can be numerically calculated for the 

actual cart movement with „Lists & Spreadsheet“ (an Nspire menu option), taking into account also air 
drag. 
 
In summary, students model the cart movement on the inclined ramp and take also friction and air drag 
into account. They obtain a better fit of the model by variation of the air drag parameter k. With this 
feature, NSpire expands the range of measurable processes in mechanics and supports the formation of 
models.  

ACTIVITY 2: AIR RESISTANCE AND TERMINAL VELOCITY – FINDING THE RIGHT 
MODEL  

 
In activity 2 students will collect data on the rate at which coffee filters fall exploring the effect of air 
resistance on a falling object. Coffee filters are light enough to reach terminal velocity in a short dis-
tance. They will attempt to determine the terminal velocity for different numbers of falling filters and 
explore the relationship between mass and terminal velocity by choosing between two models for the 
drag force, which is opposite to the direction of motion and assumed to depend on the velocity of the 
falling object. Students shall find the right model by analyzing the data: Is the drag force proportional 
to the velocity or is it proportional to the square of the velocity?  
 
First students draw a free body diagram of a falling coffee filter recognizing that there are only two 
forces (gravity and air resistance) acting an the filter. Once the terminal velocity has been reached, the 
acceleration and the net force are zero.  
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Figure 6. Data collection with CBR 
and TI Nspire 

The activity is designed to be student-centered by guiding the students 
through the main steps of the activity with a worksheet.  
Students begin data collection by releasing one filter and plot a dis-
tance vs. time graph in the Data & Statistics application. The graph 
should have a long linear region representing the time during which 
the filter was falling at constant velocity.  
Using the Movable Line tool in the Data & Statistics application stu-
dents produce the line that best fits their data and record the slope of 
the line as the terminal velocity.  
Then students repeat the experiment with 2, 3, 4, 5, … coffee filters 
and begin exploring the relationship between mass, drag force and 
terminal velocity. 
 

They plot terminal velocity vs. mass and in another graph terminal velocity squared vs. mass and use 
the Regression tool to fit the data to a straight line. Both data sets are very close to linear and that 
makes it difficult for students to determine which data set gives the best fit to the linear relationship.  
 
The activity illustrates how technology can be used within learning environments to connect rich 
mathematical content with the learner’s real environment – in this case free fall with air drag as op-
posed to the ideal models of free fall in a vacuum, exploring mathematical models for explaining 
physics phenomena and removing misconceptions by building useful and sophisticated models.  
 
 
ACTIVITY 3: THE BOUNCING BALL AND HOW HIGH WILL IT BOUNCE? 
 
A ball is dropped from a height of 1 m and the height of the bouncing ball is continuously measured 
with a distance measuring device connected to TI NSpire and the data collected are analyzed. The 
measured movement of the ball is described as a function of time and the gravity law is derived. With 
energy calculations, insights can be gained where energy is lost during bouncing. 
 

 

The ball is a freely falling and bouncing object where air friction is ne-
glected. Therefore only gravity affects the ball’s movements which show 
that acceleration is approximately constant. The time-distance graphs are 
parabolic functions, which can be described by the quadratic equation y = 
a(x-b)2+c where the highest point is described by the coordinates (b, c) with 
c as the maximum height and b as the corresponding time. The parameter a 
represents mathematically the shape of the parabola and depends physically 
on the degree of acceleration caused by gravity, which is constant during the 
experiment. The curves obtained for the time-distance graphs of the individ-
ual bounces are first adjusted manually – by determining the parameters b 
and c and by varying parameter a. 
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In the classroom the following questions can be 
asked: 

 

• What is the highest speed of the ball and when 
does it occur? 

• What is the acceleration during falling? 
• Which function describes the distance (height) 

of the ball? 
• Is there a model to describe the height of the 

ball? 
• How can the total distance of the ball be de-

termined? 
• What processes determine the “bouncing back” 

of the ball from the floor? 
• In which way the rebound height decreases 

from one bounce to the next? 
• Can you determine how high a ball will re-

bound on each bounce and make predictions 
about its motion?  

