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Interesting and recommended websites: 
Barry Kissane (Australia) has a great website which collects many promising links. I strongly 
recommend visiting: 

http://wwwstaff.murdoch.edu.au/~kissane/pd/internetmaths.htm 
 

You can download the Proceedings of CAME 2009. Thanks to Djordje Kadijevich from Serbia. 
 

http://www.megatrend.edu.rs/came_files/CAME%202009-Proceedings.pdf 
 
DUG-Member René Hugelshofer (Switzerland) informed about a new 65 pages pdf-paper on 
quadratics treated with TI-NspireCAS (in German): 

 
by Benno Frei, René Hugelshofer and Robert Märki 

 
This paper – and many others can be downloaded from: 
 

http://www.ti-unterrichtsmaterialien.net 
 
DUG-Member Eberhard Lehmann published his 

Matrizenrechnung, Anwendungen Teil 2 
 
On 352 pages Eberhard demonstrates many applications of matrices reaching from mappings to 
Markov chains. Eberhard uses TI-Nspire, Voyage 200, DERIVE and his own software ANIMA-
TO. More details can be found at his website 
 

http://home.snafu.de/mirza 
 
If you know about interesting websites and publications then please inform me for 
sharing the information in our community. Josef 
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Dear DUG Members, 

Welcome to DNL#75 – we can have a little celebration. We need “only” 25 more 
DNLs to reach the 100!! 

I´d like to welcome also a couple of new DUG-Members. It is great that our world 
wide community is still growing despite the fact that DERIVE is not available any 
longer. I was very happy receiving Danny Ross Lunsford´s short note on a request 
which was published in the DERIVE-NEWS mailing list (see page 44). 

There are not so many contributions in this newsletter as usual. You will see that 
Michel´s and José Luis´ articles – both are presentations from ACA 09 – are very 
extended. It will need the next DNL, too, in order to present the missing papers. 

This DNL75-pdf-file has 2 MB because I included the ready made pdf-file of José 
Luis Galan´s contribution on RANDOM SAMPLES. It would have been too difficult 
to rewrite it in WORD including all his great illustrations. 

In addition to these two papers I included another project for students provided by 
Roland Schröder. The Dog & Biker problem is a nice application of a recursive pro-
cedure and gives the chance to demonstrate students the power of the ITERATES-
function of DERIVE. 

At the other hand recursive procedures are very suitable for spreadsheet pro-
grams. So I tried to transfer this problem to TI-NspireCAS and could implement 
some kind of animation. We – Roland Schröder and I – have still the problem to find 
the locus of the dog´s jumps. It would be great if somebody could present the solu-
tion. 

Tania Koller´s valuable hint (User Forum) demonstrates that students of secondary 
schools are very familiar with hard- and software and they find solutions for occur-
ing problems. Many thanks to Tania and her bright students. 

Best regards as ever 

 
Finally I´d like to remind you once more on our next conference which will be held in 
Andalusia, Spain. You can find how to submit and details about registration within 
the next few days. 

The Conference website is www.time2010.uma.es. 

 
Download all DNL-DERIVE- and TI-files from 
http://www.austromath.at/dug/ 
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Tania Koller, Vienna, Austria 
Dear Josef, 
Last week we wanted to produce a 3D-representation with DERIVE and four students 
found a very strange distorted view on their screens. It could not be caused by VISTA 
because all other screens (also VISTA) were ok. Fortunately I have some bright and ea-
ger students, so I can send not only the riddle but also its solution which was found by 
one of my students in the weekend. Maybe that this could help other users, too. 
Regards 
Tania 
 
Correction of 3D-plots on Notebooks (Windows 7) 
 
eg. with a resolution of 1366 x 768 
 

 
 
1. Show Desktop – minimze all programs in order to show the desktop  
    (shortcut WINDOWS + D) or rightclick on the right border of the systray – Show Desktop 
 

 
2. Rightclick on the Desktop – Resolution 
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3. Resolution – Click on the Dropdown Menu and set Resolution to 1280 x 768. 
 

 
 
4. Click on „Keep Changes“ (two black stripes appear on the screen). 
 

 
 
5. Open a new 3D-Plot Window – and now it should look fine! 

 
 
Many thanks to Philipp Wietter, student of Tania Koller at HAK St. Pölten. 
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Dog and Biker 
Roland Schröder, Celle, Germany 

There are dogs which become aggressive when they discover a biker. We will not investigate 
why this is the case. But we will discuss the question: what is the chance of a biker to escape 
an aggressive dog? We can imagine the situation as follows: 

 

The biker moves with constant velocity starting from point (-40,0) in direction to the origin and 
goes ahead in this direction to escape the dog if possible. The dog is watching his surround-
ings in position (0,40) when he is discovering the biker at (-40,0). The dog is silly enough not 
to bar the biker´s way but he undertakes 4m jumps (with also constant velocity) in the direc-
tion of the – changing – position of the biker. If both have the same velocity the dog will never 
reach the biker because of his wrong strategy.  

If the dog is faster than the biker he will win but the dog gives up “hunting” the biker after 20 
jumps. What is the ratio of velocities giving the biker a chance to escape? 

We choose the time steps so that one jump of the dog takes one step. The velocity of the 
dog is the k-fold of the biker´s velocity with k > 1 to give the dog a chance. The positions of 
the dog and the biker at time t are illustrated by the following sketch: 

 

 

 

 

 

 

Dog [a,b] 

Biker [- 40 + 4(t – 1)/k, 0]] 



             ↑ 
Biker after 20 jumps 
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The position of the biker only changes in its x-coordinate, which is described by the DERIVE-
expression 

#1:  – 40 + 4·t/k. 

The segment (the vector) from Dog to Biker is given by [#1,0] – [a,b] = [#1 – a, – b]. The 
length of this segment – this is one jump of the dog – should be 4 m. So we have to normal-
ize the segment (= divide by its length) and multiply by 4. We use the factor: 

 #2:  4/ABS([#1 – a, -b]) = #2:  4/ABS([-40 + 4·t/k – a, –b]). 

The jump starting from [a, b] is presented by  #2 ⋅ [#1 – a, – b]. This jump starts at [a, b] and 
ends at [a, b] + #2 ⋅ [#1 – a, – b] = [a + #2 ⋅ (#1 – a), b – #2⋅b]. We need a third component in 
this vector, t + 1, which counts the jumps of the dog. We find by recursion the immediate 
successor element of [a, b, t] in [a + #2 ⋅ (#1 – a), b – #2⋅b, t + 1]. The ITERATES-command 
is the perfect tool to perform the recursion: 

 #3:  D(k):=ITERATES([a + #2 ⋅ (#1 – a), b – #2⋅b, t + 1], [a, b, t], [0, 40, 0], 20). 

For plotting we have to remove the time component. The sequence of points – landing points 
of the dog – are given by: 

 #4:  Dog(k) ≔ VECTOR([(D(k))↓n↓1, (D(k))↓n↓2], n, 21). 

But we want to see the position of the biker, too. So we enter 

 #5:  Bike(k) ≔ VECTOR([-40 + 4·(t – 1)/k, 0], t, 21). 

 #6:  Dog(1.2) 

 #7:  Bike(1.2) 

Now plot #6 and #7 (for k = 1.2): 

 

 

You see that the dog might get the back wheel, but not the biker. 

Dog after 20 jumps 
                ↓ 
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We can use a utility from DNL#62 to perform something like an animation – we can imagine 
following the jumps: 

 

 
Introduce a slider for t with 1<= t <= 21 (20 Intervals) and now you can either perform one 
jump after the other (#10) or follow the trace of dog and biker (#11). 
 

 

 

I (Josef) wanted to transfer this nice problem to TI-NSpireCAS because recursion can be 
performed on a spreadsheet in an easy way. I wanted to have a very flexible model with vari-
able positions of dog and biker and including a slider for the parameter k to investigate its 
influence on the success of the dog – or the biker. 

I came across one problem: the vector operations don´t seem to work in the spreadsheet 
application (eg. norm(x,y) for finding the length of a vector). Philippe Fortin confirmed my 
conjecture and gave a hint to overcome this problem. I defined a function for the length of the 
vector and then the spreadsheet application accepted the function. 

