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Dear Josef and Michel,

Just a little precision. | noticed that the link in the Newsletter doesn’t point toward my
website !

«Find a collection of animations from Canada (Genevieve Savard, Montréal)
http://www.seg.etsmtl.ca/Math/Animations/index.html »

This website was created by Robert Michaud.

My website is http://www.seg.etsmtl.ca/GSavard/index.html and the animation page is
http://www.seg.etsmtl.ca/GSavard/Animations/index.html

| wish you a very nice day,
Geneviéve

Genevieve Savard
Maitre d'enseignement en mathématiques
Ecole de technologie supérieure

Interesting and recommended websites:

SeeLogo (APGS) is a computer language through which the user can create beautiful pictures,
dynamic arts and make games. Here is a link to a book that uses the language to create mathe-
matical art.

http: www.ithaca.edu/seelogo/

You can find and download another free CAS-program CoCoA (in many languages).
e CoCoA is a program to compute with numbers and polynomials.
e Itis free.
o It works on many operating systems.
o Itis used by many researchers, but can be useful even for "simple" computations.

http://cocoa.dima.unige.it/

Visual Interactive Tools for Advanced Learning:

http://www.mathe-vital.de

Bei MatheVital handelt es sich um eine modulare, frei zugangliche Sammlung interakti-
ver Materialien flr den Unterricht in mathematiknahen Fachern.

Interoperable Interactive Geometry for Europe (many Ilanguages)
A new platform for Dynamic Geometry programs:

http://i2geo.net

Find more Links on page 3
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Dear DUG Members,

As T promised in the last DNL T'll give a report of the official DUG Meeting which
was held at TIME 2010 in Mdlaga. Every four years the DUG-board must be elected.
There are no changes in the board, all members accepted staying in our commission:
Bdrbel Barzel, Josef & Noor Bshm, Walter Klinger, Bernhard Kutzler and Josef
Lechner (in alphabetical order). Thanks fo all of you for your work in the past and
much success for the next 4 years' period.

We had many excellent talks and workshops in both Conference Strands. Unfortu-
nately I could not attend so many of them because of giving my own lecture(s) and
workshop or being occupied as chair of other sessions. So I am looking forward to
browsing and studying the Conference Proceedings which should be ready soon. I'l|
keep you informed. (If you want to have a look to it in advance, you can go to
http://www.time2010.uma.es/abtracts.pdf.)

We had great keynotes. The picture shows
Michel Beaudin talking about "Using the Real
Power of Computer Algebra”. I feel reminded
on Hamlet with the ghost of Hamlet’s father
in the background. (It is our friend Terence
Etchells who could not participate, so he
appeared as a good ghost in during Michel’s
talk.)

We all are indebted to the generous sponsors of the Conference: University of
Mdlaga and some faculties, Authorities of Mdlaga and Antequera, Texas Instru-
ments, Unicaja. Many thanks to you all.

In this DNL you will not find so many articles as usual. The contributions of
DNL#79 are very extended. Don Phillips provides a tool for Nonlinear Regression
and 2-Stage Least Squares Regression and demonstrates in an impressive way that
it is possible to transfer programs from DERIVE to the TI89/92/V200 and to TI-
NspireCAS as well.

My article on the Huffman-Code makes use of JohannWiesenbauer”s tool from the
last DNL for plotting binary trees.

Please pay attention to the many links to excellent websites given in the Informa-
tion page and on page 3. Thanks again to Michael de Villiers from South Africa for
his valuable notes.

It is a hice cooccurrence that Michel Beaudin wrote about cubics in the last DNL
and we have another in this DNL request on the same issue. Btw there is an inter-
esting paper on Cardano’s formula in The Montana Mathematics Enthusiast, 2005,
vol. 2. You can download it, see the links.

Best regards as ever, W

Download all DNL-DERIVE- and TI-files from
http://www.austromath.at/dug/
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The DERIVE-NEWSLETTER 1is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It is published at least four times a year
with a contents of 40 pages minimum. The
goals of the DNL are to enable the ex-
change of experiences made with DERIVE,
TI-CAS and other CAS as well to create a
group to discuss the possibilities of new
methodical and didactical manners in
teaching mathematics.

Editor: Mag. Josef Bohm
D’Lust 1, A-3042 Wiirmla

Austria
Phone: ++43-06604070480
e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

December 2010
15 December 2010

Next issue:
Deadline

Preview: Contributions waiting to be published

Some simulations of Random Experiments, J. Béhm, AUT, Lorenz Kopp, GER
Wonderful World of Pedal Curves, J. Bohm
Tools for 3D-Problems, P. Like-Rosendahl, GER

Financial Mathematics 4, M. R. Phillips

Hill-Encription, J. B6hm

Simulating a Graphing Calculator in DERIVE, J. B6hm

Henon & Co, J. B6hm

Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT
An Interesting Problem with a Triangle, Steiner Point, P. Liikke-Rosendahl, GER
Overcoming Branch & Bound by Simulation, J. Bhm, AUT

Diophantine Polynomials, D. E. McDougall, Canada

Graphics World, Currency Change, P. Charland, CAN

Cubics, Quartics — Interesting features, T. Koller & J. B6hm

Logos of Companies as an Inspiration for Math Teaching

Exciting Surfaces in the FAZ / Pierre Charland’s Graphics Gallery

BooleanPlots.mth, P. Schofield, UK

Old traditional examples for a CAS — what’s new? J. Béhm, AUT

Truth Tables on the Tl, M. R. Phillips

Where oh Where is It? (GPS with CAS), C. & P. Leinbach, USA

Embroidery Patterns, H. Ludwig, GER

Mandelbrot and Newton with DERIVE, Roman Hasek, CZ

Snail-shells, Piotr Trebisz, GER
A Conics-Explorer, J. Bohm, AUT
Practise Working with Times

Tutorials for the NSpireCAS, G. Herweyers, BEL
Some Projects with Students, R. Schroder, GER
Dirac Algebra, Clifford Algebra, D. R. Lunsford, USA

The PROOF, C. Leinbach & J. Bohm

Treating Differential Equations (M. Beaudin, G. Piccard, Ch. Trottier)

and others

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wiirmla, D'Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag.Josef Bohm
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More Links which might be of interest for you:
(Thanks to Michael de Villiers, who provided valueable links!)

The Association for Mathematics Education of South Africa Congress 2010 Proceedings

http://www.amesa.org.za/AMESA2010/Proceedings.htm
Volume 1: Lectures (337 pages), Volume 2: Workshops & How I Teach (330 pages)

Download free textbooks from bookboon:

Do you need math help? In our free mathematics books you hopefully will find answers to
your questions. These textbooks will guide you through mathematical concepts and models,
and hopefully give you a better understanding. Topics such as limit value, linear optimization
and the decay constant are explained. Specifically for computer science students, we pro-
vide the book 'Mathematics for Computer Scientists'. (Announcement from bookboon)

http://bookboon.com/uk/student/mathematics

Examples:  Applied Mathematics
Calculus
Complex Functions
Systems of Differential Equations
Probability for Finance a.o.

The July 2010 issue of The Montana Mathematics Enthusiast can be downloaded for free:

http://www.math.umt.edu/TMME/vol7no2and3/index.html
http://www.math.umt.edu/TMME/vol7nol/

This is the URL of the Montana Council of Teachers of Mathematics

http://www.montanamath.org/

You can download CINDERELLA 1.4 for free from
http://www.cinderella.de/tiki-index.php

Seeds Angle

Angle w=137.2755°
Seediis placed at
sart{if(sin{i™) cos(i™w))
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J.L., Austria

Lieber Josef,

ich mochte Dir zwei Files zur Formel von Cardano schicken.
Ich versuche gerade die Gleichung x>+3x?+9x+9=0 mit der F.v.C. zu Isen.

Das funktioniert mit TI-NSpire 2.1 problemlos, bei Derive kriege ich aber nicht das richtige
Ergebnis (siehe #7). Irgendetwas lauft da nicht korrekt, entweder habe ich irgend einen ftrivi-
alen Fehler gemacht oder eine Voreinstellung ist ungtinstig oder ich kann mit Wurzeln nicht

richtig umgehen oder ...

Dear Josef,

| am sending two files wrt Cardano’s formula. | am trying solving x*+3x?+9x+9=0 applying
this formula. This is no problem with TI-Nspire, but | am not able to obtain the correct result
with DERIVE, maybe that | made a trivial mistake, a typo, a wrong setting ...

1(3+p‘12+q-1(+r=0

Yotroeo B
rtx”+pxt4g x=0

pi=3iq:=9r=9 9
approx(cSolve(Y3+3't2+9‘ 4920 Y)] x=-0.83626+2.46585'7 or x=-0.83626-2, 46585 7 or x="1.32748
1 1
113 52
512
2 2 2 3
e {ap2-0p g7 }((2‘p3—9‘p-q+27'?') } (3-g-2%)
54 2916 729
1 2
1)2 53
2t 2
2 2 2 3
JerPopgrars) {(2-p°f9-p‘g+27-r) (g7
54 2918 729
201
x]:=:u+v—£ T 3
3 27427 -1
21 -1.32748
approxi-2 3 +2 3 -1
wpetd] v 2 1 [1 1
22 3 2’ 2° | 2341) 320
t i
2 2 2
™
11/89
1 A
112
2 2 2 3
o ’(2‘p3—9‘p-q+27‘7') {(2'p3—9-p‘q+27'r) :(3‘q—p2)
54 2916 729
2 1
xn=urv-£ - -
3 27427 -1
( 2 1 ) -1.32748
approx|-2 S42%
Syt u-v 1 1
o= (n x)Jru ‘-Jsi‘ifg % % S S
2 2 3 23 43 . 2J+1.J3_‘2.).
+ q
2 2 2
2 1 1 1 -0.83626+2.46585 1
gt el a2l
approx 1+ i
2 2 2
7(2'—-(H+"‘)*H7V'J37‘f*£ 2 1 1 1
2 2 3 23 53 X 2%+1) 3 2%
q
2 2 2

-0.83626-2.465851

™

11/99
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The DERIVE file:

3 2
#1: SOLVE(x + 3-x + 9:%x +9 =10, x)

2/3 1/3 2/3 1/3 2/3 1/3 2/3
2 2 3.2 J3.2 2 2 J3.2
#2: X = = -1 - L. + vV oX = = -1+ L-
2 2 2 2 2 2 2
1/3
J3-2 2/3 1/3
+ v X = -2 + 2 -1
2

#31: ¥ = —0,8362599989 - 2.,465853272-L v x = -0.8362599989 + 2.465853272.L v x = -1.327480002

#4: [p:=3, q:=9, r:=9]
3 3 2 2 3 3Y1/231/3
2:p - 9-p-q + 27-r (2-p - 9-p-q + 27-1) (3-q -p)
#5: uz |- + +
54 2916 729
1/3
#6: u:-2
3 3 2 2 3 \1/23\1/3
2.p - 9-p-q + 27-r (2-p - 9-p-q + 27-1r) (3-q -p)
#7: Voiz |- = +
54 2916 729

2/3 2/3

2 J3.2 i
#8: Woz +

2 2
p u + v p u - v 1/2 u + v p
#9: xLomuw +v - —, x2 02 - —— - — + ———.(-3) y X3 m - —0— - — -
3 2 3 2 2 3
u - v 1/2
— . (-3)
2

#10: [x1 :z 1.053621575 + 1.374729636.0, x2 := -0.8362599989 - 0.2836060010.L, x3 := -3.217361576 -

1.091123635-(]

Compare #3 and #10!

DNL: Dear Josef, try this:
Set Branch:=Real, then it works!!

#11: Branch :- Real

3 3 2 2 3 31/231/3
2:p - 9-p-q + 27-r (2-p - 9.p-q + 27-1) 3-q-p)
#12: u = |- + +
54 2916 729
1/3
#13: u = 2
3 3 2 2 3 31/231/3
2:p - 9-p-q + 27-r (2-p - 9.p-q + 27-1) 3-q-p)
#Ll4: v o= |- = +
54 2916 729
2/3
#15: v = — 2
p u+ v p u-v 1/2 u+ v p
#16: xLizu+v - —, X212 - —— - — 4+ —.(-3) , X3z - —MMM — — —
3 2 3 2 2 3
u - v 1/2
—(-3)
2

EA [ ] - —1.327480002, x2 := —0.8362599989 + 2.465853272-L, x3 := —0.8362599989 - 2.465853272-(]
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education I came across a strange behaviour of TI-NspireCAS.

When I prepared my talk for TIME 2010 about the use and didactical value of sliders in mathemtics

the Taylor expansion (= a) and another one for the order of the Taylor polynomial (= n).