 

 

 
Figure 7. Data collection with CBR and TI Nspire 
 

 
Figure 8. Height of the ball as a function of time 

Looking at the time-distance-diagram of the ball, it is recognized that the ball first falls and then 
bounces from the floor. Then it moves up, slowed down by gravity until it falls down again. This 
movement corresponds to repeated vertical throws. Therefore both phases of movement, i.e. up and 
down, can be described by quadratic functions. For this, the data for a complete bounce have to be 
selected from the total set of data. From this section the parameters for the ball’s movement can be 
obtained.  

After selecting an individual bounce and quadratic regression, the function describing the ball’s 
movement is obtained with the help of regression analysis. With the help of the application “Graphs & 
Geometry” the best fitting curve can be found by hand too. How are the functions of the second and 
the third parabola similar, how are they different? How are the parameters connected to the movement 
of the ball?   
 

 
Figure 9. Quadratic function for the ‘middle” parabola 

 
Figure 10. Quadratic function for the ‘third” parabola 
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Figure 11. ‘Maximum height’ as a function of the  
‘bouncenumber’ 

The maximum height decreases exponentially from 
bounce to bounce for each ball and its initial height. 
For y = h . px, y is the current height, h is the initial 
height, p is a constant depending on the properties of 
the ball and the floor and x is the number of the 
bounce.  

For x = 0  y = h (the initial height of the ball, from 
which it has been dropped). The coefficients of the 
equation describing the exponential function are 
determined from the data obtained. The experiment 
can be repeated with different balls, heights and floor 
types. 

The bouncing ball experiment can be studied in a unit on geometric sequences. Students can also use 
the data to explore quadratic and exponential functions. If students try to model a function that fits this 
data by using regression or finding the curve fitting the data best by hand, they have to be aware, that 
the data are discrete.   

Students can determine recursive and explicit formulas for geometric sequence that models their data. 
They determine the constant ratio between successive bounces by dividing the height of the second 
bounce by the height of the first, the third bounce by the second, and so on. The they determine the 
average ratio and use it in the explicit and recursive formulas.  

The recursive formula for the data in Fig. 11 is: h1 = 1, hn = 0.75 . hn-1, for integers n ≥ 2 (n represents 
the bounce number).  

The explicit formula for the data is: hn = 1 . (0.75)n-1 for integers n ≥ 1.  

A further challenge could be to find a function that models the data ’maximum height as a function of 
time’.  
 
3. CONCLUSIONS AND IMPLICATIONS 

Summarizing the technology-supported mathematics activities, simple experiments and questions mo-
tivate a rich discourse and activity in the classroom and further exploration. 

How do students construct mathematical ideas in technological environment tools (like TI NSpire and 
the motion detector)? The students were at first challenged by the exercises, and the investigations 
also generated surprise moments that motivated students to focus their thinking. When exploring these 
problems, students developed functions and even algebraic expressions and explained their conclu-
sions. Thus, the lessons involved multiple stages of investigation: prediction, testing, rejection or ex-
tension of hypotheses, discovering and exploring the underlying mathematics, and making generaliza-
tions and proving results. 

The students were actively engaged during these moments, negotiating and communicating ideas with 
the teacher and with other students. But successful learning is an individual and active process, based 
on intrinsic motivation, interest and active interaction with the learning environment. The proactive 
learner searches for his own way, looks out for questions and challenges and should be able to find 
appropriate answers in a well-built learning environment. The challenge for the teacher is to embed  



   D-N-L#73  
 

Hildegard Urban-Woldron: Using Science as a Tool  
  p23  

technology tools in the general syllabus and into the class room. Implementing this technology in the 
class room leads to a substantial change in the learning process. Passive reception of lectured informa-
tion gives way to an active, individual construction of knowledge. Critical for these new learning 
processes are learning situations which offer guidance as well as room for individual exploration. 