You are invited to study the TI-Nspire-file. I started with creating the points for the dog and 
the biker and linking their coordinates to variables which I then used in the spreadsheet. 
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Application of Computer Algebra (ACA) 2009 
Session: Applications and Libraries development in Derive 

25-28 June 2009, École de technologie Supérieure, Montréal, Québec, Canada 
 
 

Another Look at a Trusted Mathematical Assistant 
 

 

Michel Beaudin 

Service des enseignements généraux,  

École de technologie supérieure (ETS), 

1100, Notre-Dame street west, 

Montréal, Québec, Canada, H3C 1K3 
Email: michel.beaudin@etsmtl.ca 

 
 

 

 

 

Abstract 
 

• From the DERIVE user manual (version 3, September 1994), we can read the 
following: “Making mathematics more exciting and enjoyable is the driving force 
behind the development of the DERIVE program”.  In this talk, we will try to show 
how some mathematical concepts, studied by engineering students at university level – 
differential equations, multiple variable calculus, systems of non linear equations –, 
can be easily illustrated by DERIVE.  Some will object that any other CAS could do 
the same:  well, this is probably true but, according to us, not as quickly and naturally:  
“To accomplish this DERIVE not only has to be a tireless, powerful and 
knowledgeable mathematical assistant, it must be an easy, natural, and convenient 
tool”.  Consequently, time can be spent to prove some theorem or formula and the 
computer algebra system helps to reinforce the mathematical concepts.  Our examples 
will also make use of new features added in the latest version of DERIVE (version 
6.10 released in October 2004); features that were not exploited as should be − 
DERIVE has never been enough documented.  But we are still convinced that Derive 6 
was “Far too good just for students” 

(http://www.scientific-computing.com/scwmarapr04derive6.html ). 
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1. Introduction 
  
 This main goal of this paper is to show how DERIVE can be used at university level, for teach-

ing to engineering students.  For the past 15 years, we have attended many conferences about using 

CAS in teaching mathematics: when Derive was used in a presentation, it was ─ in the majority of 

cases ─ for high schools/colleges level presentation.  This is normal because DERIVE, compared to 

“big” CAS like MAPLE or MATHEMATICA, is very simple to use and, at lower levels, this is impor-

tant.  But, at university level, even if DERIVE is a small system compared to the big ones, it can be 

used to explore many avenues, in domains such differential equations and multiple variable calculus ─ 

where, usually, one will use another system, more “powerful”.  In fact, as far as undergraduate 

mathematics are concerned ─ the situation would probably be different at research levels ─, DERIVE 

is so simple to use that if some mathematics teacher wants to go from the blackboard to the computer 

─ without having to load an already prepared file ─, DERIVE is an excellent choice:  no waste of time 

by typing complicated or long commands in order to illustrate daily concepts.  This is important for us:  

we are still teaching mathematics and we need software that will do the job correctly.  But we also 

need software that can do heavy computations when this is needed.  DERIVE has done the job since 

the last 15 years.  We would like to be able to continue to use DERIVE for the upcoming years.  Be-

cause of its discontinuation, we are afraid that these good moments are behind us:  only time will tell.     

 

2. The importance of symbolic integration of piecewise continuous functions 
in differential equations 
 
If we don’t pay attention to the endpoints of an interval [a, b], then the indicator function, defined by 

CHI(a, x, b), will be the following function: 

1 if 
CHI( , , )

0 elsewhere
a x b

a x b
< <

= 


 

When you are teaching differential equations, you often need to deal with piecewise continuous func-

tions, especially when you study Laplace transforms: each piece is defined on an interval, 2 distinct 

intervals don’t overlap, so CHI is very useful. So, where does the CHI function play an important 

role?  To answer this question, let’s take a look at the following problems from a differential equations 

(DE) course.  The first two ones are usually solved by taking the Laplace transform of both sides of 

the DE.  The third one is done by computing the Fourier coefficient of the given signal or by using a 

table of Fourier series.  The fourth one is not related with the CHI function but because it is usually 

solved by using the method of undetermined coefficients, this will become an opportunity to explore 

what DERIVE is doing when its “DSOLVE2” command is used.  
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a) Solve 2 ( ),  (0) 0,   (0) 0y y y f t y y′′ ′ ′+ + = = = where f  is the function in figure 1. 

 

 

Figure 1 

 

b) Thinking of a mass-spring problem, find the solution of 

4 50 ( ) 100 ( 2 ),    (0) 10,   (0) 5,y y t t y yδ π δ π′′ ′+ = − − − = =  

where δ is the «Dirac delta function” (not defined in DERIVE). 

c) Find the Fourier series of the signal ─ square wave ─ shown in figure 2.  What happens to the 

partial sums near a point of discontinuity? 

 

 
Figure 2 

 

d) Identify the steady-state solution in the mass-spring problem governed by the DE 

1 49 50cos( ).
5

y y y tω′′ ′+ + =  

Here ω is some positive parameter. 
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Now, let us give the “DERIVE solutions” of each of these problems.  For problem a), one first needs 
to note that the function in figure 1 is defined by 

0 if 0
6  if 0 1
6 if 1 3
24 6  if 3 4
0 if 4

t
t t

t
t t

t

<
 < < < <
 − < <

>

 

 
Using Laplace transform techniques, we can find the following solution:  

( ) ( ) ( ) ( 1) ( 1) ( 3) ( 3) ( 4) ( 4),y t g t u t g t u t g t u t g t u t= − − − − − − + − −  

where ( ) 12 6 12 6 , ( ) STEP( ).t tg t e te t u t t− −= + − + =  Using DERIVE, the command 

“DSOLVE2_IV” does the job, because this command uses the method of variation of parameters in 

order to find a particular solution and the software has no problem to integrate piecewise continuous 

functions.  So, we define f  in line #1 (figure 3 below): this is the “input” and this is done with linear 

combination of CHI functions because the intervals don’t overlap.  And use the “DSOLVE2_IV” com-

mand to get the answer or “output” (no need to simplify this to get the graph if the option “simplify 

before plotting” is on).  Of course, if one simplifies line #2, an answer involving SIGN functions will 

appear on the screen ─ because CHI functions are defined using STEP and STEP comes from SIGN!. 

 
 

 
Figure 3 
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For problem b), students learn that an expression of the form ( )0A t tδ − means that an infinite force 

was applied at time 0t t=  with total impulse of A (N.s).  The expression ( )0A t tδ −  can be defined 

by the following limit, which does not exist in the classical way.  

( )0 0 00

1lim CHI( , , ).A t t A t t t
ε

δ ε
ε+→

− = +  

But if one solves the differential equation with ( )0A t tδ −  replaced by 0 0
1 CHI( , , )A t t t ε
ε

+ and 

then let ε approach 0 from the right, he/she will get the right answer!  Of course, the beauty of Laplace 

transform is that students don’t have to use that kind of trick.  They simply use the fact that 
0

0( ) t st t eδ −− ↔ and find the solution.  In order to fully appreciate the effect of the “Dirac delta func-

tion”, the slider bar of DERIVE can be used if one wants to understand why the solution (line #5 in 

figure 4) is obtained by taking some limits (this has to be done “live” during a talk).  The graph of the 

solution (line #5) is also shown after line #5 (note: there is no discontinuity!). 

 

 
Figure 4 
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For problem c), because DERIVE has a “Fourier series” built-in function, it is quite easy to obtain 

partial Fourier sums.  First, we define the function on its interval of definition, using CHI again and 

then, extend it periodically using the modulo MOD function of DERIVE.  Let us recall (fact learned at 

the first international DERIVE conference, in Plymouth, UK, in 1994!!!) that if g(x) is a defined func-

tion of the variable x, defined over the interval [a, b] ─ using possibly one or many indicator functions 

─, then we can extend g periodically over the entire real line, period being b − a, with the help of the 

definition f(x) = g(mod(x − a, b − a) + a).  A simple partial sum (line #3 and its simplification, line #4) 

tells us that the partial sum of order 2n − 1  is given by an expression of the form #5.  Differential cal-

culus tells us that the first critical point after 0 is located at x = π//(2n), it is a local maximum ─ second 

derivative test shows this ─ whose y-coordinate is about 5.35795949. DERIVE won’t find the limit, as 

n goes to infinity, of expression #5 when x = π//(2n).  This can be done “by hand”, on the blackboard, 

and we can show that this limit is exactly 3 + 4/π SI(π), where SI stands for Sine Integral. 