-5.62

378 TV

I wanted to demonstrate the Taylor approximation supported by two sliders — one for the location of

.@l?@()h f1

T
2

|

f1 (:f.):e _'-"'-sin(z-:f)

f2(x):taylor(f1 (x)xn, a)
0.5

0.5

»

-3.78

562

As you can see in the screen shot above this works for function e -sin(2x).

| 378 Ty
n=1
=

0| 10.

|II
a=.90] .
T /N !
-2, | 2, / Y -
| [ \tbee oo
\ \fllx)=e © sin|2:x f2(x):taylor(f1 (x)lx,n,a)
II \‘.
| \
\
1 \
|I ‘I". a5 S
I| / ll"-. / T X
5.62 I‘, ‘III I\-. 0.5 _.'/ 5062
,I | \ /
I| / N /
| s
! [ NN
|II
|
i
I|
| [
|III Illl|
® \/ 3,78
X

Then I tried e 3 -sin(2x) and I failed. I wrote to TI (Gosia Brothers) and she answered:

We know that this is a problem with our series code dealing with floats. You need only put

I will let you know as soon as | know.

approx() around taylor() to see this problem in Calculator or Notes. David Stoutemyer devel-

oped this code and he is currently working on updating it. Not sure when the fix will be in but

Thnaks to Gosia for the immediate reply. The bug has not been resolved in TI-NspireCAS 2.0.
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Zipped today? — The Huffman-Code

Josef Bohm, Wiirmla, Austria

When you want to send big amounts of data via email, then you will probably compress the file(s).
Some programs do the job. One of these programs gave the name: “zipping®. (Which one?) Com-
pressed files show mostly the file extension zip or rar. Especially graphic files (photographs, scanned
images, ..., and dfw-files, of course) may become very large. It is easy to reach a couple of mega-
bytes. Intelligent algorithms provide a compression to a significant smaller amount of data without
loss of data.

M ame | Typ | Datum | Eri:iElel K.aomp... | Kompri... | FI
2y
Cenve Workzhest 13.10.2004 15:37 722041 99% 91 331

The picture shows the result of ,,zipping® or ,,packing® a Derive-file which contains some graphs. You
can see the efficiency of the compression algorithm.

A very simple method is the following: in a graph appears a sequence of 3878 white image points
(pixels) followed by a sequence of 132 black pixels. Instead of listing w, w, ..., w, b, b, ..., b one can
note much shorter: w, 3878, b, 132, loosing no information at all. The next paragraph is some text (in
German) which shall be used for demonstrating compression for transmission.

“bei der komprimierung von texten laesst man sich von der unterschiedlichen haeu-
figkeit der zeichen in dem zu codierenden text leiten. wir wollen das an einem einfa-
chen beispiel demonstrieren, wobei wir nur kleinbuchstaben, zwischenraeume und
satzzeichen verwenden wollen. dieser text wird verwendet.”

Characters with a high frequency will be assigned to short code words in order to save bits! This basic

[TRL]

idea is also realized in the Morse-Code. Character “e” is encoded by a code word of length 1, the “.”,

(1P (13

character “q” which is pretty rare by a code word of length 4, “——. —,

We create a ,,binary tree*. This is a directed graph consisting of vertices or nodes and edges (arrows)
(= branches of the tree). Our first message “demo™ to be encoded is “dieser text wird verwendet®.
Using the ASCII-Code without check bit the length of the message is 189 bit.

First of all we find out the frequency of the characters by simply counting. This can be done manually.
For extended texts we will use the computer.
DIM(1Tst)
#1: h(list, number) := r IF(Tist = number)
=1l 1

freq(plain) = SORTCSELECT(v # O, v, WECTOR([h(MAME_TO_CODES(plain), k), CODES_TO_NAMECkI], k, 32, 12711)°
#2: 1

#3: demo := dieser text wird verwendet.
# .  DIM(demc) = 27

1111122333 36
#5: frag(demo) =

n s v X 1 W d r t e

Expression #8 (next page) shows the frequency table for the paragraph from above starting with: “bei
der komprimierung ... “. (Don’t forget to write the text under quotes. The quotes are not visible on
the DERIVE screen, they are visible in the Edit-Line.)
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#6: paragraph := bei der komprimierung von texten laesst man sich von der unterschiedlichen
haeufigkeit der zeichen in dem zu codierenden text leiten. wir wollen das an einem
einfachen beispiel demonstrieren, wobei wir nur kleinbuchstaben, zwischenraeume und

satzzeichen verwenden wollen. dieser text wird verwendet.

#7: freq(paragraph)
2 2 2 2 3 3 3 4 5 5 7 8 8 9 9 9 9 9 11 14 14 17 25 29 40 50

#8:
, T g p . k x v b z m o uach 1l w s d t r 1 n e

The procedure is performed as follows:

Generate a node for every character appearing in On the left you can find the structogram for

the message. Label all nodes with their weights the algorithm. We will follow the instructions
(= frequencies). and create the “Huffman-Tree” for the code of

our message.

Until there is only one node remaining with no ) )
. . Then we will check the efficiency of the code,
arrow directed to it, do:

apply it and demonstrate how to decode the
Connect two nodes with minimal weights encoded message into a readable form again.

which are not end points of an arrow by a

new node. The weight of this “parent node”
is the sum of the weights of the “children”.

The arrows are directed from the parent
node to the children nodes.

The arrows are named as 0 (the left edge)
and 1 (the right edge) by convention.

This is another definition (found in http://en.wikipedia.org/wiki/Huffman coding):

The process essentially begins with the leaf nodes containing the probabilities of the symbol
they represent, then a new node whose children are the 2 nodes with smallest probability is
created, such that the new node's probability is equal to the sum of the children's probability.
With the previous 2 nodes merged into one node (thus not considering them anymore), and
with the new node being now considered, the procedure is repeated until only one node re-
mains, the Huffman tree.

Steps 1 to 3:

We select the pairs of nodes with minimal weights one after the other.

Step 1 Step 2 Step 3

] 1 0 1 i 1
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Steps 4 to 6: Pair (2,2) is connected by parent node 4. Then we find pair (2,3) and connect them giving

node with value 5. “d” and “r” are following in step 6.

t e

Inspecting the graph we see that we need to connect the “t”’-node with the value 3 node in the second
row according to the algorithm rules. I rearrange the base line and insert the connection resulting in a

parent node with value 6:

®
1 e
The minimum nodes to be connected by edges are form pair (4,5) giving the sum 9. It is again neces-

sary to rearrange the binary tree in order to obtain a clear structure - without crossing edges (step 8)).

Step 9 results in node 12.

Finally we connect 6 and 9 and the last step gives the “root” of the binary tree (or Huffman-Tree)

with value (or weight) 27.
6 Step 1

Step 10

=
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Having connected 9 and 6 to 15 the branch starting with node 12 is remaining. Both have the same
root (parent) 27.

Only one vertex (27) with no arrow directed is remaining. According to our instructions the job is
done. It is an easy check to compare the weight of the final vertex (the root of the binary tree) with the
sum of all (absolute) frequencies which is 27.

I used Johann Wiesenbauer's tool for plotting directed graphs which appeared in DNL#78. These are
the expressions which result iwhen plotted n the final Huffman-Tree:

11 9 -7 51 357 9 1 -10 6 -3 -1 2 8 -8 -2 3 -5
huffS::l
0o 0 0 00O0OO0OOO O 2 2 2 222 4 44 &6
10 -1 4.5]
4 8 10
hs .= [{3, {3 {0 {4y O 4 A {8 {0 {3 {3, 23, {3, 43, {}, {} {5, 6}, {8,

9}, {11, 12}, {13, 14}, {15, 7}, {17, 18}, {16, 10}, {20, 19}, {21, 22}]

graphChuff5', h5, 0.4, true)

We observe that frequently used characters are located close to the root, rarely ones can be found in
the “tops of the tree®.

The codes for the characters are yielded by following the graph from the “root” to the “leaf and not-
ing the labels of the edges along the path. The code for the “i* is 0101 (follow the blue numbers), the
code for the “x* is 0100, the “r*~code is 101 and the “v* is encoded by 00011. You see again that rare
characters result in long paths which are equivalent to long code words and frequently appearing char-
acters give short paths and consequently short code words. The Huffman-Code is the code which
needs the minimal number of bits. (This can be proved.)

Here is the complete code - given as a matrix - followed by the encoded message:
(demo is the message “dieser text wird verwendet.”)
e d r t i X w v s n

#10: hcodel ::l
11 100 101 011 0101 0100 0011 0010 00011 00010 00001

00000 ]
#11: mess := huffcode(demo, hcodel)
#12: mess =

10001011100010111010011011110100011001100100101101100001100011111010010110~
00011001101100000

#13: DIM(mess) = 91

The characters e, d, ... and the code words 11, 100, ... are strings. So they are entered under quotes:
‘ée”’ Céd’?, . .’7’1 1?” 46100”, .
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The encoding procedure is done by a small program huffcode:

huffcode(plain, code, p, cplain) :=
Prog
cplain =
code := code’
p := VECTOR(plainyi, 1, DIM(plain))
#9: Loop
If p =[]
RETURN cplain
cplain := APPEND(cplain, (SELECT(vyl = FIRST(p), v, code))11,2)
p := REST(p)

The encoded message is decoded by following the path starting in the root bit for bit (go left for 0 or
right for 1) until reaching a leaf. There you will find the respective character:

"100/0101|11]00010)] ..... results in: dies ...

Of course, the code must be transmitted together with the encoded message (if the code is generated
from the message). Each language has typical frequencies for the occurrences of the letters. If the
partners agree — and the message is sufficiently long — you can do without sending the code and rely
on the typical frequency of the letters in the respective language.

Let’s try decoding using huffdecode:

huffdecode(codtxt, code, plain, z, zz, branch, kJ ==
Frog
k =0
plain =
code = code’
Loop
If codtxt = """
RETURMN plain
#14: codtext = REST{codtxt)
branch = FIRST{codtxt)
Loop
Zz ;= SELECT{w2 = branch, v, code)
Itz [] exit
codtxt = REST(codtxt)
branch := APPEMD(branch, FIRST(codtxt))
codtxt = REST(codtxt)
plain = APPENDCplain, =z11,1)

nn

#15: huffdecode(mes=s, hcodel) = dieser text wird wverwendet,

It seems to work!

Possible questions and problems for students:

1 It is possible to read off the length of the encoded message from the Huffman-Tree. Can you
do this?
2 Compare the number of the bits of the plain text “demo” and its compressed form. If we had

only 12 characters we would need only 4 bits applying conventional coding. Would we benefit
of Huffman-encoding?

3 Decode the compressed mess manually.

4 Why does the “adaptive method®, which determines the code from the plain text (as we did it
here) bring a real advantage only if applied for longer messages?
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6 Do a web research for frequency tables of letters in various languages.

7 Encode the message “this sentence will be compressed”. Develop the Huffman-Tree in order
to find the code, encode and decode.

The programs for encoding and decoding are not so difficult. The real challenge for me was writing a
program which returns the code — such that I need not “plant” the Huffman-Tree.

hufftreeiplain, = := 0, plainh, tab, el, €2, fl, 2, ne, tree) :=
Frog
plainh = fregiplain)
tab = WVECTOR([wy1l, [wi2, ""11, v, plainh')
tree = [[]]
Loap
tree = APPEMD{tree, [tab]}
If DIM{tab) = 1
Ifs=10
RETURN tabyl,2’
RETURM REST{tree)
#16: el = (FIRST(tah}),2
If elp2 = ""
el = [el]
1 = VECTOR( w1, APPEMDCO", w122], w, €l)
e = (FIRST{REST{tab)) 1.2
If e2p2 =""
e? = [e2]
2 = VECTOR( w1, APPEMDC'1™, w123], w, e2)
ne = [{FIRST{tab))11 + (FIRST{REST(tab}3311, APFEND{fl, f2)]

tab := REST{REST(tab)}
tab = APPEND{[ne], tab)
tab = SORT(tab)

a d r t % 7 W . n 3 W
#17:  hufftree(demo) =

oo C0lo o©l1 100 1010 1011 1100 116320 11011 11100 11101 1111

Comparing with hcode1 you will notice that both codes are different. Yes, it is true, there is no
unique optimal code. We should further see that the encoded message using this code will have the
same length of 91 characters.

e d r t X i w . n s v
#18: democode =
1111

00 010 011 100 1010 1011 1100 11010 11011 11100 11101

#19: demo_mess := huffcode(demo, democode)

#20: demo_mess :=
010101100111000001111111000010101001111110010110110101111111010001111000011011010~
0010011010

#21: DIM(demo_mess) = 91

#22: huffdecode(demo_mess, democode)

#23: dieser text wird verwendet.