The students were actively engaged during these moments, negotiating and communicating ideas with 
the teacher and with other students. But successful learning is an individual and active process, based 
on intrinsic motivation, interest and active interaction with the learning environment. The proactive 
learner searches for his own way, looks out for questions and challenges and should be able to find 
appropriate answers in a well-built learning environment. The challenge for the teacher is to embed 
technology tools in the general syllabus and into the class room. Implementing this technology in the 
class room leads to a substantial change in the learning process. Passive reception of lectured informa-
tion gives way to an active, individual construction of knowledge. Critical for these new learning 
processes are learning situations which offer guidance as well as room for individual exploration. 

Compared to the traditional instruments used in the classroom in mathematics teaching, more data can 
be very precisely acquired by using a motion detector in combination with TI Nspire or a graphical 
calculator and the shape of the corresponding curves is obtained easier and faster. Thus, students need 
less time for data acquisition and have more time at their disposal for analysis, investigation and inter-
pretation of data. 

Currently available media and technological tools have to be transformed with didactic know-how into 
effective teaching media and teaching tools. The author is aware that the use of technology in a didac-
tically designed learning environment changes substantially the learning and working behavior of 
students in the class room and outside. Teachers have to learn when and how to use new media and 
technology and what impact they may have on the students’ education. The student should be offered 
a learning environment where he can move between different levels and within different structures, 
where he is stimulated to ask his own questions and where he finds also help to answer those ques-
tions. The student should not be overwhelmed with a predefined succession of facts, but he should be 
helped to discover knowledge and to generate his own knowledge with his mind (compare Frank This-
sen, 1997). 
 

REFERENCES 

Brueningsen, Ch., (1994) Real-World Math with the CBLTM System. 25 Activities using the CBL and the TI-82. 
Texas Instruments. 

Bryan, J. (2006). Technology for physics instruction. Contemporary Issues in Technology and Teacher Educa-
tion, 6(2), 230-245.  
Gastineau, J.,(1998) Physics with CBLTM. Physics Experiments using Vernier Sensors with the CBL-System and 
TI-Graphing Calculators. Vernier Software. Portland. Oregon. 

Thissen, F., (1997) Vortrag auf der Learntec 1997. Veröffentlicht in Beck, U. &  Sommer, W. (Hrsg.) Learntec 
1997. Europäischer Kongress für Bildungstechnologie und betriebliche Bildung, Tagungsband, S. 69-79, Karls-
ruhe.  

Thornton, R.; Sokoloff, D. (1990). Learning motion concepts using real-time microcomputer-based laboratory 
tools. American Journal of Physics, 58, 858-867.  
Web resources (http://education.ti.com) 
TI Nspire Physics. Free-Body Forces: Inclined Plane – ID: 8740 © 2007 Texas Instruments Incorporated 
TI Nspire Physics. Air Resistance   – ID: 8739 © 2007 Texas Instruments Incorporated 
Easy Data Collection Activities. How high will it bounce? Activity 13 © 2005 Texas Instruments Incorporated 



   p24   
 
Peter Lüke-Rosendahl: Curve Discussion - Again Revised  

  D-N-L#73  
   

In revised DNL#15 I presented a "DERIVE-program" for investigating graphs 
for zeros, turning and inflection points, symmetries, asymptotes, … Our mem-
ber Peter Lüke-Rosendahl was not completely satisfied with my routines be-
cause I didn´t consider the higher derivatives. We had some exchanges of 
emails and based on his proposals I tried to improve the tool as you can see in 
the following examples.  

I included an auxiliary function to consider NSOLUTIONS and SOLUTIONS as 
well because of the different treatment of polynomial and non polynomial 
equations. What I am naming as “flatpoints” are points with f’’, f’’’, f(IV), … = 0. 
 
Many thanks, Peter.   
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And this is the graph including labelling of the interesting points. (Terrace Point = Inflection 
point with slope = 0). 
  

 
 
 
 
 

  

  
Here we can find a “flat point”. The given table of results make it easy to plot the points of 
interest together with the tangents if necessary. 
 
The next one is a rational function with a pole and an approximating polynomial function: 
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A Challenging Locus 

Josef Böhm 
 

In DNL#70 I presented the program Geometry Expressions together with two examples. One 
example showed the implicit form of the locus of centers of common tangents to two circles. 
Geometry Expressions is not only a dynamic geometry program but has a powerful CAS 
working in the background. Otherwise it would not be possible to deliver the implicit form of 
this locus (a 4th order equation). 
 

