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www.math.tugraz.at/~wagner/KombSkr.pdf 

www.informatik.uni-bremen.de/~denneberg/Kombinatorik/Skript%20Kombinatorik.pdf 
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Dear DUG Members, 
first of all I’d like to apologize once more 
for the extra long delay in publishing 
DNL#93. This is due to several reasons: an 
extended hiking holiday on the wonderful 
island of Madeira, a very busy time in pre-
paring the TIME 2014 conference, a very 
intense exchange of mails with David Halprin 
with respect to his contribution on the Re-
cursive Series (which has not yet ended ...). 

David sent his mathematical CV some time 
ago. I believe that – especially in connection 
with his article – it might be of interest for 
all of us to read what can be done during the 
life of a mathematician. Many thanks David 
for your patience and cooperation during our 
communication. We wish that you can con-
tinue your explorations in many fields of 
mathematics for many years in the future. 

David wrote that he had done his investiga-
tions in pre CAS times. So his original paper 
does not contain one single DERIVE – or 
other CAS – code. You can find some of his 
mails on this issue in the DNL. 

It’s funny that I came across an article 
written by Ian Stewart in a special issue of 
“Spektrum der Wissenschaft” = “Scientific 
American” dealing with other Tribonacci 
numbers, which I then tried to treat with 
David’s findings and my DERIVE-routines. 

Then we have another contribution from 
Roland Schröder involving number theory in 
generating trochoids. 

 
Finally I wanted to publish a keynote ad-
dress given by Adrian Oldknow at the occa-
sion of the Gettysburg conference many 
years ago (1998). Unfortunately it is not 
included into the proceedings of this con-
ference (which can be downloaded from 
http://rfdz.ph-noe.ac.at/acdca/acdca-
conferences.html. Adrian used the TI-92 in 
his presentation. But all his examples are 
still valid using TI-Nspire CAS or any other 
CAS ... 

I have to apologize to Dietmar Oertel for 
not continuing his papers so far. He sent 
many updates and additions which keeps me 
busy bringing all in the right order. Please 
be patient. 

There came also in a couple of requests 
ready for our User Forum. They will be pre-
sented in DNL#94. 

 

I wish the best until summer and hope to 
meet many of you at TIME 2014 in Krems. 

 

 
 
 
 

 

 

 

 

 

Visit the TIME 2014 website and browse its program and the abstracts: 
 

 
 

 1-5 July 2014, Krems, Austria 
www.time2014.org 

 
Download all DNL-DERIVE- and TI-files from 
http://www.austromath.at/dug/ 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group. 
It is published at least four times a year 
with a content of 40 pages minimum. The 
goals of the DNL are to enable the ex-
change of experiences made with DERIVE, 
TI-CAS and other CAS as well to create a 
group to discuss the possibilities of new 
methodical and didactical manners in 
teaching mathematics. 
 

Editor: Mag. Josef Böhm 
D´Lust 1, A-3042 Würmla 
Austria 
Phone: ++43-(0)660 3136365 
e-mail: nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & CAS-TI Newsletter will be. 
 
 
Next issue:   June 2014 
 

 
Preview:  Contributions waiting to be published 
 
 Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER 
 Wonderful World of Pedal Curves, J. Böhm, AUT 
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER 
 Hill-Encryption, J. Böhm, AUT 
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT 
 Do you know this? Cabri & CAS on PC and Handheld, W. Wegscheider, AUT 
 An Interesting Problem with a Triangle, Steiner Point, P. Lüke-Rosendahl, GER 
 Graphics World, Currency Change, P. Charland, CAN 
 Cubics, Quartics – Interesting features, T. Koller & J. Böhm, AUT 
 Logos of Companies as an Inspiration for Math Teaching 
 Exciting Surfaces in the FAZ / Pierre Charland´s Graphics Gallery 
 BooleanPlots.mth, P. Schofield, UK 
 Old traditional examples for a CAS – what´s new? J. Böhm, AUT 
 Truth Tables on the TI, M. R. Phillips, USA 
 Where oh Where is It? (GPS with CAS), C. & P. Leinbach, USA 
 Embroidery Patterns, H. Ludwig, GER 
 Mandelbrot and Newton with DERIVE, Roman Hašek, CZK 
 Tutorials for the NSpireCAS, G. Herweyers, BEL 
 Some Projects with Students, R. Schröder, GER 
 Dirac Algebra, Clifford Algebra, D. R. Lunsford, USA 
 Treating Differential Equations (M. Beaudin, G. Piccard, Ch. Trottier), CAN 
 A New Approach to Taylor Series, D. Oertel, GER 
 Cesar Multiplication, G. Schödl, AUT 
 Henon & Co; Find your very own Strange Attractor, J. Böhm, AUT 
 Rational Hooks, J. Lechner, AUT 
 Simulation of Dynamic Systems with various Tools, J. Böhm, AUT 
 Space Curves with adjustable Curvature and Torsion, P. Trebisz, GER 
  
 and others 

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag. Josef Böhm 
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Recursive Series of Numbers; An Umbral Look 
David Halprin, davrin999@gmail.com 