We will apply huftree on the longer message paragraph from above. Then we will encode and
decode this text.
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#30: par_code := hufftree(paragraph)

d t n X v 0 u , f
#31: par_code =
0000 0001 001 010000 010001 01001 01010 0101100 0101101

g p r a C h 1 w b z
0101110 0101111 0110 01110 01111 10000 10001 10010 100110 100111 101
s . k m i e

11000 1100100 1100101 110011 1101 111
#32: par_mess := huffcode(paragraph, par_code)
#33: par_mess =

100110111110110100001110110101110010101001110011010111101101101110011110111101100~
101000101011101010100010100100110100011110100000001111001101100010111011111000110~
000001101110011011100011011100011010111110000101010001010010011010000111011010101~
010001000111101101100001111100001101111000010001110101111100001110011011000001110~
111010100101101110101011101100101111110100011010000111011010110011111111010111110~
000111001101110100110100001111100111011001110101010101111010010000110111101101110~
010000111001101000111101000000011011000111111010001111001110010010110010110101101~
011001001001100011000111100110100000111011000101011100011011111101001111110011101~
111110100101011010111001111100001110011011001101111101110000101111110111110001101~
000011111001101001001110000001011011011110110111001010110010110010010011001101111~
101101100101101011010100101010011010111001011000111111010011001100101001111100001~
100000010111010011011100101011001011001111001011011100001111100001110010110011101~
110101011001111110101010001000010111000011100001100111100111111110101111100001110~
011010100011110110100101110010000111001101100100100110001100011110011100100101000~
011011111100011101101010001111010000000110110010110101100000101010001111011010010~
111001000011100011100100

#34: DIM(par_mess) = 1239

#35: huffdecode(par_mess, par_code)

#36: bei der komprimierung von texten laesst man sich von der unterschiedlichen
haeufigkeit der zeichen in dem zu codierenden text leiten. wir wollen das an
einem einfachen beispiel demonstrieren, wobei wir nur kleinbuchstaben,

zwischenraeume und satzzeichen verwenden wollen. dieser text wird verwendet.
My program hufftree2 has a tighter code and returns another — but also optimal Huffman-Code.

d r a t X . h 1 s " w
#39: hufftree2(demo) =
000 o001 01 100 1010 10110 10111 1100 11010 11011 1110

1111 ]

#40: huffcode(demo, hufftree2(demo))

#41: 00011000111010010011111100011010100111111101100001000111111011010011110011011100001~
10010110

#42: DIM(huffcode(demo, hufftree2(demo))) = Al
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#37:

hufttree2(plain, = := 0, plainh, tah, €1, 2, 1, 2, ne, tree)
Frog
plainh = fregiplaind
tah = VECTORC[wy1l, [[wi2, ""111, w, plainh™)
tree = [[]1]
Loop
tree = APFEMD{ tres,
If DIM{tab) = 1
I'FS:D
RETURM tab,l,2’
RETURM REST(treel

[tab]l

2]

el = (FIRST(tah),2

1l = WVECTOR([wyLl, APPEND{"OQ", w1231, w, &l3

e = (FIRST(REST(tah3)7,2

2 = WVECTOR([wyLl, APPEND{"L"™, w1221, w, &2

ne ;= [(FIRST{tab33,1 + (FIRST{REST(tab)>311, APPEND{L,
tab = REST{REST(tab)

tab = APPEMD{[ne], tab}

tab = SORT(tab>

Default for s (second parameter in the parameter list) in hufftree and hufftree2 as well is 0. If you

enter any other value then you will obtain another output: You can follow the Huffman-Tree growing

(from its leaves and branches down to its root). I will demonstrate this using again demo:

hufftree(demo, 1)

#24:

#25:

1 [.,

1 [n,
1 [s,
1 [v,
1 [x,
2[4,
2 [w,
3 [,
3 [d,
3 [r,
3 [x,

L 6 [e,

17

]
1

10
11 ]
00 |

01

[s, ]

[v, ]

[x, 1

[, ]

[w, ]

.0

[n l]

[.]

[d, ]

[r, 1

[t, ]

[e, ]
w 0

4 10
n 11

['s 00 ]

5 | v o1

6 [e, 1]
d 0

6
ro1
t 0

6 | x 10
i1l

[e,

10

11 ]

00

010

011

100

101

11

12

[ R T T '

00

010

011

100

101

11

12

15

4 . 10

|l n 11 |
[ s 00 ]

01

r 11
[t 00
x 010
1 011
w 100

1010
n 1011
s 1100

v 1101

111 | |
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e 00
d 010
r 011
t 100
x 1010
1 1011
27
w 1100
11010
n 11011
s 11100

v 11101

1111

I am sure that you can “read” the output. You can see step by step how the vertices are collected and

how the weights are added. The last element gives the weight of the root and the complete code.

Solution for task 7 (page 12): The encoded message should contain 120 characters.

Huffman-Code on the TIs:

|f1 ]’ Fev Tr:v]’ruv]’ FE ]’ 5 T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

B 'dijeser text wird wverwendet." + demo
"dieser text wird wverwendet."
= el dema) Dore

freqgidemo?
EEYFT FAD EXACT FUMWEC 230

1 Fev Faw | Fuw FE FE
- E Algebra|Calc|Other|PrgmI0|Clean Up

B 'dijeser text wird wverwendet." + demo
"dieser text wird wverwendet."

B eyl demna) Dok
uft
["lvl" II-II lell IISII Ilhll Ilill IINII Ilr.\.ll ’
1 1 1 1 1 2 z 3
ft
ERVFT FAD ERALT FUNEC_ 3750

|f1 ]’ Fev Tr:v]’ruv]’ FE ]’ 5 T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

inowym o wen uge o wpwowow o ugw

L] +
LS S R - T ] sod=l
g wn T Tagn Tapn Twge npa apn ,
1 1 1 1 1 2 2 3

hufcodef{demo,.codelT>

ERYFT FEAD EXACT FUMC i/ 30

I did not program (until now) the hufftree routine
to generate a code. Maybe that one of the readers
will transfer the DERIVE program from page 12
to the Voyage 200 or to TI-NspireCAS?

Let me know.

(The TI-functions are among the files which can be
downloaded.)

BT N N FE -
il [ E g b | Cind [Pram IO

Frequency table as ft

ERYFT RAO ERACT FUMC 420

it Pr*rgsmIEI i

et R ]

frequency table stored as 1

["U" nomoomn oo e wimoowpn ity

1 1 1 1 1 2 2 3 3

EEYFT KD AUTO FUMC 2%/20
1 Fzw Fzw Fyr FE Far

vE AlgebralCalc|Other|PramI0Clean Upl

||5|| "h" n . n

u 3
‘911" vpoeiar vpeoare "Eu:u:u:u:n"] codel
["E" ||d|| ||r-\.|| ||t|| ||i|| ||x|| ’

W1gn vigEt MLELt E11" "mlelt M@l

u hchnde[demn , codel T] + codemo
"100E191110001011190100110111101a031 10k

hufcodef{demno . codelT »*cdemo]
ERYFT FAD EXACT FUMWEC 230

I’Fi T Fev Trzv]’ruv]’ FE T FE T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

["E" L L T T LRl el ,
A o wigar o vigi" o v@gii" o "@iait ol

L] huf‘code[demo , codel T] + cdemo
"1E0E1E1110001011101001101111018031 100w

u huchDde[cdemn , codel U ]
"dieser text wird werwendet."

B dimcdemol 91

dim{cdemo >
EEYFT RAD ERACT FUMC Y440
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The Josephus Problem
Roland Schrdoder, Celle, Germany

In 70 AC 40 rebellious Jews were captured in Rome which should be sold as slaves
in punishment for their behaviour. In order to avoid their doom they agreed on a pro-
cedure for mutual extinction: They formed a circle and every seventh in the row
should be killed (continuing counting in the same direction). The remaining last one
should commit suicide. The later historian Flavius Josephus chose a position that he
remained as the last one — and he didn’t commit suicide.

The story is wholly invented. In Scandinavia the following legend is passed on: In
times when St Petrus strolled on earth he repaired on a ship with 15 Swedes and 15
Norwegian. The ship got in a thunderstorm followed by distress at sea. Salvage
seems only possible if half of the passengers will go overboard. St: Petrus provides
the following counting method: The passengers form a circle. St. Petrus starts at a
certain position counting until 9. Person number 9 has to leave the ship (jump from
board) and the circle will be closed immediately. St. Petrus keeps the direction and
counts again up to 9 — and the next person jumps (or will be thrown). The procedure
goes on until 15 people are remaining. How had Petrus organized the starting posi-
tions of the 30 passengers that the Swedes — which were preferred by him — had
been saved? (Sorry for our Norwegian DUG-Members!)

But this story is also imaginary. There are also versions with Christians and Turks,
(and people from Vienna and Klagenfurt in DNL#52, Rudeger Baumann). The ma-
thematical problem behind is: n elements are arranged in a circle and numbered from
1 to n. Then every k™ element is removed. Which element (Josephus) or which ele-
ments (St. Petrus) will remain after e countings?

Putting oneself in an affected person’s position, one would like to have an easy and
quick algorithm available to find an advantageous position for oneself. In both tales
narrated above the numbers are small, so the simulation of counting by paper and
pencil will deliver the requested solution very soon. Taking numbers above n = 100
makes manual simulation so laborious that it makes sense to look for a more elegant
solution of the problem. The first mathematical treatment of the problem originates —
according to the author’s knowledge — from Leonhard Euler, who found a recursion
formula, which will not be used now.

Instead of this we will develop some DERIVE-functions. The function “jo(x,yk)” shall
relieve us of the manual paper and pencil work and deliver immediately the surviving
person. The meaning of the functions are self explanatory calculating some
appropriate examples. We will do this now.

[1] DNLs #52, 57 (Josephus Problem) & #53, 55 (Josephus Permutations)
[2] http://web.me.com/ntheriau/josephus.pdf (Generalization of the Josephus Problem, Tait’s Algorithm))
[3] Donald Knuth a.o., Concrete Mathematics




D-N-L#79 Roland Schroder: The Josephus Problem p 17

#1: ris) o= WECTOROY, v, =)
w2 ri12y = [1, 2, 3, 4,5, 6, 7, & 9, 10, 11, 12]

glv, k) = VECTOROy | n, IFCk = DIMOw), DIMOw) — 1, MODk, DIMCW)DD0
#3: f

#4: glr{l2y, 73 =[1, 2, 3, 4,5 6/, 7]

v, ko= VECTOROw |, n, IF(k = DIM(w), DIMOwD) + 1, MODCk, DIMOW)D + 10, DIMOeD)
#5: n

#6:  f(r{12), 7 = [& 9, 10, 11, 12]

#7: b, k) = ARPENDCFOw, kD, glw, kD

#8  h(r(12), 7) = [& 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7]

h(v, k) puts together the two parts g(v, k) and f(v, k) of the vector v = r(x) in inverse

order. Then the last element of h(v,k) is removed and the same procedure is applied
on this newly generated vector.

Taking to pieces — Inverse joining — Removing the last element.
#5: (v, k) = DELETECh(v, k), DIM(v))

#0: (r(l23, 73> =[8&, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6]

Joix, k) = (ITERATECiiw, kI, w, rix), = — 1))

#11: 1
#12: joi40, 73 = 24
#3: joid4l, 3) = 31

#14: jo(lo0, ¥ = 50

Josephus stood on position 24 — and he survived.

We produce a value table and the respective graph for the relation between the
number of persons forming the circle and the position number of the surviving person
with a fixed k (here k =7, k=5 and k = 3):

#15: Joseph(y, k) = VECTOR([x, joix, ki1, =, 2:k, ¥)

#6: Joseph(l00, 72

#17: Joseph(100, 5)

#1& Joseph(100, 3)

The tables are leading to scatter diagrams which look as follows:

100
50
&0
70
&0
50
40
30
20
10

5 0 15 20 25 30 35 40 45 50 55 60 65 YO Y5 &0 8 S0 85 100
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The points are lying on lines with slope k. The accurate knowledge of the equations
of the lines - their y-intercepts in addition to k - can help solving the Josephus prob-
lem in another way. When among n participants every k™ will drop out then the
y-intercepts can be generated recursively (the proof is left for the reader).

k-x
#16: L(n, k) == ITERATES[FLOOR[ ] + 1, x, 1, n]
k -1

#17: L(40, 7) =[1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 26, 31, 37, 44, 52, 61,
72, 8, 100, 117, 137, 1e0, 187, 219, 256, 299, 349, 408, 477, 557, 650,

759, 886, 1034, 1207, 1409, 1644, 1919, 2239]

There is one line with equation y = 7x + b which contains point [40; jo(40,7)]. As the
y-value must be positive and less or equal x only one line is possible: y = 7x — 256. It
contains point (40; 24). So follows: Josephus survived standing on position 24.

70
&0
50
40
30

20

; 5 a0 A5 200 25 30 3§f 40 0 45 50 55 /60 6K /Y0 Y5 &0 &5
The sequence L(40,7) can easily be found by paper and pencil: For calculating the
successor of a, one has to find the next number b, > a, which is divisible by 6 — even
then when a, is divisible by 6. Then ay+ = an +b,/6. The procedure is terminated
when an+1 > 7 - 40. Then a, is the requested y-intercept and 280 — a, is the position
to surive.