 
Figure 5  

For problem d), we said that DERIVE is using, within its “DSOLVE2” command, the method of varia-

tion of parameters.  This gives a very ugly answer compared to the one we get if we use the method of 

undetermined coefficients.  In fact, a particular solution of 
1 49 50cos( )
5

y y y tω′′ ′+ + =  will be of 

the form cos( ) sin( ).t tα ϖ β ϖ+   Simple computations ─ but we did it using DERIVE! ─ show that 
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What is the good point, here?  If you try to obtain this particular solution from the one given by 

DERIVE’s DSOLVE2_IV(1/5, 49, 50cos(ω t), t, 0, 0, 0) command, you will need to type commands 

from trigonometry!  Note that, because we were looking for the steady-state solution, we decided to 

set the initial conditions at 0.  Other point:  if we compute 2 2α β+  ─ this will be useful if we want 

to find the maximum of the amplitude of the steady-state solution (frequency response) ─ using the 

preceding values of α and β, DERIVE simplifies it into 
4 2

250
25 2449 60025ϖ ϖ− +

 instead of 

4 2

1250 .
25 2449 60025ϖ ϖ− +

 By using the “Display Step” command, we note that DERIVE has 

recognized that the expression 4 225 2449 60025ϖ ϖ− +   is always positive because its discriminant is 

negative! 

 
 
3. The importance of a “multiple types” 2D plot window  
 

Voyage 200 CAS calculator has 5 different 2D plot windows: function, parametric, polar, se-

quence and differential equations graphing modes are available (if we also use the 3D plot window for 

implicit 2D plotting, then we get 6 windows).  This is correct because each window comes with par-

ticular features: for example, the function graphing window has submenus to find min/max/inflection 

points of a given function, without having to go back to the HOME screen and compute derivatives.  

Students will note that there is no “intersection point” item in the F5-Math menu of the parametric  

2D plot window; they will learn why and also they will learn how important it is to have a starting 

point when you want to solve a non linear system of 2 equations in 2 unknowns.  Having so many 

different 2D plot windows is very useful because each window (and each editor) is specialized.  The 

fact that DERIVE has a unique 2D plot window becomes important when multiple plots are needed in 

the same window, especially for the same problem.  Also (in [2]), we gave reasons of the importance 

of a fast 2D implicit plotter, and, more generally, we showed, using many examples, that a 2D plot 

window should also allow the user to put in it what is useful ─ if you need to plot 2 curves, one explic-

itly defined, the other implicitly defined, why have to borrow with complicated commands?  This is 

what we mean by the title “multiple types” 2D plot window.  Now, we present 3 examples and explain 

the solution for each. 
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a) How can we get DERIVE to obtain one complex solution of an equation like the following 

one: 142 2x x= + ? Those who are familiar with the LambertW function of Maple know that 

there are many complex solutions for an equation of the type .x na x=  

b) According to the theorem about existence and uniqueness of a solution of a first order ODE, 

there is a unique solution to the problem 
2

, (0) 2,
6 2

xdy x e y
dx y

−+
= =

+
 defined in some interval 

about 0.  How is this solution related with the implicit curve obtained by solving the ODE as a 

separable one?  And how does the Euler numerical method compare? 

c) In DERIVE, level curves of a function of 2 independent variables have to be plotted in 2D, not 

on the surface in 3D.  How can we visualize this in 3D, using the slider bar? 

For problem a), DERIVE, in exact mode, can’t solve this equation but the NSOLVE command with 

appropriate bounds find the 3 real solutions:  

   
Figure 6 

 

But if we are searching a complex solution, one needs to substitute for x the expression x + iy, and 

plot, in the same window, the implicit curves defined by RE(eq(x + iy)) = 0 and IM(eq(x + iy)) = 0 

where 14eq( ) 2 2.zz z= − −   The fast 2D plotter and Newton’s method (for 2 variables) will give any 

complex solution (or Newton’s method for 1 variable, starting point being complex).  Finding a com-

plex solution using the real and imaginary parts of the given equation is a nice way to use complex 

numbers (" 0 RE( ) 0 IM( ) 0").w w w∈ = ⇔ = ∧ =  It would have been a good addition to “version 7 of 

DERIVE” to have, within the solve command, the possibility, for a system of 2 equations, to use a 

starting point without calling the “Newtons” function. 

 



   D-N-L#75  
 

Michel Beaudin: Another Look at a Trusted …  
  p17  

   
For problem b), let us note first that we can find a neighbourhood of the point (0, 2) ─ obviously lim-

ited by the horizontal line y = −3 where the derivative becomes infinite ─ where both the function 
2

6 2

xx e
y

−+
+

 and the partial derivative with respect to y are continuous.  So, there exists an interval about 

the point 0 and a unique function that satisfies the ODE and the initial condition.  The “separable” 

function of DERIVE is a good choice to obtain the solution, defined implicitly by 
3

2 6 17.
3

x xy y e−+ = − + +  Now, the importance of a 2D plot window, where all kind of plots are possi-

ble, becomes clear.  Solving for y ─ of course, here it is possible with the well-known second degree 

formula ─ and keeping the “good” branch leads to 

 
Now, in the same window, here are plots of the implicit solution, the explicit solution (function 

( )xφ and points generated by the Euler’s numerical method: it is always good to be able to see the 

numerical solution (Euler’s method in this case) and the exact solution (implicit and explicit when 

possible) in the same window. 

 

 

 
Figure 7 
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For problem c), let us recall that if f = f(x, y) is a scalar field, then the (implicit) curve defined by  

f(x, y) = c is called a level curve of f (c being the level).  The “old” feature of DERIVE that consists to 

split the screens can be used to see a particular level curve in 2D and in 3D:  for the 3D view, simply 

intersect the surface z = f(x, y) with the plane z = c.  Here is an example with the function 
3 2

( , ) .
9 2
x yf x y x= − −  Let’s plot the level c = 1 curve, in 2D and visualize it in 3D (note that one has 

to make the box turn if axes are to be oriented like they are in 2D): 
 
 

 
Figure 8 

By the way, beginning with DERIVE 6, a Gröbner basis function (groebner_basis) started to be used 

by the author when heavy polynomial systems needed to be solved.  That became a nice opportunity to 

extend the famous row-reduce function used with linear systems.   

 

4. 3D plotting facilities: quite acceptable 
 

Before version 5 of DERIVE, 3D plots were very limited.  For instance, figure 8 shows, on the 

right, something that it was impossible to do.  Hopefully, David Parker was hired by Texas Instru-

ments to allow DERIVE 3D plotting capabilities to be compared with ones of big major CAS.  If 

DERIVE 6 does not support implicit 3D plotting, it has parametric 3D plotting ─ one parameter for a 

space curve, two parameters for a surface ─ that does a good and correct job.  Let us concentrate over 

a single, simple example, an example where DERIVE helps the mathematics teacher to concentrate on 

concepts and not on complicated commands.  Suppose you want to generate a torus, taking the circle 

of radius 1, centered at the point (2, 0, 0) in the plane y = 0, and letting it turn around the z-axis.  You 

should get something like this: 
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Figure 9 

 

 

In DERIVE, plotting the expression (vector) [2 + cos t, 0, sin t], where t ranges from 0 to 

2π, will give the circle ─ of course, one has to find parametric equations for the circle, but students 

learn how to do this in 2D, so it is quite easy, here! Using the matrix “ROTATE_Z(s)” will finish the 

job.  Note that we had to transpose the matrix obtained by the vector in #1 of figure 10 in order to 

perform the matrices product in #2 and, then, we had to put the result in vector form in order to get the 

3D surface.  Before doing this, one can use the slider bar in #5 of figure 10─ replacing s by a for ex-

ample ─ and see the circle turning around the z-axis: this is something that has to be done “live” with 

DERIVE and if you want to do it, you will see that you don’t have to type too many commands.  With 

DERIVE, it is easy and fast to get this.  Figure 10 concludes this example. 
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Figure 10 
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5. Conclusion 
 
 This additional look at a trusted mathematical assistant ─ limited look where examples con-

cern mainly mathematics at university level ─ is my way to say, again, thank you to Albert Rich and 

David Stoutemyer, the “fathers” of DERIVE.  Also, I want to thank Theresa Shelby, for her nice job 

regarding the windows versions that appeared after version 3.  These persons have created a piece of 

software that gave me so much enthusiasm during the past 18 years of teaching mathematics to engi-

neering students at ETS, in Montreal, Canada.  Also, the TI-92 calculator ─ now Voyage 200 ─ is, as 

far as we are concerned, a direct result of DERIVE’s spirit (I know that Albert Rich won’t agree!).  