 
 
This is my reproduction with Cabri. Draging point B changes radius s of the circle with centre 
N. Try to do the construction. It can be that you will face a problem (at the moment when 
radius s > r). Then try to resolve this problem! 
 

 
 
 



   D-N-L#73  
 

Josef Böhm: A Locus – A Challenge  
  p29  

 

This is the locus produced with GeoGebra: 

 
 

I felt inspired to find this equation on my own working with two DERIVE representation forms: 
the algebraic form in the Algebra Window and the geometric form in the 2D Plot Window. 
 
The mathematics is not so difficult. It covers analytic geometry of secondary school but the 
manipulating of the expressions would be too boring and tedious not only for students but for 
the teachers. 
 
I start with two circles – one of them with varying radius s. 
 

  

 
 

Let´s take any arbitrary line and find the conditions for osculating both circles. The resulting 
equations containing variables k (slope) and d (intercept) are called in German "Berühr-
bedingung", (in English: "osculating condition"?) 
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   p32   
 

Josef Böhm: A Locus – A Challenge  
  D-N-L#73  

  

 
The circles together with their common tangents. 

 
The midpoints of the segments. 
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We have to eliminate parameter t. This is done by a little trick applying the solutions-
command. As t is one of the solution variables, we receive an expression for y (the other 
unknown) which is free of t. 
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There is another way to find the locus of the midpoints: 
Similar triangles support to find point X. Then construct the tangent(s) from X to the circles 
and calculate the osculating points. 
 
 

MN = m, MX = x, MT = r – s, NS = s 
 

⋅
−

( ) : :r - s m = r x
r mx =
r s

 

For the “inner” tangents we receive in 
a similar way distance x’ 

′

⋅′

( ) : :r + s m = r x
r mx =
r + s

 

The following lines will become tangents by choosing slope k in such a way that we have 
exact one intersection point between the circles and the lines (same idea as above). 
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Multiplication in Abyssinia (or elsewhere!) 
Roland Schröder, Celle, Germany 

 
In times before inventing the Indian place value system (8th century A.C.) multiplication was a 
difficult matter. The reason was that the used digits had no place value and that they could 
appear several times within one number. What we call multiplication by hand as it our chil-
dren are learning in elementary school was not possible using Roman numerals. The place 
values 1, 10, 100, 1000, … were not expressed by positions within the numbers but by own 
(nowadays redundant) number characters. This makes the Roman numerals to an out dying 
species, because they miss an important advantage to survive. Those Romans, who were 
not busy as a wizard of figures used pre-calculated multiplication tables. The following algo-
rithm might explain how these tables were built up. 

In the famous Papyrus Rhind (the oldest known collection of arithmetic, 1650 BC) is ex-
plained how numbers can be multiplied without applying place values. It works by repeated 
doubling the first factor and halving the second factor. It is only some decades ago that this 
art of multiplying was found at the farmers of the Ethiopian highlands.  

For calculating 319 × 37, they wrote procedure as follows. 

319 × 37 

638 × 18 

1276 × 9 

2552 × 4 

5104 × 2 

10208 × 1 
One can notice that the first factor is indeed doubled at each calculation step, but the second 
one cannot be halved (if it is an odd number). In this case the second factor is decreased by 
1 before halving. The farmer in Abyssinia crosses out all pairs of numbers with an even sec-
ond factor. Then he adds all first factors of the remaining pairs: 

319 +1276 +10208 = 11803 

The farmer has found the result: 319 × 37 = 11803. 
This looks like sorcery, but it is very easy to explain: Let´s change a little bit what the farmer 
has written down performing his calculation. 