(I tried to automate the procedure using SELECT, Josef):
pos(n, k) = (SELECTp » 0 & p <= n, p, SUBST(WECTOR{k.x - b, b, Lin, k33, =, nJ3J)
#21: 1

#22. [pos{40, ¥), pos{l00, 73, pos{l00, 23] = [24, 50, 73]

| found a nice recursive algorithm to produce the jo’s?:

taitin, k) =
Ifn=1
#24: 1

MOD(taitin — 1, kD + k =1, n) + 1

#25: [tait(40, 72, tat(100, ¥, tait{ldo, 23] = [24, 53, 73]

See the Tl-treatment of JOSEPHUS on the next page, Josef.
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—_ Wik~ LINK TATIL
The functions are named as in JOSEPHUS from [Maaig?ﬁHU,E;EE“,Lmk v i [contents[F1azhrpe
above. i
ﬁ FONG 25
i FUHC &
jo FUHC &4
P FUHC 24
tait FUHC 54
- MAIH~ )

|’F1 T Fev Trzv]’ruv]’ FE T FE T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

zegqiy.d, 1. x)+r(x) Done
dimiwi— 1, k=dimiu)
. 59“‘[”[”]’ LB E ’{mn:u:i( K dimgu, elee ] * (b

Do
dim{wi+ 1, k=dimdw) ;
. EEq[”[”L U modi k, din(ud) + 1, else” 100
Do
B gugmentOf i, k), adu, EX s hlu, k) Done

HMAIN FAD AUTO FEQPAE0

|’F1 T Fev Trzv]’ruv]’ FE T FE T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

l.n=1 o
{mnd(ta1tcn—1 Kyt k-1,m+1,elze” 5

Dok
mjoldE, 7 24
mjordl . 3 31
m o188, 7 SiE
®tait{20, 7 3
B or2E, ¥ 3
tait <40, 7>
JOSEFALS FAD ALTO TEG 12730

Calculating jo takes some time:

|’F1 Trzv]’rs TF-q TFSTT FE™ T 7 T ]
vﬂ Zoom|Edit| «|All]5tyle|Axes..

S l=modultn = 13+ k= Lo+ 1
< Wl=modiulin - +k_—-1.n)+
il=fl

JOZEFHUS FAD AUTO ZER

I define the recursive function in Sequence Mode

3. 3.

33, 1@,

39, 17.

40, 24,

41. 3l.

42, |35,

43, 2.

ulCn>=24.

JOSEFHLE FAD EXACT SER

cl c2 =t g [=ta]
1 1 1 1
2 2 2 2
3 3 3 2
4 |4 z 1
3 o 4 4
[ B o 1
7 7 o 4
c2=.aitfcilk] > k. 1 dJm(ci)H

JOSEFHUE RAO ERACT

Finally the “Joseph*-Scatter diagrams:

—p
UZE £ TO COLLAFZE

I’Fi T Fev Trzv]’ruv]’ FE T FE T]
- E Algebra|Calc|Other|PrgmI0|Clean Up

zegid.d, 1. x) P Done
dimiwi— 1, k=dimiu)
. 59“‘[”[”]’ LB E ’{mn:u:i( K dimgu, elee ] * (b

Do
dim{wi+ 1, k=dimdw) ;
. EEq[”[”L U modi k, din(ud) + 1, else” 100
Do
B gugrentCf i, k), adu, EX + hlu, k) Done

HMAIN FAD AUTO FEQPAE0

v{— Fllgel-:nr*a Calc, Elther* F'r*ngEl Elean Upl

aitin-1,k+k-1.,n+1,el=e =

Do
o, 7 24
mjordl . 3 31
= ol 18, 7 j=1c}
B tait{20, 7 3
o2, 3
B taitidd, ¥ Ertor: Memory
tait <40, 7>
JOSEFALS FAD ALTO TEG 12730

[ am very soon Out of Memory!

I‘Fi ]’ Fev Tr:v]’ruv]’ FE ]’ 5 TJ
- E Algebra|Calc|Other|PrgmI0|Clean Up
([a]

m joldd, 7 24
mjordl . 3 31
= ol 18, 7 j=1c}
B tait{20, 7 3
o2, 3
B taitidd, ¥ Ertor: Memory
i 7
ok

JOSEFHLS FAD AUTO SEG 13730

:;-=TE aﬂ.-if:'

]
1.
Z. 4.
3 [Z7. |

wl¢n>=31.

JOSEFHUE RAO ERACT SEQ

Check the ,,last positions*!

JOSEFHUS RAO ERACT FUMWC
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Surfaces from the Newspaper (7)

D-N-L#79

Surface #11: x>+’ +2° =0

= i
AT e T

plot(plot: :Inplicit3d (x*2 + 3

+ z™5,

%= -1.5..1.5,

y=-1.5..1.5,

z=-1.5..1.5),
Scaling = Constrained)

15 e
=
10~ -

"

1.0~
15 |
-14a
K 15 15 19 ¥
DPGraph and MuPad

Surface #12: (xz +y' +7 —l)3 =x’z’+)y’7

DPGraph

DERIVE
ra
oo :.. ... '.. . .."o

n:"l. o‘-.. - r ,u"l".
SRR L,
¥ i TR0
Gy TR
?:'o. M . . :.E
S °$

DERIVE
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Nonlinear Regression, Logistic Regression for Binary Dependent Data,

And Two-Stage Least Squares Regression for the TI-89

MacDonald R. Phillips, don.phillips@gmail.com

The routines in this folder solve nonlinear regression problems using the Gauss_Newton
Method with Step-Halving, logistic regression problems for binary dependent data using the
probit, normit, or complementary log-log link functions, and two-stage least squares regres-
sion.

NOTE: These programs are offered “as is.” | make no claim that they are entirely bug free,
although I believe they are. If you encounter any problems with the programs, please send
me an email so | can correct them.

NOTE: These programs require the use of the Statistics with List Editor Flash application.

My aim is to teach you how to use these programs, not to teach statistics. Thus, when |
mention the ANOVA table or logit link function, | assume you already know what they are
and/or when they are used, or are learning about them either in a class or on you own.

Fitting data to an arbitrary function is more of an art than a science. Convergence to a solu-
tion can be very sensitive to the initial starting values, i.e., guesses. And, there may be more
than one solution or local minimum around the starting values. If you get error messages
such as singular matrix, this may mean that there is no solution or you need to choose a dif-
ferent set of starting values.

The routines are in a group file, AdvReg.89g.
Use TI-Connect to transfer them to your cal-
culator. There is a menu program; this
needs to be run in order to use the regres-
sion routines. The custom menu sets up
four pull-down menus: Tools, Nonlinear, Lo- T )
gistic, and TSLS. HIVRES Bl AUTD FUIWC 050
Don’t worry about the changed menu bar. [2ND]
[3] restores the default menu.

Fir Fzr (3 Fhir
Tool = ISl Lngiatic.TSLSl ]

Pl o

HzE

SR T
diGetllarsch

All regression routines use a data matrix created with the Data/Matrix Editor. The data ma-
trix consists of the variables in any order. The first row of the matrix must be the variable
names; | recommend one-letter names. In any case, just make sure they do not conflict with
any of the variable names in the AdvReg folder or Tl reserved names. (There are no vari-
ables with one-letter names in the folder.) When performing regression there is no need to
use all of the variables in a dataset; this means you can do many different regressions on a
dataset without having to enter a new data matrix each time. It also means you can do
“‘model building” and test the significance of adding variables to a regression equation; this
ability is one of the routines.

Give the data matrix a name and save it. Open the Tools menu (F1) and select AddDS().
You will be prompted to enter the name of the data matrix. When you run NonLin(), Logit(),
or TSLS() you will be asked to select a dataset from the list of datasets created with
AddDS(). AddDS() also archives the dataset.
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Tools Menu

The options under the F1:Tools menu are straightforward. Option 1 clears the home history
screen.

Option 2, AddDS(), prompts you to add the name of a dataset to the list of datasets; this list
is how you tell the programs what dataset to use. It also archives the dataset.

Option 3, DelDS(), deletes a dataset from memory and the dataset list when you select its
name from dataset list.

Option 4, GetVars(), displays the variables in a dataset, in case you forgot what they were,
as well as the number of observations in the dataset. Choose the dataset from the list pre-
sented.

Nonlinear Regression

The nonlinear regression routine can also handle weighted regressions as well as regres-
sions with complex data. However, I’'m not sure one can do weighted regressions with com-
plex data; at least I've never seen an example against which | can test the program. The
nonlinear regression program will, of course, do linear regressions.

Example 1

Most regressions are linear regressions or can be transformed into linear regressions.
Some, however, cannot be transformed. For instance, an exponential equation of the form

p, = b, xexp(b, x(y, —1790)) + b,

may model the growth of the U.S. population by decade from 1790, but it cannot be trans-
formed into a linear regression problem. (If the b, variable was not there, it could be trans-
formed into a linear regression problem.) A nonlinear regression program is needed. Press
F2, Nonlinear, and select the first menu item, NonLin(), and then press enter, once or twice
as needed. This sets up a data input form.

The first item is “Select dataset.” Press the right arrow key to see the list of datasets. Scroll
to “pop,” if needed, and press ENTER. “pop” has the U.S. population figures, in millions,
from 1790 to 1990, by decade. Now, press the down arrow key to enter the regression equa-
tion. The next line is used to enter the regression equation; the equation there is the one
displayed above. So enter p=b0*e*b1*(y-1790))+b3. Press the down arrow key to enter a
list of the parameters and their initial guesses. Enter {b0=20, b1=.03, b2=10}. Finally, enter
the weight variable; if none, enter the number 1. The screen should look like this:

[h I’ Fiv ]’ Fer ]’ FEr T [h ]’ ]
TSLS _ Tools|Honlinear|Logistic|TSLS

i Monlingdr InFut ™y

Fiv
Too 1= [glaly]
1:

Select dataset pop+

Equation: [psbEke"Chlky—17300 2+H
Parameters: |[bO=20,b1=.03,b2=103 —|
Weight wariable: [1

®anling) Danhe

MonLin<> MonLint>

TYFE OR USE €314 + [ENTERI=OK AMD [ESCI=CAMCEL ROVREG RAD AUTO FUNC 0./20

fRSEH
fPrdHonl L5k, 1, .95
I=H =T

fCriterial)
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After the data is input, press enter to begin computing the regression. The program keeps
you informed as to what is going on. It first sets up the necessary matrices, etc., needed to
compute the regression. After that, each iteration is displayed along with the current sum-of-
squared-errors. At the end, a message will be displayed indicating whether or not the routine
converged to an answer. (As seen below, the convergence criteria can be changed.)

|’ FiT T Fiv T v ]’ Py T I’ Fiv ]’ Fer ]’ FEr T [h ]’ ]
Tools|Honlinear|logistic|TSLS ] Tools|Honlinear|Logistic|TSLS

Convergence criteria met!
Pres=s EMTER to guit!

®ronling) Dahe
LR

p = 2.507464 -7 (1. 010543)7 - 39, 290524

ROYREG RAD AUTO FUMC 0/20 JF 11l <6l ROVREG RAD AUTO FUNC 2./20

The other options under F2 (Nonlinear) display the output of the regression.

Option 2, FeqgN, displays the fitted equation. In this case it is
p =2.50746E7(1.01055)" —39.29052

(It is unfortunate that the calculator simplifies the answer instead of leaving it in the form of
an exponential equation.)

Option 3 under the F2 menu, OutN, displays a matrix of the parameters, their values, stan-
dard errors, t values and probability(t). For this regression the output is

Fiw Fzr Fxw Fuyr

Tools|Monlinear|Logistic|TSLS ]

. Feqn " n n " n n n n " n

P = 2.507464E -7 -(1. 0105490 — 39, 290524] LA Value STD 1(18) Prob(7)

= outn b0 36.054 411342 8.76498 6.51895E7°
"Farm®  "Ualug" nsTO L e1En
b I6.054002  4.113416 £.76497C bl 010494  .00051 20.73862 5.1456E"*
bl -H10494 . QOESDE 20,7586 b2 —39.29052 5.88023 —6.6818 2.87623E~°
b2 -39.790574 5.580230  -6.68180

OutM

ROVYRES EAD AUTO FUMC /%0

(The 18 in “(18)” is the degrees of freedom of the t statistics.)