And, since 1996, we have started to use both (see [3]):  that became more interesting in 1999 when 

every student at ETS started to buy ─ compulsory purchase ─  a TI-92 Plus (Voyage 200 from 2002) 

because, as a math teacher, we were able to switch from the calculator to DERIVE easily.  Also, for 

many problems, the calculator was sufficient:  this was a good reason to continue to think that a laptop 

computer is not necessary for a student when attending a mathematics course.   

DERIVE is no longer on the market. A certain part of its spirit is somewhere in Voyage 200 

calculator, whose future is uncertain... Nspire CAS software pretends to become the true successor of 

DERIVE. Again, only time will tell.  
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Abstract

This paper establishes the theoretical aspects which have been considered in order to elabo-
rate the Random distiributions package for Derive 6 as well as the description of the different
algorithm developed in the package. In section 1 the theory on random number generation is
presented (from [Rubinstein, 1981]). After explaining Derive’s random function (section 1.1)
the more efficient algorithms ran2 and mzran13 are developed (section 1.2 and 1.3 respectively).
Section 2 presents three different general methods for generating continuous distributions to-
gether with one for generating discrete distributions. Section 3 is dedicated to describe different
algorithms for generating random values from continuous distributions (Uniform, Exponential,
Normal, Lognormal, Weibul, Gamma, Beta, Chi-square, Student’s t, F, Z, Pareto, Logistic,
Cauchy and Irwin-Hall distributions). Section 4 presents different algorithms for generating
discrete distributions (Uniform discrete, Bernouille, Rademacher, Binomial, Poisson, Geomet-
ric, Negative Binomial and Hypergeometric distributions). In section 5 some algorithms for
generating different distributions by approximations are developed. Section 6 is devoted to de-
velop some graphical approaches in order to check graphically how the generated sample fix the
distribution. Finally, in sections 7 and 8 some examples and possible extensions to this work
are shown.

1 Random Number Generation

The most commonly used methods for generating pseudorandom numbers are congruential genera-
tors. A congruential method is one that produces a nonrandom sequence of numbers according to
some recursive formula based on calculating the residues modulo some integer m of a linear transfor-
mation. It is readily seen from this definition that each term of the sequence is available in advance,
before the sequence is actually generated. Although these processes are completely deterministic, it
can be shown that the numbers generated by the sequence appear to be uniformly distributed and
statistically independent.

Congruential methods are based on a fundamental congruence relationship, which may be ex-
pressed as:

Xi+1 = a Xi + c (mod m) i = 0, 1, 2, . . . , n (1)

where the multiplier a, the increment c and the modulus m are nonnegative integers.
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Given an initial starting value X0 (called the seed), (1) yields a congruence relationship (modulo
m ) for any value i of the sequence {Xi}. Generators that produce random numbers according
to (1) are called mixed congruential generators. The random numbers on the unit interval (0, 1)
can be obtained by:

Ui =
Xi

m
(2)

Clearly, such a sequence will repeat itself in at most m steps, and will therefore be periodic.

As Xi < m for all i, the period of the generator cannot exceed m, that is, the sequence Xi

contains at most m different numbers. Because of the deterministic character of the sequence, the
entire sequence recurs as soon as any number is repeated. The sequence is said to get into a loop,
that is, there is a cycle of numbers that is repeated endlessly. Modulus m should be chosen as large
as possible and appropriated values of a and c in order to make the period p maximum (that is,
p = m ) must be found. When this happens the random number generator has a full period. It can
be shown that the generator defined in (1) has a full period m, if and only if:

1. c is relative prime to m, that is, c and m have no common divisor.

2. a ≡ 1 (mod g) for every prime factor g of m.

3. a ≡ 1 (mod 4) if m is a multiple of 4.

Since most computers utilize either a binary or a decimal digit system, the best selection for m
is m = 2β or m = 10β, respectively where β is the word–length of the particular binary or
decimal computer.

For binary computers, in order to develop a full period generator when m = 2β, the parameter
c must be odd and a = 4k + 1 for some k ∈ N.

The second widely used generator is the multiplicative generator:

Xi+1 = a Xi (mod m) i = 0, 1, 2, . . . , n (3)

which is a particular case of the mixed generator (1) with c = 0.

Another common type of generator in which Xi+1 depends on more than one of the preceding
values1. For example:

Xi+1 = a1 Xi−j1 + a2 Xi−j2 + · · ·+ ak Xi−jk
+ c (mod m) or

Xi+1 = a Xi−j1 ·Xi−j2 · · ·Xi−jk
+ c (mod m)

Nowadays “the best” generators use combinations of the generators described along this section
in order to increase the randomness and the period of the generated sequences.

1These generators are often called Fibonacci generators because one example is given by the Fibonacci serie:

Xi+1 = Xi + Xi−1 (mod m)
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1.1 Derive’s random function

Derive’s random function uses a mixed generator given by:

Xi+1 = 2, 654, 435, 721 Xi + 1
(
mod 232

)
which satisfies the conditions to be a full period generator, that is, the period of Derive’s random
function is 232 = 4, 294, 967, 296.

Derive’s random function RANDOM(n) can be used with any n ∈ Z with the following meanings:

• If n > 1, RANDOM(n) simplifies to a random integer in the interval [0, n).

• RANDOM(1) simplifies to a random number in the interval [0, 1).

• If n < 0, RANDOM(n) simplifies to −n and initializes the random number state variable to
−n.

• RANDOM(0) simplifies to the time in centiseconds since the current calendar year began and
initializes the random number state variable to that time.

Although this is a “good” generator, the following two subsections describe two different algo-
rithms, implemented in the package Random distributions, which periods are quite much longer
and also improve the randomness.

1.2 ran2 algorithm

The ran2 algorithm was proposed by L’Ecuyer and is described in [Press and Teukolsky, 1992] and
[Press et al., 1999].

This algorithm merges the following two multiplicative generators:

Xi+1 = 40014 Xi

(
mod 231 − 85

)
Yi+1 = 40692 Yi

(
mod 231 − 249

)
This algorithm has been used for a long time as one of the best generators and its period is

about 2.3 · 1018 = 2, 300, 000, 000, 000, 000, 000 which is more than 535, 510, 480 times longer than
Derive’s random generator period.

The implementation on Derive has been carried out “translating” the “C” code developed in
[Press et al., 1999] and it uses the following two functions:

• ran2(n) which is the main algorithm. This function returns a vector of size n of random
numbers in the interval [0, 1).

• ran2 initialize() This auxiliar function is used to set the variables and constants needed
for the algorithm.

1.3 mzran13 algorithm

The mzran13 algorithm was proposed by G. Marsaglia and A. Zaman as an alternative to ran2. This
algorithm is described in [Marsaglia and Zaman, 1994].

This algorithm merges the two generators: a mixed one with a Fibonacci’s like one.

Xi+1 = 69069 Xi + 1, 013, 904, 243
(
mod 232

)
Yi+1 = Yi−1 − Yi−2 − “c”

(
mod 232 − 18

)
where the second one is a subtract-with-borrow generator (because of the term “c”).
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This algorithm has been found to be at least as good as ran2 but simpler, much faster and with
periods “millions and millions” of times longer. Specifically, its period is over

294 = 19, 807, 040, 628, 566, 084, 398, 385, 987, 584

that is, 8.611.756.795 times longer than ran2’s period and 4, 611, 686, 018, 427, 387, 904 times
longer than Derive’s period.

The implementation on Derive has been carried out “translating” the “C” code developed in
[Marsaglia and Zaman, 1994] and it uses the following function:

• mzran13(n). This function returns a vector of size n of random numbers in the interval
[0, 1). Previously, when the package Random distribution is loaded, the needed constants
and variables are initialized.

This algorithm is the base for all the random distribution generations developed in this package.
This, in the following, when we say that a value u is generated from U(0, 1), this is done using

mzran13 algorithm.