319 × 37 =  

= 638 × 18 + 319 

= 1276 × 9 + 319 

= 2552 × 4 + 1276 + 319 

= 5104 × 2 + 1276 + 319 

=10208 × 1 + 1276 + 319 = 11803 
  



   p40   
 

Roland Schröder: Multiplication in Abyssinia  
  D-N-L#73  

 

If the second factor is an odd number then the subtraction by 1 causes an error in the 
amount of the preceding first factor. This mistake is repaired by adding the factor. The algo-
rithm is recursive and can be described by the following recursion formula. 

A × B = 2A × B/2 (If B is odd) 

   2A × (B – 1)/2 +B (else) 
DERIVE´s MOD(x,y) gives the remainder of the division x : y. Hence 

A × B = 2A × (B – MOD(B,2)/2 + A × MOD(B,2). 
We build a three column matrix, which shows row after row the first factor, the second factor 
and the possibly existing summand. We will call this triple of numbers as F(a, b, x): 

#1 F(a, b, x): = [2a, (b – MOD(b, 2))/2, a·MOD(b, 2) + x]. 

The initial triple of the recursion is given by [319, 37, 0] or generally spoken by  
[u, v, 0]. The next triple is [638, 18, 319] or [2u, (v – 1)/2, u]. 

Recursion must end if the second factor has become zero. This is done by a statement 
which will not be explained now:  

#2 STOPP(v): = FLOOR(LN(v)/LN(2))+1.  

Function G does the complete recursion, which is defined as follows: 

#3 G(u, v):= ITERATES(F(a, b, x), [a, b, x], [u, v, 0], STOPP(v)) 

Lines #1 - #3 must be entered in DERIVE. 
We test the algorithm for the multiplication from above (u = 319 and v = 37): 

 
The number in the 3rd column last row is the product. 
 
 
Find some additional comments of the editor on the next page:  
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I have known Roland´s Abyssinian Multiplication as "Egyptian Multiplication". Similar multipli-
cation tables were found written in hieroglyphs. The geographic vicinity and the antique his-
toric connections between the two regions might explain the fact that the farmers in Ethiopia 
performed multiplication in the same way.  
I found this multiplication mentioned in one of Adrian Oldknow´s many papers. He called it 
“Russian Peasant´s Multiplication”. So it seems to be really multi cultural. 

Replacing doubling the first number by squaring, adding by multiplying and 0 by 1 gives an 
efficient way to find powers of numbers: 

 
This way to find large powers is used for modular multiplication (square and multiply). Large 
powers are needed in cryptography. 
Students might be asked how to explain the stop-condition (expression #2). 
Final comment: As there is involved repeated division by 2 students might find a connection 
to binary numbers: 

Convert 37 to a binary number: 1 0 0 1 0 1.  

319 × 37 1 

638 × 18 0 

1276 × 9 1 

2552 × 4 0 

5104 × 2 0 

10208 × 1 1 

Do you see the pattern? 

Transfer the recursion to the TIs (using the Sequence Mode):  319 . 37 and 710. 
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Ein neues Buch von Bernhard Kutzler ist erschienen: 

 Bernhard Kutzler, Technologie und das Yin & Yang des Lehrens und Lernens von Ma-
thematik, BK-02, ISBN 978-3-901769-84-9 

 
Mail von Roland Schröder 
 
Lieber Herr Böhm, 
Sie schrieben, dass Interesse an den deutschen Übersetzungen meiner im DNL erscheinenden Aufsätze 
bestehen könnte. Heute kann ich Ihnen mitteilen, dass am Ende dieses Monats ein Büchlein (50 Sei-
ten) herausgegeben wird, in dem alle diese Aufsätze stehen. 
 
Roland Schröder 
Experimente mit Computer-Algebra-Systemen 
Ideen für den Vertiefungsunterricht 
Reihe Mathematik 
www.lehrerselbstverlag.de 
 
Es wäre schön, wenn Sie darauf hinweisen könnten (vielleicht zusätzlich in der Bücherecke?). 
 
Herzliche Grüße  
Roland Schröder 
 
 

Nils Hahnfeld, Virgin Islands 

Nils and I had a very intense e-mail and TI-files exchange for extending and improving his DEQME-
program. The next DNL will present a detailed review. See here some pictures of the menus: 

   
 

   
 

   