Option 4 under the F2 menu, lIter, displays a matrix of the iterations the program went
through to reach the estimated values of the parameters. The iteration number, or sub itera-
tion number, parameter values, and sum-of-square errors are displayed for each iteration.

|’ FiT T Fiv T v ]’ Py T I’ Fiv ]’ Fer ]’ FEr T [h ]’ ]
Tools|Honlinear|logistic|TSLS ] Tools|Honlinear|Logistic|TSLS

TTter™ 1] =) bZ ki bz "SSEM

0. 000088 20.000008 030000 10,0000 OO LOZE000 10.000808  133IITI0ZI.055
L.oooooo 4.034927 (029133 F.O08284 T LO29135 7.082649 2943253.01592
2.000008  4.524434 (024311 5.52695 14  ,024311 5.526983 231374, 970309
I.Ooooooe  9.02e2lz2 JoleSon -4.419C 2 0185030 -4.4193FF 2840, 329057

4000000 23.873389 . 008390 29 .0e8990 -25.356442 75438, 156331

= = Ft=]b, g FI2PdS =15 J1ZFPFEf 19749 FESTTEES

okl
It Iten
AOYREG FAD AUTO FUMWC 4/30 ADYEEG FAD AUTO FUHC 2/20

“23.83€
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Option 5 under the F2 menu, ANOVA, displays the analysis of variance matrix.

[ Fiv T Fev T FEv ]’ Fa ]’ ] I’ Fiv ]’ Fev ]’ FEv T Fur T ]
Tools|Honlinear|Logistic|TSLS Tools|Honlinear|logistic|TSLS
LTt TR EY LI=Tyl=I0E
"SDL-"HC-E" IIDFII IISSII "If |15II IIFII IIPPDb(F) n
"Reg" Z.O0oEan 1228220719294 61} 1411.359647 3331.811733 7V.473337eE-24
"Ertor" 18. 000000 3F31.772ve0 1£ 3.431822 "
"CTotal" 20.000008 123154.492884 " ! " "
IANOYA] ANOYVA|
ROVREG RAD AUTO FUNE 1730 AOVREG RAD AOTO FUNE 1730
"SOUI‘CC" HDFH HSSH HMSH HHFH HPrOb(F)H

"Reg" 2. 122823. 61411.4 3331.81 7.47334E™*
"Error" 18.  331.773 18.4318 " "
"CTotal" 20. 123154. " " "
The “CTotal” in the ANOVA matrix stands for corrected total degrees of freedom and sum of
squared errors. The corrected totals are used when there is an intercept in the regression
equation. If there is no intercept, then the uncorrected totals are used. However, R*2 and

adjR”"2 are always computed with the corrected totals. (See a “Cautionary Note About R*2”
by Tarald O. Kvalseth in The American Statistician, November 1985, pp. 279-85.)

Option 6 under the F2 menu displays the R square, adjusted R square, and standard error of
the regression statistics. For this problem they are: 0.99731, 0.99701, and 4.29323.

Fir Fer Fxr Fiyr
Tools|Honlinear|logistic|TSLS ]

= ClrHome Dare
"R=g" LSA7IEE ]

LRS-t "AR=g" 997007
"SE" 4. 293230

[] "l:-l

HOVREG FAD AUTO FUHL 2730

Option 7 under F2, PrdNonl({ }, 1, .95), computes the predicted values for the mean and indi-
vidual values of the dependent variable. The default weight is 1 (indicating no weight) and
the default confidence interval is .95 for a 95 percent confidence interval. Enter a list of the
independent variables and their values. In this case find the estimated population for the
year 2000. Enter y=2000 in the list.

Fir Fzr (3 FYyw
|T0015 Monlinear|Logistic TSLSl ]
"PValue" p=287.30054 "
= C1rHame Do
® prdnonl( fu = 20003, 1, . 95) "Sey/SeY" 4.19343 6.00139
"Plalus"  p = 287, 300537 " 1
"SeDeSey"  4.193426 £. 081387 "LowerCI"  278.49048  274.69209
"LowerCI"  Z7E. 490476 74, 632091 " "
"UpperCl"  296.110599 299, 908983 UpperCI 296.11060  299.90898
PrdHNonl <{u=2000% .1, .95
ADYRES KAD AUTO FUMC z/Z0

The first line of the matrix gives the predicted value of the equation for the year 2000, 287.3
million people. The second line gives the standard errors of the mean and individual values
of the dependent variable, in this case p. The third and fourth lines give the 95 percent con-
fidence interval for the mean and individual values of p for the year 2000.
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|’ Fiv T 5 T g T Ty T
Tools|Honlinear|Logistic|TSLS ]

= C1rHame Do
= prdnonl] £y =2010% , 1, .95)
"Pllalus" p=323.435022 "

"Sed-SeY"  5.720209 7.152106

"LowerCI" 311.417303 302, 409005

"UpperCI"  335.452735 338. 461038
PrdHonl {{v=2010% .1, . 25>

ADYREGS FAD AUTO FUMC 2430

|’ Fiv T Fev ]’ (5 T [Zhd T _]
Tools|Honlinear|lLogistic|TSLS

B ClrHaome Dahe
mprdhonllfy = 2020% , 1, .95)
"Pllalue" p=363.367473 "

"SedsSet"  V.ES0339 2.772831
"LowerCI"  347.494289 345, 136441
"UpperCI" 379.540660 381. 993509

PrdMonl <{v=20203> .1, .953|

AOVEEG EAD AUTO FUHC 2/Z0

Finally 1"d like to plot the pop-data together with the regression line (Josef)

Jromiofzeai wf |
"pop!

[u 1730 12600 1210 1820 18230 1240 p

=4 1930 1960 1970 1930 19907 - popx
{1790 1500 18518 1820 1830 1540 p

¥
[P 3.929000 35.302000 7.239000 9,638

L LT N T L T L T P .. ]

PO Px

HOVREG FAD ALTO FUME 2/ &

i adured4Fordra Flok 1 K
Plot. Tupe..u.aau.. Scatter
Mark. e saaeeaanns Biox +
Hamnsnmssnmnnnnnns S eg~pOpH

. ([Eduregr.popg]

Figh. fmziked i
e Freq and Cate

W,

B

H

¥ [y

|

LEnter=SHUE _ ESC=CAMCEL » )
ROVRED FAD AUTD FUMC

ADYRES FAD AUTO FUMC

rfi T Fer TrsvT r-wT FE T FE™ T]
TE Algebra|Calc|Other|Prgmld|Clean Up

[u 1¥38 1200 1210 1920 1230 1340 @

=4 1930 1950 1970 1930 19903 + popx
179 1800 1510 1820 1830 1540 p

'pin2
[p 3.929000 5.3023000 7.239000 9,638

= 4323 203.211 226.542 248.F13 + popy
L3.929000  35.302000  7.239000 9, 6350k

ROVRED EAD AUTO AT
1 FEx [ _FZ [F4 [FET ] FET BN
TE Zoom|Edit] ~ [A1L[Stylel: =.'-:.’.5..T ]
FLOTE1
Plot 4=

Flot 33
Flot 23
“Plot, 1il O waduredhpors waduredhpory
wyl=z. 5074618 7 [ 1.01855)% - 39. 29052
=

42

2=

ROYREG KAD AUTO FUNC

1w Few | F% & FEw | FEw T7
~ f—|Zoom|Trace [RegraphMath|Draw]-

ot 2E1E. DG
AOVREG EAD_AUTO FUNL

Option 8 under the F2 menu, MB(), is for “model building.” If you added one or more vari-
ables to the previous regression, MB() will compute the F statistic and probability associated

with adding the variable(s).

Option 9 under the F2 menu allows you to change

the convergence criteria by setting the

maximum number of iterations and subiterations and the criteria for the percentage change
in successive sum-of-squares values. The values | have set are 30, 10, and 10%.

(NOTE: NonLin() may be used for linear regression
also, that is, where the equation is linear in its pa-
rameters. There are no restrictions on the inde-
pendent variables. They may be any differentiable
function. For instance, if x is an independent vari-
able, it may occur in the equation as x?or x°, etc., or
SIN(x), LN(x), EXP(x), etc. When using NonLin() for
linear regression, you may set the initial guesses of
the parameters equal to 1.)

Fir Fer Fzr Fir
Tools|Honl ihear‘angistic TSLS

r Conuekdence Criteria ™

Max Iterations: [3Q
Max Subiteriationz: [I0
Converge Criteria: |[E-8

| CEnter=0k ESC=CAMCEL |
= ClrHome Dohe
Criterial
ADMREG FAD AUTO FUHC 1i/z0

You can find more worked problems at the end of this article, Josef
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Example 2: Weighted Regression

The weight variable may be specifically included in the dataset, or it may simply be one of
the independent variables already in the dataset. The weights are usually put in an n by n
matrix along the diagonals. However, for large datasets such a matrix can be too big to be
handled by the TI-89’s limited memory. So | developed a routine to that uses the weights in
a vector (list) instead of a matrix. For anyone interested the function is ‘dmmul’.

The dataset “dat” is used for the weighted regression. You may use the GetVars() program
under F1 to see the variable names and the number of observations in the dataset.

anénvl =|Hon lri‘r:uear* |Lngrigsvt ic TFSHLTS
Bl = [}
10586, 00000 2471, Q0o 129280, 00
SEZZ. 000300 49200, 200000 15503IF.0
SS4E, QIDAAE 19977, 0EA0EE  92IFF9, [k
G309, QOQOOD  ZZVZ0.000000  Q02S50, 00
7oll.000000 155707000000 S932F6E.(

Z1Ef ARAAAE 12197 ARAAAE 11=199F |
dat]
AOYREG ERD ALTO FUMC 2130

|’ Fiv T Fev T FE ]’ Fu T _]
Tools|Honlinear|logistic|TSLS

[4 = c ep gp spcl
# Obs: SO

FPress EMTER to guit!

AOVREG FAD_AUTO FUML 21750 JF 11l <6l

Fiw Fzr Fxw Fy=r
Tools|Honlinear|Logistic|TSLS
u s C
1 05 SE, LLEEEIE ) 5 miolnininio S280E, B
SE22 = = . 3370
2540 (ED?,EE —u::é aée CES:-I:FINI:EL:) E?g' o
£509 e = 0. a0
Fa=l % poioioiololo] 195707 0oooon 9932768, (
A RAnMlnlaininlalnl 12197 AEEEEE 11=199F |
GetVars{>
USE < AMD + TO OFEMW CHOICE:

'spc' is the sales of electricity per customer
in a state; 'y' is the per capita income in that
state; 'ep' is the price per kilowatt hour; and
'gp' is the price of an amount of natural gas
that that the energy equivalent of a kilowatt
hour of electricity. The data is to be
weighted by the inverse of the income per
capita, 'y'.

The equation we estimate is spc = a + b1*ep + b2*y + b3*gp with a weight of 1/y. Since this
is a linear regression, enter the initial guesses as 1.

The fitted equation is: spc = 0.45728*y — 7063.7816%ep + 1245.65916*gp + 40060.28733.

|’ Fiv T Fev T FE T Fu T _]
Tools|Honlinear|logistic|TSLS
& Honlingar Ineut ST
Select dataset dat.+ E":p
Equation: [pc=a+blsep+bZég+bIxgp ||ar
FParameters: [a=1,bl=1,bhZ=1,b3=12 0
n g| Weight. wariable: [1rg -

=]
u pl, CEnter=0K ESC=CAMCEL » }-or
MU Dore
MonLin<>

HOVREG FAD AUTO FUME 24730

I’ FiT ]’ Fev ]’ FEv T [Ehd ]’ _]
Tools|Honlinear|Logistic|TSLS
[i=1=F9Eiaa]aiaia)} 2.2 o CICETETETT | R=1=uT T a1l

[?Ell l.oooEoa 5928, 0000Ea 4322834, 0
m getuars) Dahe
®ranling) Ertor: Domain error
LEUTTLIN ] Dahe
®ranling) Done
LR

spc = 457280 -y — FRES. FE159F - ep + 1245, ik
feqn|
ROVEE G FAD_AOTO FUME 26,0

The parameters and their standard errors and the ANOVA table are:

|’ Fiv T Fev T 5 T [E T _]
Tools|Honlinear|Logistic|TSLS
sSpc = J4SFZE0- g - FOEZ. FE1597 - ep + 1245, p
outh
"Parm"  "Ualue" "sSTO" "
a 4EEED, 287F29  S2F2.751686 F.E
b1 STOEZ. FE159F 966, 690106 o
bz ASF2E0 231001 e
kb3 1245.659160  S849.647726 1.4
OutM
HOWREG RAD_AOTO FONC 27730

I’ Fiv ]’ Fev ]’ 5 T [E ]’ _]
Tools|Honlinear|Logistic|TSLS

b2 437220 231001 =1
Lb3 1245.639160 849.847725 1.4
L=y (e IV
r "SDL’"HC-E" IIDFII IISSII IIMSII
"Reg" J.oo00  22eR40.3497  7o413.
"Ertror" 46,0000 183647, 3254 J600.%
| "CTotal" 49.0000 3I918986.2360 "

ANOVA

ROVREG RAD AUTO FUNC 28,20
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The predicted value for y = 7000, ep =4, and gp = 1.5 is spc = 16874.6. Notice that the
weight is entered as a number, i.e. 1/7000 for 1/y. The standard errors of the mean and pre-
dicted values are computed as well as the confidence interval for each.
ché.']_s. Nu:unlrﬂ'uear* Lu:-grig;t,ic TFSI'I:S

|."I2T|:|tal" 49, 000 391886, 2380 "M k
lpr‘dnnnl[{g=?ElElEl ep=4 ap=1.52 1P

T
"PUalue"  spc = 16574.6119 "¢ T
"Seb-SeY"  1337.5770 5195. 7633
"LowerCI" 14152, 2090 6416, 670
"UpperCI" 13567, 0147 27333, 1523

« 000, ep=4,gp=1.5%,.1-7000, .95>

ROVREG EAD AUTO FUMC 28,20

Example 3: Regression with Complex Data

The complex dataset is “dat1” with variables x1, x2, and y. It has only 4 observations.