2 Different methods for random variate generation

This section presents some general methods for generating random variables from different contin-
uous and discrete distributions. In the following subsections three general methods for continuous
distributions and one for discrete distributions are described.

2.1 Inverse transform method

Let X be a random variable with cumulative probability distribution function FX (x). Since FX (x)
is a nondecreasing function, the inverse function F−1

X (y) may be defined for any value of y between
0 and 1 as: F−1

X (y) is the smallest x satisfying FX (x) ≥ y, that is,

F−1
X (y) = inf {FX (x) ≥ y} , 0 ≤ y ≤ 1

If U is uniformly distributed over the interval (0, 1), then X = F−1
X (U). So, to get a value x

of the random variable X , a value u from a random uniform variable U(0, 1) can be obtained
and compute x = F−1

X (y). Thus, the general algorithm for the inverse transform method is:

1. Generate a value u from U(0, 1).

2. Obtain x = F−1
X (u) as the random number from the variable X .

The only condition needed for this method is that F−1
X exists in an analytical form.

The following Derive’s program has been developed in the package Random distributions to
obtain a formula to generate X using the inverse transform method:

Inverse transform method(f, ini := 0, u) :=

Prog

(

u :∈ Real [0,1],

Solve(u = INT(f, x, ini, x), x, Real)

)
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2.2 Composition method

This method is employed by Butler and consists of expressing the probability density function fX (x)
of the distribution to be simulated as a probability mixture of properly selected density functions.

Let g(x|y) be a family of one-parameter density functions, where y is the parameter identifying
a unique g(x). If a value of y is drawn from a continuous cumulative function FY(y) and then if
X is sampled from the g(x) for that chosen y, the density function for X will be

fX (x) =

∫
g(x|y) dFY(y)

If y is an integer parameter, then

fX (x) =
∑

i

Pi g(x|y = i)

where ∑
i

Pi = 1 ; Pi > 0 ; Pi = P [Y = i] i = 1, 2, . . .

This method may be applied for generating complex distributions from simpler distributions
that are themselves easily generated by the inverse transform method or by the acceptance-rejection
method described below.

2.3 Acceptance–rejection method

This method is due to von Neumann and consists on sampling a random variate from an appropriate
distribution and subjecting it to a test to determine whether or not it will be acceptable for use.

To carry out this method, the probability density function fX (x) of the variable X must be
expressed as:

fX (x) = C · h(x) · g(x)

where C ≥ 1, h(x) is also a probability density function, and 0 < g(x) ≤ 1. After generating two
random values u and y from U(0, 1) and h(y), respectively, the test to see wether or not the
inequality u ≤ g(y) holds must be done, and:

1. If the inequality holds, then accept y as a variate generated from fX (x).

2. If the inequality is violated, reject the pair u , y and try again.

So, the general algorithm for the acceptance–rejection method is:

1. Generate a value u from U(0, 1)

2. Generate y from the probability density function h(y).

3. If u ≤ g(y), return y as the variate generated from fX (x)

4. Go to step 1.
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2.4 Inverse transform method for discrete distributions

The inverse transform method is the easier method to use not only for continuous distributions but
also for discrete distribution.

Let X be a random discrete variate which finite or infinite possible values are

x1, x2, . . . , xi, . . . .

Let FX (x) be its probability mass function given by

F (xi) = P [X = xi] = pi i = 1, 2, . . .

The inverse transform method can be described as follow:

1. Generate u from U(0, 1).

2. i := 1.

3. p := p1.

4. If u ≤ p deliver xi as the generated value.

5. i := i + 1.

6. p := p + pi

7. Go to step 4.

On the other hand, the values xi can be assumed to be all integers and xi+1 = xi + 1, because
if this is not the case, the correspondence φ(xi) = i can be established and consider a new random
discrete variate Y which values are 1, 2, . . . and FY(i) = P [Y = i] = P [X = xi] = pi, which is
equivalent to X and verify the above condition.

Let X = {ini, ini + 1, ini + 2, . . .} for some ini ∈ Z with probability mass function
FX (x) := P [X = x] = px ; x = ini, ini + 1, ini + 2, . . .

The following Derive’s program has been developed in the package Random distributions to
generate an element of X using the inverse transform method:

random discrete aux(F, ini := 0, aleat, i , p) :=

Prog

(

i := ini,

p := SUBST(F, x, i ),

Loop

(

If aleat ≥ p,

RETURN i ),

i := i + 1,

p := p + SUBST(F, x, i )

)

)

while the following Derive’s program generate a sample of size n of X .
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random discrete(n := 1, F, ini := 0, vecaleat) :=

Prog

(

vecaleat := random uniform(n),

VECTOR(random discrete aux(F, ini, vecaleat sub j), j, n)

)

3 Continuous distributions random generation

This section describes generating procedures for different continuous distributions.

All these continuous distributions are presented with their probability density functions and
with a drawing of a bars diagram, obtained by the Derive’s algorithm developed in the package
Random distributions, together with the plot of the corresponding probability density function in
order to see graphically if it is a “good” sample of generated values (see section 6.

See [Rubinstein, 1981], [Galán, 1991] and [Wikipedia, 2009] for further information on the algo-
rithm described below.

3.1 Uniform distribution

A random variable X has an uniform distribution in
the interval (a, b) ( X ; U(a, b) ) if its probability
density function is:

fX (x) =


1

b− a
x ∈ (a, b)

0 otherwise U(0, 1)

To generate X , first u must be generated from U(0, 1) and then return a + (b− a) u as

the generated value.

3.2 Exponential distribution

E(1)

A random variable X has an exponential distribution
with parameter λ > 0 ( X ; E(λ) ) if its probability
density function is:

fX (x) =


1

λ
e−x/λ x ∈ [0,∞)

0 otherwise

To generate X the inverse transform method is used:

U = FX (x) =

∫ x

0

1

λ
e−t/λ dt = 1− e−x/λ =⇒ X = −λ ln (1− U) ≡ −λ ln (U)

Thus, to generate X , u must be generated from U(0, 1) and then return x = −λ ln u as
the generated value.
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3.3 Normal distribution

A random variable X has a normal distribution with
parameters µ and σ ( X ; N (µ, σ) ) if its probability
density function is:

fX (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 x ∈ R

N (0, 1)

To generate X , Box and Muller theorem establishes that:

If U1 ; U(0, 1) and U2 ; U(0, 1) then

Z1 =
√
−2 ln(U1) cos(2πU2) and Z2 =

√
−2 ln(U1) sin(2πU2)

are independent standard normal deviates N (0, 1)

On the other hand, if Z ; N (0, 1) then (µ + σ Z) ; N (µ, σ)

Thus, to generate X , u1 and u2 must be generated from U(0, 1) and then return any of

the values µ + σ
√
−2 ln(u1) cos(2π u2) or µ + σ

√
−2 ln(u1) sin(2π u2) as the generated

value.

3.4 Lognormal distribution

LN (0, 1)

If the random variable Z ; N (µ, σ) then X = eZ

has the lognormal distribution with parameters µ and
σ ( X ; LN (µ, σ) ). Its probability density function
is:

fX (x) =


1

xσ
√

2π
e−

(ln x−µ)2

2σ2 x ∈ [0,∞)

0 Otherwise

To generate X , z must be generated from N (µ, σ) and then return x = ez as the
generated value.
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3.5 Weibul distribution

A random variable X has a Weibul distribution with
parameters α > 0 and β > 0 ( X ; W(α, β) ) if its
probability density function is:

fX (x) =


α

βα
xα−1 e−( x

β
)α

x ∈ [0,∞)

0 Otherwise W(5, 10)

To generate X the inverse transform method can be used:

U = FX (x) =

∫ x

0

α

βα
tα−1 e−( t

β
)α

dt = 1− e−( x
β

)α

=⇒(
X
β

)α

= − ln(1− U) ≡ − lnU ; E(1) =⇒

X ≡ β
(
E(1)

)1/α

To generate X , v must be generated from E(1) and then return x = βv1/α as the
generated value.

3.6 Gamma distribution

G(2, 3.5)

A random variable X has a Gamma distribution with
parameters α > 0 and β > 0 ( X ; G(α, β) ) if its
probability density function is:

fX (x) =


xα−1 e−x/β

βα Γ(α)
x ∈ [0,∞)

0 Otherwise

The inverse transform method cannot be applied since F−1
X (x) does not exist in an explicit form.