 
The first three number sequences, that one usually encounters in early school years are the Arith-

metic Progression, the Geometric Progression and the Harmonic Progression. Although they are not 
usually referred to as recursive series, they are, in fact, recursive over the immediately previous term. 

One can investigate them in various ways, and, for various reasons: – 

e.g. 1) The three most popular goals, are to find the (n+1)th term, the sum of the first (n+1) terms 
and the ratio of two neighbouring terms. 

e.g. 2) As an illustrative example for this paper, it can be informative to follow the same approach 
for the geometric sequence, as one does with those sequences, that are recursive over two or 
more previous terms, as delineated below for Fibonacci, Lucas etc … 

In overview, the algorithm is to assume the terms to be the coefficients of a Maclaurin series plus 
an initial constant term. At any stage, one can equate x = 1, provided it does not create a zero denomi-
nator. Because it is neater to have the exponent of the (n+1)th term to be n and the expression for the 
coefficient to be Tn , then one particular notational convention, that is popular amongst many, is to call 
the initial constant term, to be the zeroth term, T0 hence: – 

2 3
0 1 2 3( ) ... .n

nS x T T x T x T x T x       

1

2 3 1
0 1 2 3 1

2 3 1
0 1 2 3 1

2 1
1 2 3 1

( ) ... +1 terms

( ) ...

...

n n

n n
n n

n n
n n

n n
n n

T r T

S x a a x a x a x a x a x n

r S x r a r a x r a x r a x r a x r a x

a a x a x a x a x












 

      

             

     

 

N.B. This method produces its results with the variable x in both the (n+1)th term and the sum to (n+1) 
terms. This form is retained for the polynomial series, but for the Fibonacci and Lucas sequences the x 
is equated to unity. 

The two best-known number sequences, recursive over the two previous terms, are Fibonacci and 
Lucas. There are at least 5 ways of defining them: – 

e.g. 1) Each term is the sum of the previous 2 terms etc. . 

 2) An equation, which determines the (n+1)th term. 

 3) The sum to the (n+1)th term. 

 4) The limiting value of the ratio of two successive terms. 

 5) The generating function. 

All these types of series can be treated under the one generalisation, called a General Admixture 
Series, (G.A.S.), defined: – 

1.0 Tn = pTn–2 + qTn–1  n  2 

where  p = q = 1  for Fibonacci & Lucas series and  T0, T1 = 0, 1  for Fibonacci or 2, 1 for Lucas series. 
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So, now, to establish the various equations, that evaluate the (n+1)th term and the generating func-

tion. 

These methods, being free from Calculus, are a preferable way of expressing the above for use in a 
computer program, such as Derive for WindowsTM , on a simple home-computer. 

It will be clear how great an advantage this approach will be for the number sequences. 

Assume the existence of a power series, similar to a Maclaurin Series plus a constant first term: – 

2.0 2 3 1
0 1 2 3 1( ) ... n n

n nS x T T x T x T x T x T x
             for n+1 terms. 

Now multiply S(x) by qx: 

2.1 2 3
0 1 2 1( ) ... n

nq S x x q T x q T x q T x q T x                

Now multiply S(x) by px2: 

2.2 2 2 3 4
0 1 2 2( ) ... n

np S x x p T x p T x p T x p T x                

Adding (and applying 1.0): 

2.3
2 2 2 3 3

0 1 0 2 1 2 1

2 3
0 0 1 1 2 2 1

2 3
0 2 3

0 0 1

( ) ( ) ...

( ) ( ) ... ( )

...

( )

n n
n n

n
n n

n
n

S x q x p x q T x q T x p T x q T x p T x p T x q T x

q T x p T q T x p T q T x p T q T x

q T x T x T x T x

q T x S x T T x

 

 

                         

                  

         
      

 

therefore 

2.4  0 1 0
2

( )
( )

1

T x T q T
S x

q x p x

  
   

 

For Fibonacci, where T0 = 0 and T1 = 1 and p = q = 1 

2.5  
2

( )
1

x
S x

x x


 
 

For Lucas, where T0 = 2 and T1 = 1 

2.6  
2

2
( )

1

x
S x

x x


 

 

Josef’s comment:  

I must admit that I was not familiar with “generating functions” and I wondered what the S(x) 
functions are good for? What have 2.5 and 2.6 to do with Fibonacci and Lucas sequences in 
common? 