I’ Fiv ]’ FE™ ]’ Fiv T Fy T ] [ FI¥ T 5 T v ]’ o, T
Tools|Honlinear|logistic|TSLS Tools|Honlinear|Logistic|TSLS ]

[x1 =2 ud]
£ 3 # Obs: 4
Choose Dataset datls
Enter=0K_ » CESC=CAHCEL » Press EMTER to quit!
u C1lrHame Date
GetWarsC>
USE % AND & T0 OFEN CHOICES ROVREG RAD AUTO FUNE 1730 T

The input for the regression is: y = a + b1*x1 + b2*x2 with a weight of 1, meaning no weight.
The initial guesses are all 1.

Fiv FEv Fav [ F4T FiT Frv ELA W
Tools|Monlinear|Logistic|TSLS Tools|Honlinear|Logistic|TSLES ]
r Monlinear Input ™y
Select dataset datl+
Equation: |H=a+b1*><1+b2*><2 u C1FHome Done
Farameters: [|a=l,bl=1,bi=12 ® getusrsl) Done
Weight wvariable: Il " ronlingd Done
n 2l CEnter=0K ESC=CAHCEL » bhhe = fegn
m getuarsl) Done 9= . FEIEF %] + 4. 00009 x2 - 53900 + (2. Chk
MonLin<>
THFE + [ENTERI=OF AHD [EZCISCANCEL AOVRED FAD AUTO FUNT 4750

The fitted equation is:
y =0.98969*x1 + 4.00009*x2 - 0.83900 + (2.02107*x1 + 2.93831*x2 — .59506)*i

where i is the square root of -1.

Logistic Regression

This program computes the logistic regression for binary dependent data using the logit, pro-
bit (normit), or complementary log-log link functions. Binary dependent data is in the form of
Os and 1s, where 1 signifies the occurrence of an event and 0 its nonoccurrence. The out-
put is a regression equation that can be used to predict the probability of an event happening
given a set of values for the independent variable(s).

The dataset may have a frequency variable or two variables denoting the results of a bino-
mial experiment. The two variables are the number of successful events out of the total
number of trials. If the dataset is from a binomial experiment, there is no dependent variable
to enter; the program will create it from the events and trials data.
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Example 4: Logistic Regression

The F3 menu is for computing the displaying the results of a logistic regression. Option 1,
Logit(), is for entering the information and computing the regression. It sets up an input form.
The first item is to select a dataset. Select “ingot” to be used in this example. Next, enter a
list of the independent variables. The variables for this example are {h,s}. Next, you are
prompted to enter the link function; use the logit link function. (The other link functions are
the Probit and Complementary LoglLog functions.) Next, you will be prompted for a fre-
quency variable. The options are “No” for none, “Yes” for a frequency variable, and
“Events/Trials” for a binomial experiment. Select “Events/Trials.” The last two options are to
change the maximum number of iterations and convergence criteria. Leave them at 30 and
E® for now. Press Enter to continue.

Fiw Fev A Fow . :
Tool=s NDHIIHEEF"LDQIE‘LIG TSLSlEh - . - Lc-;i;ti;lr:vut ..
Select dataset ingot
E ig ; ; Trdeperdent Uars! ;
" LinkFunc Logit+ "
oF 7 Oz Freq War? Events-Trials+ 2.
a1z 7 3. Max Iterations: [3@0 |z,
g a = 4 Converge Criterias E'E 4
_ ool 14 1 m ESC=CAMCEL )
ingot Logit{»
AOYREG ERD ALTO FUMWC 7/%0 ROVYRES EAD AUTO FUMC 7/%0
Having selected “Events/Trials”, you are now TomlelonT imear|Log ot ic [To0S
prompted to enter the events and trials vari- p (2 -j
. Lodiskic Inpuk
ables. For this example they are e and t. Eventz Varisbler B %
Press Enter. Trials Uariable: R |2
Enter=0kK ESC=CHHCEL v J5-
[ ] v 4
_ 31 14 1
Logit<)
AROVREG RAD AUTO FUMC 720

The program will now run and take several minutes to complete. A message will be dis-
played indicating whether the program was successful in estimating the regression.

(If you had selected “Yes” for a frequency variable, you would have been prompted to enter
the name of the frequency variable. Then you would be prompted to enter the name of the
dependent binary variable. If you had selected “No” for frequency or binomial experiment
variables, you would have been prompted to enter the name of the dependent binary vari-
able.)

Fir Fzr Fzwr Fhir
|T0015 MHomnlinear|Logistic TSLSl
) ) 1 16 27 4
Option 2 under the F3 menu, FeqL, displays 3 13 51 1
the fitted equation. For this example, it is: E i :i i
0.056771%*s + 0.082031*h — 5.55917 . SRR
= lagitd) Dok
" fegl SHSEYFL s + JO82031 -k - 5.559166
feql
AROVREG FAD AUTO FUMC 8/30

Option 3, OutL, displays a matrix of the parameters, their values, standard errors, and the
Wald chi-square statistics and probabilities.
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|’ Fiv T Fev T Far T (& T _]
Tools|Honlinear|logistic|TSLS

Date

= logit()
mfegl JOSEFFL = + 082031 -h - 5.559166
= gutl
"FParm" "Ualye" "StdErr" "WChizcla“
intrcpt. -3.5592 1.1197 24,6502
h L H820 237 11.9452
= L HSES 3312 L0294

AOVRES ERD AUTO FUMC 10/%0

I’ Fiv ]’ Fev ]’ FEv T Fur T _]
Tools|Honlinear|logistic|TSLS

= outl
"FParm" "Ualuye" "StdErr" "WChiZ(la“
introcpt  -3.5992 1.1197 24, 5502
h Mo}=so] 0237 11.9452
= L HSES L3312 L0294
"Chiz" "OF" "Prob" ]

®llratio [

1lratiol
ADYEEGS

11.642820 2.000008 002963

EAD AUTO FUMC 11,20

"Parm"  "Value" "StdErr" "WChi2(1)" "Prob(W)"
intercept —5.55917 1.11969 24.6502  6.87383E”’
h 0.082031 0.023734  11.9452 0.000548

s 0.056771 0.331213  0.029379 0.863906

Option 4, LLRatio, displays the —2 log likelihood ratio
that tests the significance of the covariates, that is, of
the independent variables taken together. The out-
put is:

"Prob"
0.002963

HChiz" IIDFH
11.6428 2

Chi2 is the chi-square statistic, DF the degrees of freedom, and Prob the probability of ob-

taining that value by chance.

Option 5, PrdLogt, computes the logit (or probit or complementary log-log) of “p,” where “p” is
the probability of the event occurring given a set of values for the independent variables, the
value of “p,” and the confidence interval of “p.” If h=7 and s=1, entering PrdLogt({h=7,s=1},

.95) produces:

Fir Fer Fzwr Fyw
Tools|Honlinear|Logistic|TSLS ]
[= LE5e2 L3312 L BESd »
. llrnat’ln |:"|:|"Ii2" IIDFII IIPPDbII ]
11.642820 Z.000000 Q002963
®prdloghifh=7% ==1%,.95)
"Logitiprob»" "SE" "Prob" ]
-4, 928180 .TA988E L OOF1ES
"C.I.¢prakd" JOO1EEZ L BZHS1V
Prdlogt<{h="7.5=1%. .95
AOVREG FAD AUTO FUNE 1z/50

"Logit(prob)" "SE" "Prob"
-4.92818 0.749866 0.007188
"C.L(prob)" 0.001662 0.030517

Reading across, the value of logit(p) is —4.92818, the standard error is 0.74987, and the
value of p is 0.007188. The 95 percent confidence interval around p is 0.00166 to 0.03052.
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Two-Stage Least Squares

Two-stage least squares is the most widely used single-equation method for estimating si-
multaneous system of equations. LetY be the endogenous or dependent variable in the
system and X the exogenous or predetermined variables. The equations to be estimated are
of the form:

y=Y*p+X*C+u
y is an n by 1 vector of observations on the “dependent” variable.
Y, is an n by g matrix of observations on the other endogenous variables included in the
equation.
B is the g by 1 vector of coefficients associated with Y.
X, is the n by k matrix of observations on the predetermined or instrumental variables ap-
pearing in the equation.
v is the k by 1 vector of coefficients associated with X;.
u is the n by 1 disturbances in the equation.

The problem of applying OLS to the above equation is that the variables in Y, are correlated
with u. The essence of two-stage least squares regression is the replacement of Y; by a
computed matrix Y_hat;, where hopefully the stochastic element is purged, and then per-
forming an OLS regression of y on Y_hat; and X;.

The matrix Y_hat, is computed in the first stage by regressing each variable in Y4 on all the
instrumental variables in the complete model and replacing the actual observations on the Y
variables by the corresponding regression values. Thus,

Y _hat, = X*(X"*X)"*X"*Y,
where X = [X; X;]. X is the n by k matrix of observations on all the instrumental variables in

the complete model, X, being the matrix of observations on those instrumental variables ex-
cluded from the equation under study.

In the second stage y is regressed on Y_hat; and X;. The equation for the 2SLS estimates
can then be written as:
YIT *X*(XT *X)_I*XT*Yl Y1T*X1 . b B YIT*X*(XT *X)_I*Xr*y
XIT*YI XIT*XI ¢ XlT*y

where b is the vector of coefficients on the other endogenous variables and ¢ is the vector of
coefficients on the predetermined variables in the equation, including the intercept if any.

The following two examples are models from political economics:
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Example 5:

The data used in this example are for a simplified model designed to explain variations in the
consumption and price of food. The data are from Kmenta, pp. 563-65.

The variables are:

q = food consumption per head

p = ratio of food prices to general consumer prices

d = disposable income in constant prices

f = ratio of preceding year’s prices received by farmers to general consumer prices
a=time in years

The endogenous (dependent) variables are q and p. The exogenous (independent) variables
are d, f, and a.

Estimate the following equations:
q=70+Bl*p+vyl*d (the demand equation)
q=70+Bl*p+vyl*f+y2*a (the supply equation)

Press F4: 1 (TSLS) ENTER to begin the program. Select the “kmenta” dataset from the pull
down menu.

In the equation box enterq=p + d.

(Note: you do not enter the coefficients for the equation. That is done by the program.)
In the Endog. Vars. box enter in a list the dependent variables in the dataset: {q,p}.

In the Exog. Vars. box enter in a list the independent variables: {d.f,a}.

From the Intercept? pull down menu select Yes for an intercept.

(Note: According to the SAS statistical software, if the intercept is set to No, the definition of
the RA2 statistic for two-stage least squares is changed to 1 — (Residual Sum of
Squares/Uncorrected Total Sum of Squares.)

From the VarDef pull down menu select Deg. Freedom with which to calculate the variances.
(The other option is to select # Obs. for number of observations.) The input form looks like
this:

|’ Fiv T Fv T Fir | TF'WT ] [ Fir T Fer I EAR A

Tools|Honlinear|Logistic|TSLS T oAbl : TSLSI;put =" = -,
K " d f 2] Select dataset kmenta+ =]

2 leC atase Mment.a

92,485  100.323 &87.400 92 1 Equation: |a=p+d 1
99,187  104.264 97.600 99,100 2 Endog. Uars? [tq.pt z
102,163 103,435 926,700 99,100 3 Exog. Mars: [Ld.f,at k3
101.504 194.506 9%.200 95,100 4 LIJhtEr*geEt? H’EH doms 4
184,240 92,001 99.200 110,800 5 orEt =9 Tresden _ 5
1A% 24T 99 458 1060 SEE 168 CPEAER £ Enter=0K ESC=CRHCEL £

knenta TSLS <>

ADYEEGS FAD AUTO FUMC 4/30 ADYEEG RAD AUTO FUMC 4/20

Press ENTER to begin the program.
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Press F4: 2 (FeqTS) to display the fitted
equation.

Itis: q=0.314382*d - 0.243708*p + 94.614861

Press F4: 3 (OutTS) to display the parame-
ters, their values, standard errors, t-values,
and the t probabilities.

Press F4: 4 (ANOVATS) to display the
analysis of variance table.

Press F4: 5 to display the R*2, adjR*2, and
SE stats.