In this case, different algorithms have been developed in order to generate samples of the Gamma
distribution. Finally, the main algorithm chooses which is the appropriated one depending on the
values of parameters α and β.

3.6.1 random gamma1

This algorithm is valid for values of α > 1. The following two properties of gamma distribution are
the base to develop this algorithm:

1. G(1, β) = E(β).

2. If X1 ; G(α1, β) and X2 ; G(α2, β) then X = X1 + X2 ; G(α1 + α2, β), that is, gamma
distribution is reproductive with respect its first parameter.
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Let α > 1 , m = floor(α) and δ = α−m where floor(α) is the integer part of α. In order to
generate X ; G(α, β), a mixture of G(m, β) and G(m + 1, β) with probabilities 1 − δ and δ
respectively can be used. On the other hand, in order to generate them, m or m+1 variables from
G(1, β) = E(β) must be generated as shown in section 3.2. Thus, given U1,U2, . . . ,Um+1 ; U(0, 1):

X = −β ln (U1)− β ln (U2)− · · · − β ln (Um) = −β ln

(
m∏

i=1

Ui

)
; G(m,β) and

Y = −β ln (U1)− β ln (U2)− · · · − β ln (Um+1) = −β ln

(
m+1∏
i=1

Ui

)
; G(m + 1, β)

The algorithm is:

1. Get u, u1, u2, . . . , um, um+1 from U(0, 1).

2. Let x =
m∏

i=1

ui.

3. If δ ≤ u then let x = x · um+1.

4. Return −β ln(x) as the generate value.

3.6.2 random gamma2

If 0 < α < 1 then X = Y · V where X ; G(α, β) ; Y ; Be(α, 1−α) and V ; E(β).
(Beta distribution Be is described in section 3.7). Thus, random gamma2 algorithm to generate
X ; G(α, β) (0 < α < 1) can be described by:

1. Generate y from Be(α, 1− α) (using algorithm random beta4 described in section 3.7.2).

2. Generate v from E(β).

3. Return y · v as generated value.

3.6.3 random gamma5

This is an acceptance–rejection method due to Cheng and describes gamma generation G(α, 1) for
α > 1. Let us remember that the acceptance–rejection method is based in the following decomposi-
tion:

fX (x) = C · h(x) · g(x)

Cheng’s procedure uses:

h(x) =


λ µ xλ−1

(µ + xλ)2 x ≥ 0

0 Otherwise

C =
4αα

Γ(α) eα λ

g(x) = xα−λ
(
µ + xλ

)2 eα−x

4 αα+λ
where

λ =
√

2α− 1 ; µ = αλ

Setting a =
1

λ
, b = α− ln 4 and c = α + a Cheng’s algorithm can be written as:
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1. Get u1 and u2 from U(0, 1).

2. Let v = a ln

(
u1

1− u1

)
.

3. Let x = α ev.

4. If b + c v − x ≥ ln(u2
1u2) return x as the generated value for G(α, 1).

5. Go to step 1.

3.6.4 random gamma9

This algorithm uses the approximation to Gamma distribution by Normal distribution when α and
β are not “small”.

Specifically, if Z ; N

(
ln

(
α

β

)
− 1

2α
,

√
1

α

)
then G(α, β) ≈ eZ . Thus, the algorithm

is:

1. Generate z from N

(
ln

(
α

β

)
− 1

2α
,

√
1

α

)
.

2. Deliver x = ez as the generated value for G(α, β).

3.6.5 random gamma

Finally, the following algorithm runs the above algorithms depending on the parameters α and β
in order to generate a sample of size n from G(α, β):

random gamma(n := 1, α := 1, β := 1) :=

Prog

(

If (α = 1, return random exponential(n, β)),
If (α < 1, return random gamma2(n, α, β)),
If (β = 1, return random gamma5(n, α, β)),
If (α > 20 and β > 20, return random gamma9(n, α, β)),
return random gamma1(n, α, β)

)

3.7 Beta distribution

X has a Beta distribution with parameters α > 0
and β > 0 ( X ; Be(α, β) ) if its probability density
function is:

fX (x) =


Γ(α + β)

Γ(α) · Γ(β)
xα−1(1− x)β−1 x ∈ [0, 1]

0 Otherwise Be(2, 5)

The inverse transform method cannot be applied since F−1
X (x) does not exist in an explicit form.
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In this case, as in the case of Gamma distribution, different algorithms have been developed in
order to generate samples of the Beta distribution. Finally, the main algorithm chooses which is the
appropriated one depending on the values of parameters α and β.

3.7.1 random beta1

This algorithm is based in the following result:

If Y1 ; G(α, 1) and Y2 ; G(β, 1) then X =
Y1

Y1 + Y2

; Be(α, β).

Its implementation is therefore trivial:

1. Generate y1 and y2 from G(α, 1) and G(β, 1) respectively.

2. Deliver x =
y1

y1 + y2

as the generated value for Be(α, β).

3.7.2 random beta4

This algorithm has been developed for using in algorithm random gamma2. It is due to Jöhnk and is
based on the following result:

Let U1 ; U(0, 1) and U2 ; U(0, 1) and let Y1 = U1/α
1 and Y2 = U1/β

2 . If Y1 + Y2 < 1

then X =
Y1

Y1 + Y2

; Be(α, β).

The algorithm is:

1. Generate u1 and u2 from U(0, 1).

2. Set y1 = u
1/α
1 and y2 = u

1/β
2 .

3. If y1 + y2 < 1 deliver x =
y1

y1 + y2

as the generated value for Be(α, β).

4. Go to step 1.

3.7.3 random beta7

This algorithm uses the approximation to Beta distribution by Normal distribution when α and β
are not “large enough”.

Specifically, if X ; Be(α, β) then ln

(
X

1−X

)
≈ N (µ, σ) where µ = ln

(
α

β

)
+

α− β

2αβ
and

σ =

√
α + β

αβ
.

Thus,

ln

(
x

1− x

)
= z =⇒ x =

ez

(1 + ez)

and hence, the algorithm is:

1. Generate z from N

(
ln

(
α

β

)
+

α− β

2αβ
,

√
α + β

αβ

)
.

2. Deliver x =
ez

(1 + ez)
as the generated value for Be(α, β).
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3.7.4 random beta

Finally, the following algorithm runs the above algorithms depending on the parameters α and β
in order to generate Be(α, β):

random beta(n := 1, α := 1, β := 1) :=

If ( α < 4 or β < 4,

random beta1(n, α, β),
random beta7(n, α, β)
)

3.8 Chi–Square distribution

χ2(35)

Let Zi ; N (0, 1) i = 1, . . . , k k standard normal in-

dependent distributions. In this case, X =
k∑

i=1

Z2
i has

the chi–square distribution with k degrees of freedom
( X ; χ2(k) ).

Its probability density function is given by:

fX (x) =


xk/2−1 e−x/2

2k/2 Γ
(

k
2

) x ∈ [0,∞)

0 Otherwise

Although the algorithm to generate X ; χ2(k) would be trivial by definition, it would need k
values from N (0, 1) which require many operations if k is “large”. Thus, in the next two sections,
two different algorithms which improve (in number of operations) the “definition algorithm” are
described.

3.8.1 random chi square2

This algorithm is valid for “large” values of k (say k > 30 ) and it uses the following approximation
from the standard normal distribution:

If X ; χ2(k) then Z =
√

2X −
√

2k − 1 is such that Z ; N (0, 1)

Solving for X , X =

(
Z +

√
2k − 1

)2
2

. Thus, to generate X ; χ2(k) z must be generated

from N (0, 1) and then return x =

(
z +

√
2k − 1

)2
2

as the generated value.

3.8.2 random chi square3

This algorithm is based in the fact that χ2(k) is a particular case of a gamma density. Specifically,

χ2(k) ≡ G
(

k

2
, 2

)
. Thus, to generate X ; χ2(k), g must be generated from G

(
k

2
, 2

)
and then

return x = g as the generated value.

34



3.8.3 random chi square

Finally, the following algorithm runs the above algorithms depending on the parameter k in order
to generate χ2(k):

random chi square(n := 1, k := 1) :=

If ( k > 30,

random chi square2(n, k),

random chi square3(n, k)

)

3.9 Student’s t distribution

Let Z ; N (0, 1) and Y ; χ2(k) independents.