Fir Fzr Fzw Fyr
[TDDIE Mol inear‘lLugistin:- T5LS

Fir Fer Fzr Fir
Tools|Honl ihear‘angistic TSLS
TET=CT

103,322 96.498 26,400 110,300 17
99,929  lod4.016 104.400 92.500 18
105,223 105.762 1l@.7a0 29.7300 19

D-N-L#79

106,232 113.490 1ZF.100 93 20]
mt=1=0) Daone
m fegts

o =.314382 o - . 243702 -p + 94. 614861
ROVKEG FAD AUTO FUNC 6/ 50

ooTTE

u fegts
9 =.314382 d - . 243708 p + 94. 614861
moutts
"Parms" "Ualue" "StdErr"  "LOIFIM
Rl - 243708 JO980FY 20536601
Lol 94, 514861 7.887363F 11.9957C
w1l 514382 H4EFET Gl 7233
OutTS]
AOVRES FAD_AUTO FUNL 7730
Fir Fzr Fzw Fyr
[TDDIE Mokl inear‘lLugistin:- T5LS
=Tt oo
m fegts
94 =.314382 d - . 243702 -p + 94. 614261
= outts
a" "StdErr"  "LOIFIM "Prabot "

rOS  LE9e07Y  2.336601 21288
4261 F.88¥363 11.995753 1.0l17a0e -9
a2 SEFES 6. 72S4EE L OEREGg

OutTS]

ADYREG KAD AUTO FUNWC 7750

Fir Fer Fzr Fir
Tools|Honl ihear‘angistic TSLS

4361 F.857363  11.995733 l.011va0e -9
82 D474 B.T2D43EE 000004

B ghouats
"SDHP':-E" IIDFII IISSII IIMSII
"Modal" 2 202.FEVE29  101.383E
"Eesidual" 1Y 65, 174689  3.833802
"CTotal" 19 267942318 " "

ANOVATS]

AOWRES RAD ALTO FUNC_B/%0

Fir Fzr Fzw Fyr
[TDDIE Mol inear‘lLugistin:- T5LS

4261 F.88¥363 11.995753 1.0l17a0e -9

a2 S04E7F4S 0 B.7254EE LOEREGd

 ghowats
g upn "ProbiFIm

TEZD 101.383815 26.444695 . QOQOEEG
589  3.833805 "on non
2318 " won M

AHOVATS

ADYREG KAD AUTO FUNWC B/50

FE29 101.383815 26.444696  , QOOGEGE
639 3.833803 " "

2318 " " "o "o ]
"Rsoy" L FOEFSY ]
msots "AR=y" 725142
"SE" 1.958011 |
IRSQTS|

ADVEES EAD AUTO FUHC 9/30
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To compute the other equation run the TSLS program again and just change the equation to
q=p + f+a. Everything else remains the same.

Fi‘; b1 1ng I }'_37‘ i TiF_I'Ivi— ER R R [
Ton TS UElineit -, Tools|Honl 1hear‘|Lng15t1c, TSLS
Select dataset kmenta- dzzig v o0 v v -
4| Equation: [g=p+f+a "Rag" CFIETSS ]
Endog. Vars: [{a,pd msats "ARsy" . 728142
Exog. Wars: [{d,f.ar b nwgpn 1.958811
Intercept? Yes+ EN '
n | VarbDet Deg. Freedom e :Ez;ig Slslil
Ent.er=0k ESC=CAMCEL Y J11) o =.252844 8 + 256024 f + 240568 £ + 4
TSLSCO
ADNRES FAD AUTO FUHC 8/z0 ADMREG FAD AUTO FUHC 1120

The fitted equation is q = 0.252844%*a + 0.256024*f + 0.240568*p + 49.448206.

The other statistics can be displayed as shown above.

Example 6

This example is based on Klein’s model 1 (1950). The endogenous variables are ¢, p, w, I, x,
wsum, k, and y. The exogenous variables are klag, plag, xlag, wp, g, t, and yr.

yr = year — 1931 t = taxes

¢ = consumption k = capital stock

p = profits wsum = total wage bill

w = private wage bill plag = profits lagged

I = investment xlag = private product lagged

x = private production klap = capitol stock lagged

wp = government wage bill y=c+i+g-t (national income)

g = government demand

Estimate the following equations:
¢ =p + plag + wsum
1=p + plag + wsum
w =X + xlag + yr

Initiate the TSLS program and select the klein dataset.

Fiw Fzr Fxw Fy=r Fir Fzwr Fxw Fyr
Tools|Monlinear|Logistic|TSLS Tools|Honl inear‘angistic, TSLS ]
B klein ] k wsum plag xlaa klag u ]

dre e F = e i WP 182.6 28.2 12.7 44.9 18z.8 37.9

-lo 41.% 1Z.4 25.3 .2 45.6 &7 184.5 32.2 12.4 45.6 182.6 46.2

R L B L L {4 129.7 IF 16,9 5.1 184.5 52.5

B 49,2 18.4 3401 5.2 5F.2 2.9 192.7 37  18.4 S5v.2 189.7 53.3

Fooan.e 1%.4 3E.9 3 .l 31 197.8 38.6 19.4 Sv.1 192.7 55.5

'Ei. S52.6 20.1 35.4 5.1 =31 3.2 .‘:'ITIT d 40 7 2md £ 197 o 5=
klein| klein
ROVYRES EAD AUTO FUMC 120 AOYREG ERD ALTO FUMWC 13430

Enter the first equation. For the endogenous variables enter {c, p, w, i, X, wsum, K, y}.
For the exogenous variables enter {klag, plag, xlag, wp, g, t, yr}.

Select Yes for the intercept and Deg. Freedom for the variance definition.
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Fir L1 1F;T Il F'3‘-J. . 'rir-l'lvi-
To TELE Input

Select dataset klein+

|’ Fiv T Fev ]’ (5 T [Zhd T —
Tools|Honlinear|lLogistic|TSLS

Equation: [c=p+plagtwsum .9

Endog. Vars: |o Wi, Wan, k] [« 2
1| Exog. Uars: 1ag,xla3,u tourd|.S

Intercept? Yes+ i

UarDet Deg. Freedom 5

]
TSLE<C>

UZE £ AMD # TO OFEM CHOICEZ

The fitted equation is:

199.9 45.9 17.3 &5 1.8 53.5
201.2 49,4 15.3 &0.9 199.9 &0.6
204.3 53 19 69.3 ZO1.2 66.1

& 2O9.4 &1.8 21.1 F3.7 Z204.5 Ve, E]
mtz1=0) Dahe

®fegts
C=. 017302 p+ 216234 plag + . 810183 - wip

AOVEEG EAD AUTO FUMC 15420

¢ =0.017302*p + 0.216234*plag + 0.810183*wsum + 16.554756.

To compute the other two equations just change the equation in the TSLS input form.

Fiv Fev FE Fu
| P " AP B2 5 S
T:LS Input j—

Select dataset kleins
4 Equation: [i=p+plag+klad .
Endog. Uars: [ic W, i, W, ko,
Exog. Wars: [fkla lag,xlag,w

a | Intercept? Yes+
UarDef DOeg. Freedom+

I’ Fiv ]’ Fev ]’ 5 T [E ]’ -
Tools|Honlinear|Logistic|TSLS

4.5 53 [E] FEN-E-E I T
& 20%9.4 61.5 Z1.1 ¥3.7 204.3 V5.5

mtz1=0) Dane
m fegts

Cc=. 017302 -p+ 216234 -plag + . S1018F - wp
mtzlsi) Done
m fegts

i=.130222-p - 157788 klag + . 615544 - pp

"y
cl ¢Erter=0K ESC=CAMCEL? Jsp

TSLSC>

AOYREG FAD AUTO FUMC 15420

The second fitted equation is:

43576623 %¥pl ag+20. 27820891 426]

ROVREG RAD AUTO FUNC 1720

I1=0.150222*p - 0.157788*klag + 0.615944*plag + 20.278209

LS /T
To TELE InFuk

A select dataset klein+
.t Equation: |w=x+xlag+ad )
u ;| Endog. Usrs:

c| Exog. Vars:

a | Intercept? Yes s
UarDef DOeg. Freedom+

I’ Fiv ]’ Fev ]’ 5 T [E ]’ _]
Tools|Honlinear|Logistic|TSLS

LRy

il CEnter=0K ESC=CHMHCEL 2 Jop
TSLE{
HDVEEG FAD ALTO FUHC 17720

®fegts

D-N-L#79

And the third fitted equation is:

C=. 017302 p+ 216234 plag + . 810183 - wip
mtz1=0) Dane
m fegts

i=.150222 p - . 157722 - klag + . 615944 -pp
mtzlsi) Done
m fegts

W= 436330 x+ . 138839 -xlag - . 89EIET
HOVREG RAD_AOTO FONC 10730

w = 0.438859*x + 0.146674*xlag + 0.130396*yr + 1.500297

(Note: Once the programs have been run at least once, all programs and functions in the

AdvStat folder may be archived. DO NOT archive anything else in the folder. The datasets
are archived by the AddDS() program.)

| hope you find the programs useful and enjoyable. | had fun programming them. | have
also programmed these routines for DERIVE 6.1. If you would like them, just drop me an

email.

Any comments, suggestions, frustrations with the programs? If so, just drop me an email.
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Some additional examples (Josef):

The following data set is given:

o | 1 ] 2] 3 |
0

| plot the scatter diagram and assume that a damped oscillation — vertically shifted — might
give an appropriate fit.
v=asin(bt) e +d.

My initial guesses are:a=6,b=2,c=0.5and d = 1.

1" |_Fir FEr 7" Far i Fir Fer Fzw Fhir
- f—|Zoom Tr*ac,e Regr‘aph Mat.h|Oraw| - HH Tools|Honlinear|Logistic|TSLS

i Monlingar Ineut ™y

L. T Select dataset sinuss+
L Loom - e Equation! [v=aksinthat ke ol i
g g g Fararmeters: |[fa=t,b=r,c=.5,d=1%
@ s B e e Weight wariable: [1
L oy fone

MonLint>

ADYRES FAD AUTO FUMC AOVEEG EAD AUTO FUMC 1/Z0

1 (5
- E 00

FEw | FE™ B
Tr*ai;e Regr‘aph Math|Oraw]- .:59'

|’ FiT T Fiv T v ]’ Py T
Tools|Honlinear|logistic|TSLS ]

= C1r-Hame Dok
= ronling) Do
= fegn

v=4.776782 (. 799996) " - 2in(1.992516 1) b
w155946641 ¥t 3+2 . 0318864027178

ROYREG RAD AUTO FUMC 220

RAD AUTO FUNC

Plotting the fit function shows a very satisfying result.

Next is an example from our textbook “Mathe mit Gewinn“ (= "Mathematics with Profit’)!"
vol 4.

Given is the distribution of ages of football players of English Premier League with a transfer
sum above 1 Million Pounds.

Beispiel: Einer Zeitschrift entnehmen wir die Altersverteilung der Spieler bei den Transfers in der
britischen Premier League mit Transfersummen dber 1 Million Pfund:

Alter |19 200021 22 23 24 25 26 27 28 29 30 N 3
% derTransfer5| o 1 4% 5 J5 14 175 20 16 95 4 2 1 0

a) Suche eine geeignete Yerteilungskurve und

b} =uche eine Kurve fur die kumulierten Werte (% der Transfers biz zum Alter von x Jahren).

" H.D. Hinkelmann a.o., Mathe mit Gewinn 1-4, hpt Vienna
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The problem is to find an appropriate distri- _ _ .
bution curve and an curve for the cumulated . . N
values (% of the transfers up to an age of x : : . o
years) - L - oo
g0 0 g
lmEG RAD AUTO FUMEC

The form of the scatter diagram gives the idea to try with a bell shaped curve (normal distri-
bution). See the equation and my guesses for the parameters:

[ Fi+ T Fer T A T FH ]’ ] 17 Fer FEv T_ FuT FE FE*
Tools|Honlinear|Logistic|TSLS +* f=|Alaebra|Calc|Other|Prami0|Clean Up
_ FILIT] 8]
£ Honlinar Inut i = ronling Error: Break

Select dataset transf+ B ronling) Dore
g BEauation:  [ake™( “bkage—c ™2 +d el " fenn

Farameters: |=2EI; b=1 , c=25. 5; o=z
g e _ _ 5.5833- - . 1284-
wp| Weight variable: [1 . pt. =4, 1992E-356 & =l=1] age p
m |, CEnter=0K ESC=CHHCEL ? bne w4, 199136 o0 FE3EE 1 - L 128335 %2 + .3k
= ol ing) Ertor: Break Date
MonLin<> BIGER 2+ I51 446 T2 (x>
ROVREG RO ALUTO FUHL E/=0 ROVREG FAD AUTO FUHL B/=0

The first attempt is successful.

Fu FE* EE rfi*mT B ]’ F= T Fu ]’ FE ]’ FE™, ]’ FrP ]
Zoon|Trace |Regraph|Math|Oraw (- HH » f=—|Flot Setup|Cell[Header|Calc|ltil|Stat
DATH I I
cd [=ts] (=] =¥ [=t=]
1 ] 1VE [ 1745 o140
Z 1 BF25 | 160FE r=E]
3 2. 500l 5539 2950 1.5984
4 = 3.8357|1. 3556 3.8279
5 r.odoEfE. 1614 4375 g.1170
] 14 3.894]. 0112 3. 863
T 1/.500f18.518]1. 0354 2. 530
. Bricy=5_7675626182406
OVREG RO ALUTO FUHL ROVREG FAD AUTO FUHL

In our textbook we use the Solver of Excel in order to find the distribution curve. Compare the
results.

. ) - ) - ) - ) - ) ) ) - ) . . ) ) - ) . )
Alter % der Transf  Modell SSE Graph der Regressionslinie
19 0 051406246 0,26426021 18 046318172
20 1| 0752942658 0,06103732 18,1 046522826
21 25 159833618 081299764 18
22 5 382790734 137403564 18 : :
b 76 B11E8599 04605155 19 Altersverteilung bei Transfers
24 14| 138626892 001885425 18
25 175 185303933 105171036 18 25
26 20| 19,2285086 0,59519895 18
7 16 154770051 027352258 18w »
28 95 971537976 0,04538544 15 &
29 4 48526728 07270509 % /{\
30 2| 208346327 0,00402759 E =
31 1| DJ07R181 0,00853442 19 & /‘
32 0 055239875 0,30514435 19 Z 1o
SSE= 593327817 19 2
19 £ "
a b c d 1g * 9
190852513 0,130403987 255452902 0,45353993 19 A"’}/‘/ »
19 0 T : :
19 15 a0 25 an 35

See next pages: Don’s tools provided for DERIVE and TI-NSpireCAS
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Don Phillips: Nonlinear and other Regressions P

Some time ago Don provided a DERIVE utility for doing non linear regression. Two numerical
methods are well known for solving minimization problems with several variables: Gauss-
Newton- and Levenberg-Marquardt-Algorithm.

This is the pop-problem from page 23 treated with DERIVE:

#9: GAUSS_MEWTOM(p = c-MORMALCa + by — 179000, [a, b, ], [-2.4, 0.002, 400], pop)
-1z 2] 1z
#11: feq = (p = 203.55302- (ERF(4.92658135.10 «(1,8124180-10 - - 3.5747336.10 1) + 11)
b-(y — 1790)
#12:  GAUSS_HEWTON(p = c-e +a, [a, b, ], [10, 0.03, 20], popld
[ Gauss_Newton Method i
Convergence criteria met!
[ Parm Yalue STD t(16] Prob(t) 1
a —-31. 280723 L. 84598704 -5.53063R2 0.99099 7744
b 0.01152664% 0, 00066085658 17438278 0
-7
L C 29, 557374 3.9832816 F.4205848 ¥ 253283110
#13: [ Source [F 55 Ms F Prob(F) T
4 4
Feg 2 7.1882365-10 3. 5841082.10 2385 . 4704 0
Error 16 240, 39657 15, 024786
4
Total 18 7.1922751.10 i
SE R™2 AdiR™2
3.8761818% 0.99565757 0,995235975
—&  0.011526649.y
L p = 3.23568135.10 .= - 31, 280723 ]
[ Iter a [a] c S5E
7
0 10 0.03 20 3.8879337.10
1 —0.47677616 ] ;
o 017050976 1 2.4600075 0.028863837 4.9418325 9.5103350.10
4
B BhEr Lk 2 0.74354661 0.023658055 5.7144443 7.6785286.10
SRRSO 3 _%.3537131 0.016005799 10798732  S1m1.2360
5 022490851 4
| R — 4 _25.05821% 0.0L03RG344 23.603736 2.1003407.10
ke (TR = 2 0 2515872 #15. qter = | 4.01 —16.705065 0.013188071 17.245234 65074962
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#16: [Predicted_Walues([2000]), Predicted_Yalues([2020])]
95% Confidence Interval 1T 5% Confidence Interval
Walue 341.945977 Yalue 38754825
#17: Se_vhat/Se_¥0 10463537 11,158423 , Se_yhat/5e ¥0 13.764358 14,265733
CI_what 323 .68166 360, 21787 CI_what 363.51730 411.57520
CI_¥0 322 .46847  361.43106 1L CI_¥0 362.58260 412.51350
[ Source [OF 55 Ms F Frab(F)
4 4
Reg 2 7.16RZ2365.10 3.5841182.-10 2385.4704 0
#1%: anowva =
Error 16 240, 38657 15, 024786
4
Total 18 7.1922¥61.10 i

REST([popyt2, popesl]]

-12 g 12
#19: 203.55302. (ERF(4.9268135-10 . (1.812418.10 -x - 3.5747336.10 17 + 1)

-3 0.011526649.x
3,2358135-10 .e - 31.280723

Exponential Growth

Mormal Distribution |

0 1790 1800 1810 1820 1830 1840 1850 1850 1870 1880 1890 19500 1910 1920 1930 1940 1950 1960 1570 1980 1950 2000 2010 2020

Applying the Marquardt-Levenberg algorithm gives the same result:

be (y — 1790)
#20: MARQUARDT(p = c-2 + a, [a, b, €], [10, 0.03, 20], pep)

-8 0,011526663.y
#21. feq = (p = 3.2358222.10 .e - 31.280508)

Next example tries a trigonometric fit of temperature values.
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x 0.5 1.5 2.5 3.5 4.5 5.5 /.5 #5 &.5 9.5 10,5 11.5
#22: temp =
v =57 -3¢ 1.7 & 14.7 18.% Z1.8 186 14.2 7 0.6 -2.8

#23: GAUSS_MEWTOM(y = a-SIM(b-x + c) +d, [a, b, ¢, d], [13.5, 1, 1, 8.5], temp)

#24. fegq = (y = 13.353080.5INCD.5317679%.x + 4.4243910) + 8,1265819)

20
15

10

iL\\\\\\\\Hzgh__F‘i’//‘///;// 3 4 5 6 7 & G 10 1 1c
]

Marquardt-Levenberg did not work!

Sometimes it is necessary to try some different guesses of the initial values for the parameter
in order to receive a satisfying answer: Once more the age-transfer model from page 32:

a 19 20 21 22 23 24 25 26 27 ™ 2% 30 3 32 ]

#34:  transf = [
t 0 1 2.5 5 ¥.5 14 1¥.5 20 16 8.5 4 2 1 0

2
#35: [ - Bl.{a - b2) ]
GAUSS_NEWTONVt = bO.e + b3, [bO, B1, B2, B3], [20, 1, 30, 1], transf
2
#36: -65  14.047781.a - 0.22487615-a
feq = §.2273592 - 5.0842457.10 .=
2
#37: - Hl.(a - b2)
GAUSS_NEWTONLE = BO.=2 + b3, [BO, B, B2, B3], [20, 0.1, 30, 0.1], transf
2
#38 - -36 6.6884618.a - 0.13040384.a
feq = 1.0808898.10 .e + 0.45382339

2nd attempt

First attempt

19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 245 25 255 26 26,5 27 275 28 285 29 29.5 30 30.5 21 315 32
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This is a more complicated function to approximate. In DNL#64 | presented a “Traffic Density
Application”. In DNL#64 | used the slider bars to find a function composed of two bell shaped
functions. Now let’s try with Don’s tools and compare the results:

h 4] 1 2 3 4 5 ] 7 B 9 10 11 1z 13 14 15 16 17 18 19 20 21 22 23 24
#45:  tabvz = '
d_ 100 75 50 125 250 410 610 860 1000 %80 810 620 580 G500 475 G50 350 500 600 475 300 240 150 120 100

2z 2
#46 - (Ch_ - BL)/b2) - ((h_ - b41/b5)
+ b3-a

GAUSS_NEWTON[d_ = bO-e + b6, [BO, b1, b2, b3, b4, b5, b6], [1000, 9, 3, 900, 17, 3, 1], tabvj

z 2
#47 [ 1.374721.h_ - 0.0B044227-h_ -11 3.843272.h_ - 0.10824957.h_ J
feq = \d_ = 2.5056(B63.2 + 4.67857(8-10 .2 + BB, 332324

1000

S00 -

800 -
Approximation from DML#64

I

MARQUARDT delivers the same result as Gauss-Newton!
Comparing the Sum of Squared Errors (SSE) gives 6.0314 - 10* for Gauss-Newton and
1.1293 - 10° for the manually performed “Slider Bar Approximation”.

Don provides the Two Stage Approximation for DERIVE, too This is the documentation fol-
lowed by the two Tl-examples which are shown above:

The program
TwoStage(eq_,endog_,exog_,data_,incept_:=1,vardef_:=1)

computes the 2SLS regression coefficients, standard errors of the coeffi-
cients, t values and their probabilities, the ANOVA table, root MSE,
R_square, and adjusted R_square.

The 1inputs are:

eq_: the equation to be solved for

endog_: a vector of the endogenous variables

exog_: a vector of the exogenous variables

data_: the name of the dataset where the first row of the data matrix

contains the names of the variables

incept_: the default of 1 indicates that an intercept is to be computed
for the equation; set incept:=0 if you do not want an intercept.

vardef_: the default of 1 sets the variance denominator to the degrees of
freedom; changing vardef_ to 0 sets the denominator to the number of ob-
servations.

Note: According to SAS, if the no intercept option is set (incept_=0),
the definition of the R_square statistic for two-stage least squares is
changed to 1 - (Residal Sum of Squares/Uncorrected Total Sum of Squares).
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In addition, the program
Model(mm_,endog_,exog_,data_,incept_:=1,vardef_:=1)

solves for all the of equations at once. mm is a matrix of the equations
with one equation per row.

q=p+d
#9: Mode] , [@, p], [d, f, a], data
Qg=p+ T+ a

- 0.2437076898-p + 0.3143821013.d + 94.61485336
0.240567722-p + 0.2528436233-a + 0.2560236611-f + 49.44820072

| tried to produce a 3D presentation of the q(p,d) model. | am satisfied with the result. (Josef)
plot = YECTORC[pt], pt, REST([data,.2, datay)3, datap 1]’

z = — 024370768598 .» + 0,31438210M 3.y + 94 61485336

® == F"......:""'.'.
- = ‘.‘._.-l"-l'.'________...-
: ~ == 90
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And this is the second example from above performed with DERIVE (with and without inter-
cepts):

C = p+ plag + wsum
Model[| 7 = p + plag + klag |, [c, p, w, 1, %, wsum, k, ¥], [klag, plag, xTag, wp, g, t, ¥r], klein

W= ¥ + xlag + vr

0.01730294013.p + 0.8101827436-wsum + 0.2162334038-plag + 16.55475199
i = 0.1502217351-p + 0.6159436535-plag - 0.1577876492-klag + 20.27821173
0.438858637-x + 0.1466742262-x1ag + 0.1303957913.yr + 1.500299135

Cc=p+ plag + wsum
Model i =p+plag + klag |, [c, p, w, 7, %, wsum, k, v], [klag, plag, xTlag, wp, g, T, ¥r], klein, O

W= ¥ + xlag + wr

c = 0.1583375706-p + 1.121162681-wsum + 0.2651214661-plag
i = 0.4459657099:-p + 0.3685120348-plag - 0.06148091416-klag
w = 0.4444584525-x + 0.166299164-xlag + 0.1129951702-yr
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Don has no problems to transfer his programs from DERIVE to the Tl-handhelds (V200 &
TI-89) but also to TI-NspireCAS. File Phillps_AdvReg.tns for TI-NspireCAS provides Nonlin-
ear Regression for TI-Nspire. | print two screenshots because this might be of special inter-
est for us teachers when showing the students how to fit a power function by transforming it
to a linear function. We know that this is not quite correct because the linear regression is
applied on transformed data. This is what Don has to tell - and to demonstrate - us:

Linear vs. Nonlinear Regression

In some cases a nonlinear function can be linearized through a transformation of the data. While this usually gives
reasonable results, sometimes it may not. The reason is that a linear regression with transformed data does not
minimize the sum of squared errors of the non—transformed data. The data in spreadsheet 1.8 is from a project fitting
a power cunve to the data. The curve was originally estimated with Excel.

gaussnewton(ln(r_)=a+b-1n(m_)J{a=1,b=1 },1,30,10,10‘8)

This is a natural log transformation of the equation r_=a*m_"b. The output is in 1.9. The fitted equation is solved for
r_, and a=18.319 and b=-0.3535. This is also the result that the TI-Nspire produces for the Power Regression (see
1.8). In other words, it is not a true power regression; it is a linear regression of a log transformed equation and data.

The untransformed equation is also fit.|

gaussnewton(r_:a-m_b,{a:18,b:—0. 35},1,30, 10,107

Here a =57.821 and b=-0.52927. The graphs in 1.10 show both equations. It is up to the analyst, of course, to
determine which fit is best for her purposes.
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