Then X =
Z√
Y/k

has a Student’s t distribution with

k degrees of freedom ( X ; t(k) ).

Its probability density function is:

fX (x) =
Γ
(

k+1
2

)
√

kπ Γ
(

k
2

) (1 +
x2

k

)−(k+1)/2

x ∈ R t(35)

To generate X ; t(k), z must be generated from N (0, 1) and y from χ2(k) and then

return x =
z√
y/k

as the generated value.

3.10 F distribution

F(32, 45)

Let Y1 ; χ2(k1) and Y2 ; χ2(k2) independents.

Then X =
Y1/k1

Y2/k2

has a F distribution with k1 and

k2 degrees of freedom ( X ; F(k1, k2) ).

Its probability density function is given by:

fX (x) =


Γ
(

k1+k2

2

) (
k1

k2

)k1/2

xk1/2−1

Γ
(

k1

2

)
Γ
(

k2

2

) (
1 + k1 x

k2

)(k1+k2)/2
x ∈ (0,∞)

0 Otherwise

To generate X ; F (k1, k2), y1 and y2 must be generated from χ2(k1) and χ2(k2)

respectively and then return x =
y1/k1

y2/k2

as the generated value.
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3.11 Z distribution

Let Y ; F(k1, k2). Then, the variable X =
ln (Y)

2
has a Z distribution with k1 and k2 degrees of
freedom ( X ; Z(k1, k2) ).

Its probability density function is given by:

fX (x) =
2 Γ

(
k1+k2

2

) (
k1

k2

)k1/2

ek1x

Γ
(

k1

2

)
Γ
(

k2

2

) (
1 + k1 e2x

k2

)(k1+k2)/2
x ∈ R Z(32, 45)

To generate X ; Z(k1, k2), y must be generated from F(k1, k2) and then return

x =
ln(y)

2
as the generated value.

3.12 Pareto distribution

Pa(8, 1)

A random variable X has a Pareto distribution with
parameters α > 0 and x0 > 0 ( X ; Pa(α, x0) ) if
its probability density function is:

fX (x) =


α

x0

(x0

x

)α+1

x ∈ [x0,∞)

0 otherwise

To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

x0

α

x0

(x0

t

)α+1

dt = 1−
(x0

x

)α

=⇒ X =
x0

(1− U)1−α ≡
x0

U1−α

Thus, to generate X ; Pa(α, x0), u must be generated from U(0, 1) and then deliver
x0

u1/α
as the generated value.

3.13 Logistic distribution

A random variable X has a Logistic distribution with
parameter α > 0 ( X ; L(α) ) if its probability
density function is:

fX (x) =
α e−x

(1 + e−x)α+1 x ∈ R

L(10)
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To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

− inf

α e−t

(1 + e−t)α+1 dt =
1

(1 + e−x)α =⇒ X = − ln

(
1− U1/α

U1/α

)
Thus, in order to generate X ; L(α), u must be generated from U(0, 1) and then deliver

− ln

(
1− u1/α

u1/α

)
as the generated value.

3.14 Cauchy distribution

C(0, 1)

A random variable X has a Cauchy distribution with
parameters α ≥ 0 and β > 0 ( X ; C(α, β) ) if its
probability density function is:

fX (x) =
β

π
[
β2 + (x− α)2] x ∈ R

To generate X , the inverse transform method can be used since:

U = FX (x) =

∫ x

−∞

β

π
[
β2 + (t− α)2] dt =

1

2
+

atan
(

x−α
β

)
π

=⇒ X = α + β tan

[
π

(
U − 1

2

)]

Thus, in order to generate X ; C(α, β), u must be generated from U(0, 1) and then deliver

α + β tan

[
π

(
u− 1

2

)]
as the generated value.

3.15 Irwin-Hall distribution

Let Uk ; U(0, 1) k = 1, . . . , n n uniform in-

dependent distributions. In this case, X =
n∑

k=1

Uk

follows the Irwin-Hall distribution with parameter n
( X ; IH(n) ).

Its probability density function is given by:

fX (x) =
1

2 (n− 1)!

n∑
k=0

(−1)k

(
n

k

)
(x− k)n−1 sgn(x− k)

with x ∈ [0, n] and sgn(x) the function given by:

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

IH(5)
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To generate X ; IH(n), u1, u2, . . . , un values must be generated from U(0, 1) and then

return x =
n∑

k=1

uk as the generated value.

4 Discrete distributions random generation

In this section different procedures are presented in order to generate discrete distributions. The
inverse transform method for discrete distributions described in section 2.4 is used in order to generate
a sample of the distribution. The only thing to do is to use the random discrete function developed
in the same section with the corresponding parameters.

4.1 Uniform discrete distribution

X = {a, a+1, . . . , b} has an uniform discrete distribution with parameters a and b ( X ; UD(a, b) )
if its distribution mass function F is:

F (x) = P [X = x] =
1

b− a + 1
; x = a, a + 1, . . . , b

Thus, in order to generate a sample of size n from an UD(a, b), the following Derive code can
be used:

random uniform discrete(n := 1, a := 0, b := 1) :=

random discrete(n,1/(b-a+1),a)

4.2 Bernouille distribution

X = {0, 1} has a Bernouille distribution with parameter p ( X ; Ber(p) ) if its distribution mass
function F is:

F (x) = P [X = x] = px(1− p)1−x ; x = 0, 1

or, equivalently, F (0) = 1− p and F (1) = p.

Thus, in order to generate a sample of size n from a Ber(p), the following Derive code can
be used:

random bernouille(n := 1, p := 1/2) := random discrete(n,px(1− p)1−x,0)

4.3 Rademacher distribution

X = {−1, 1} has a Rademacher distribution ( X ; Rad ) if its distribution mass function F is:

F (x) = P [X = x] =
1

2
; x = −1, 1

If Y ; Ber(1/2) then X = 2Y − 1 ; Rad. Thus, in order to generate a sample of size n
from a Rad, the following Derive code can be used:

random rademacher(n := 1) := VECTOR(2k-1,k,random bernouille(n,1/2))
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4.4 Binomial distribution

X = {0, 1, . . . , n} has a binomial distribution with parameters n and p ( X ; Bi(n, p) ) if its
distribution mass function F is:

F (x) = P [X = x] =

(
n
x

)
px(1− p)n−x ; x = 0, 1, . . . , n

Thus, in order to generate a sample of size m from a Bi(n, p), the following Derive code can
be used:

random binomial(m := 1, n := 100, p := 1/2) :=

random discrete(m, ncom(n,x) px(1− p)n−x,0)

4.5 Poisson distribution

X = {0, 1, 2, . . .} has a poisson distribution of parameter λ ( X ; P(λ) ) if its distribution mass
function F is:

F (x) = P [X = x] =
e−λ λx

x!
; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a P(λ), the following Derive code can be
used:

random poisson(n := 1, λ := 1) := random discrete(n,
e−λ λx

x!
,0)

4.6 Geometric distribution

X = {0, 1, 2, . . .} has a Geometric distribution with parameter p ( X ; Ge(p) ) if its distribution
mass function F is:

F (x) = P [X = x] = p (1− p)x ; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a Ge(p), the following Derive code can be
used:

random geometric(n := 1, p := 1/2) := random discrete(n,p (1− p)x,0)

4.7 Negative Binomial distribution

X = {0, 1, 2, . . .} has a negative binomial distribution with parameters r and p ( X ; NB(r, p) )
if its distribution mass function F is:

F (x) = P [X = x] =

(
r + x− 1

x

)
pr(1− p)x ; x = 0, 1, 2, . . .

Thus, in order to generate a sample of size n from a NB(r, p), the following Derive code can
be used:

random negative binomial(n := 1, r := 10, p := 1/2) :=

random discrete(n, ncom(r+x-1,x) pr(1− p)x,0)
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4.8 Hypergeometric distribution

X = {max(0, n1 + m − n), . . . , min(n1, m)} has an hypergeometric distribution with parameters
n , m and n1 ( X ; H(n, m, n1) ) if its distribution mass function F is:

F (x) = P [X = x] =

(
n1

x

)(
n− n1

m− x

)
(

n
m

) ; x = max(0, n1 + m− n), . . . , min(n1, m)

Thus, in order to generate a sample of size l from a NB(r, p), the following Derive code can
be used:

random hypergeometric(l:=1, n := 100, m := 50, n1 := 50) :=

random discrete(l,
ncom(n1, x)ncom(n− n1, m− x)

ncom(n, m)
,max(0, n1 + m - n))

5 Approximative algorithms

In this section several algorithms used to generate different distributions by approximations are
presented.

The main reason in order to use such algorithm is that they produce “good” samples and they
are quite much faster than other “exact” algorithm. In fact, some of the algorithms described
above are approximative algorithm (random gamma9, random beta7 and random chi square2 are
approximative algorithms for G(α, β), Be(α, β) and χ2(k) distributions which use N (µ, σ)
distribution as approximation).

In the followings subsections some other approximative algorithms which have been implemented
in Random distribution package are developed.

5.1 Approximation to Binomial distribution by Poisson distribution

Let X ; Bi(n, p). If p is “small” then

Bi(n, p) ≈ P(n p)

Thus, the algorithm to generate a sample of size m from the binomial distribution approximated
by a poisson distribution is:

random binomial approx poisson(m:=1, n := 100, p:= 0.01) :=

random poisson(m,np)

5.2 Approximation to Binomial distribution by Normal distribution

Let X ; Bi(n, p). If n is “large” and p is not close to 0 or 1, then

Bi(n, p) ≈ N
(
n p,

√
n p (1− p)

)
It can be shown that “good” approximations are reached when n p > 10 with 0 << p < 0.5 or

n (1− p) > 10 with 0.5 < p << 1 ( << indicates less than but not close to).

On the other hand, as Bi(n, p) has only nonnegative integer values, the nearest nonnegative

integer to the value returned by N
(
n p,

√
n p (1− p)

)
must be chosen as the generated value for
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X . It is easy to understand that the nearest nonnegative integer to a value z can be found by the
operation:

max

(
0, floor

(
z +

1

2

))
where floor(x) is the integer part of x.

Thus, the algorithm to generate a sample of size m from the binomial distribution approximated
by a normal distribution is:

random binomial approx normal(m:=1, n := 100, p:= 1/4) :=

vector(max(0,floor(k+1/2)),k,random normal(m,np,sqrt(np(1-p))))

5.3 Approximation to Poisson distribution by Normal distribution

Let X ; P(λ). If λ > 10 then P(λ) ≈ N
(
λ,
√

λ
)

On the other hand, as P(λ) has only nonnegative integer values, the nearest nonnegative integer

to the value returned by N
(
λ,
√

λ
)

must be chosen as the generated value for X . As shown in

section 5.2, this can be easily done by the operation:

max

(
0, floor

(
z +

1

2

))
Thus, the algorithm to generate a sample of size n from the poisson distribution approximated

by a normal distribution is:

random poisson approx normal(n := 1, λ:= 15) :=

vector(max(0,floor(k+1/2)),k,random normal(n,λ,sqrt(λ)))

5.4 Approximation to Geometric distribution by Exponential distribu-
tion

If X ; Ge(p) then X ≈ E
(

ln

(
1

1− p

))
On the other hand, as Ge(p) has only nonnegative integer values, the nearest nonnegative

integer to the value returned by E
(

ln

(
1

1− p

))
must be chosen as the generated value for X .

The nearest nonnegative integer to a value z > 0 (exponential distribution has only positive real
numbers) can be found by the operation:

floor

(
z +

1

2

)
where floor(x) is the integer part of x.

Thus, the algorithm to generate a sample of size n for the Geometric distribution approximated
by a exponential distribution is:

random geometric approx exponential(n := 1, p:= 1/2) :=

vector(floor(k+1/2),k,random exponential(n,ln(1/(1-p))))
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6 Graphical Approach

In order to check graphically if the generated sample fix the distribution, two different graphical
functions have been developed.

• bars diagram(v, k, mi, ma): it returns the needed instructions to plot the bars diagram
of vector v divided in k classes ( k=20, by default). The optional parameters mi (minimum)
and ma (maximum) are the minimum and maximum values of vector v unless other values are
considered. This values will be used to set the plot range.

• density function(name, para): it returns the corresponding density function of distri-
bution name which parameters are set in vector para. The possible values for name are:
“Uniform”, “Exponential”, “Normal”, “Lognormal”, “Cauchy”, “Weibul”, “Gamma”, “Beta”,
“Chi-square”, “t”, “F”, “Z”, “Pareto”, “Logistic” or “IrwinHall”.

Note that these functions have been developed for continuous distributions.

7 Examples

As an example, let us describe the steps needed to obtain a sample of size n = 1000 from a Normal
distribution with parameters µ = 3 and σ = 2:

1. Load the utility file Random distributions.mth in Derive 6.1.

2. Write down the following instruction in the Author Line: random normal(1000,3,2)

3. Do not simplify but Approximate the expression (in order case, time would be too long).

4. Variable res stores the result.

Now, in order to check graphically if the generated sample fix the distribution, the steps to
follow are:

5. Approximate the expression: bars diagram(res)

6. Follows the instructions given after this execution (the appropriate range for the plot) and plot
the result.

7. Simplify the expression: density funciton("Normal",[3,2]) and plot the result.

Remind that res variable stores the sample (of size n = 1000 in the example). If, the sample
does not fix the density function, a new sample can be generated again going to step 1.

In order to see more examples of different generated samples from discrete and continuous dis-
tributions, as well as, examples of different plots, please refer to files Random distributions.dfw

and Random distributions.mth. These files are distributed together with this paper and are also
allocate at http://www.matap.uma.es/profesor/jl galan/Derive/Packages.

8 Future work

In this section some possible future work lines are described:
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• Development of different programs to generate other discrete or continuous distributions: al-
though in this work the most common distribution has been considered, there exist many more
distributions which can be generated. This work shows different ways of generating samples
for both discrete and continuous distributions. Even more, since some generic algorithm has
been developed they may be used to generate almost any new distribution (mainly for discrete
distributions).

• Development of graphical approaches for discrete distributions: since the graphical approach de-
veloped has been optimized for continuous distributions, some graphical approaches for discrete
distributions could be also considered in future.

• Development of applications: there exist many applications which requires working with sam-
ples of different distributions. This kind of applications can be considered using this work.

• Checking the obtained result theoretically: although a graphical approach has been developed to
check if the generated sample fix the corresponding distribution, different theoretical approach
can be considered in order to check the results.

• Translation of these algorithms: Although this package has been developed in Derive, it can
be easily translated to other Computer Algebra Systems (Cas) or even to a portable platform
as Java.
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D E R I V E -  a n d  CAS-TI - U s e r  F o r u m   
  D-N-L#75  

 
From: DERIVE computer algebra system [mailto:DERIVE-NEWS@JISCMAIL.AC.UK] On 
Behalf Of Volker Loose 
Sent: Thursday, October 08, 2009 9:10 AM 
To: DERIVE-NEWS@JISCMAIL.AC.UK 
Subject: nsolve 
 
nsolve gives only 1 solution of an equation. I tried to write a function 
vnsolve that gives more solutions, using the vector- and the nsolve- func-
tion.It seems to be a mistake in my function but I can't find it. Has anyo-
ne an idea? 
 
Many thanks 
Volker 

  
DNL: Do you find the bug? Volker defined in #1 function f(x) and then in #2 he used f as a parameter 
for his function. Please note in the 4th component of the vector NSOLVE(f⋅x, …). This should be f(x) 
but is interpreted as a product f⋅x. Replace f in the parameter list and f⋅x in the NSOLVE-command by, 
say f_, then vnsolve works.  
 
But if there are more solutions which are close then this procedure does not work properly. 
Try vnsolve(SIN(x^2)-e^x,-7,7,10) which should give 16 zeros. vnsolve gives only 5.  
Jim FitzSimmons suggested another procedure: 
 

  
In case of more and close zeros it does not a satisfying job, too. In DNL#63 I tried to define a function 
finding the zeros. See mysolutions: 
 

 
 
At the occasion of this exchange of e-mails Danny Ross Lunsford wrote: 
 
about DERIVE-NEWS@JISCMAIL.AC.UK 
 
I am very happy to see that this list still exists. Derive is still a nearly ideal math tool and I 
hope it lives on. 
 
I have nothing to add, except this: I completely agree with Danny, Josef. 
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