Look at the following short DERIVE output showing the Taylor expansion of 2.5 and 2.6: 
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Reading the coefficients of the polynomials backwards we can find the elements of the Fibo-
nacci sequence and the Lucas sequence respectively. 

David gave an explanation and I will repeat it in other words: 

The generating function of a sequence <an> is a function with a power se-
ries representation at x = 0 with the an as its coefficients. 

There are many applications for generating functions, e.g. enumeration problems. 
Among others g. F. are used to find explicit expressions for recursively defined se-
quences. I will show some examples at the end of David’s article. 

 

Let’s continue with David’s contribution. 
 
Suppose we can factorise the denominator of the expression for S(x) into two linear factors 

3.0 2 21 (1 ) (1 ) 1 ( )q x p x a x b x a b x a b x                  

where a and b are the reciprocals of the roots of the quadratic showing 

3.1 2, 4 ,a b q a b q p a b p         

Then to take partial fractions: – 

3.2 0 1 0
2

( )

1 1 1

T x T q T C D

q x p x a x b x

     
       

 

Whence: – 

3.3 1 0 1 0,
T b T T a T

C D
a b a b

    
 

 

Let’s do the expansion in partial fractions assisted by DERIVE. 

 

David uses the difference of the partial fractions in order to obtain “nicer” expressions for C 
and D. 

At this moment I’d like to proceed with the special example Fibonacci sequence and demon-
strate how to obtain the formula for the nth element of this famous sequence using its gener-
ating function.  
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Remember that the power series of 
0

1
.

1
n n

n

c x
c x






    So we can extend 3.2 to  

 

0 1 0
2

0 0

0

( )

1 1 1
n n n n

n n

n n n

n

T x T q T C D
C a x D b x

q x p x a x b x

C a D b x

 

 





           
       

    

 


 

The coefficient of the nth element of the power series for the generating function delivers the 

nth
 Fibonacci number – and this coefficient is given by n nC a D b   , too. See now this proce-

dure performed with DERIVE. 
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David works much more generally and provides much more results: 

3.4 1 0 1 0( ) ( )
1 1

T b T T a T
a b S x

a x b x

       
   

 

3.5 2 2 2 2
1 0 1 0( ) (1 ... ) ( )(1 ... )n n n nT b T a x a x a x T a T b x b x b x                     

3.6 
2 2 2 2

0 1 1 0

1 1
1 0

( ) ( ) ( ) ( ) ...

... [ ( ) ( )]n n n n n

a b T a b T x a b T x ab a b T x

T a b T ab a b x 

               

      
 

Hence: – 

4.0 
1 1

1 0[ ( ) ( )]n n n n

n

T a b T a b a b
T

a b

    



 

Remember 
2 24 4

,
2 2

q q p q q p
a b

   
   

If p < 0, then let cos
2

q

p
 


 for all q 

4.1 
 

1

2( ) sin( ) sin[( 1) ]
1 0

sin

n

p T n T p n
T
n

 





   
  

Hence for Fibonacci: – (from equation 4.0) 

4.2 
n n

n

a b
F

a b




 

and for Lucas: – (again from equation 4.0) 

4.3 
1 1( ) 2( )n n n n

n n
n

a b a b
L a b

a b

     


  To be proved. 

A verification followed by the proof (considering that T0, T1 = 2, 1 and a + b = 1): 
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Taking 4.0 for the proof (considering that ab = –1) gives: 

 
a2 – a – 1 is zero because a is a root of the denominator of equation 2.6.  Q.E.D. 

 
Performing the proof without CAS: 
Let 

1 1
1 0

0 1

1 1

( ) ( )
( ) 2, 1

( ) 2 ( ) ( )( ) 0

(1 2 ) ( 1 2 ) 0

(1 ( )) (( ) 1) 0 1

0 0 Q.E.D.

n n n n
n n

n n n n n n

n n

n n

T a b T a b a b
a b T T

a b

a b a a b a b a b

a b a b b a a b

a a b b a b a b q

 

 

   
   



      
        

        



 

But let us have a more general look: – 

If  

5.0 0 0( ) ( )k a b T b T a k a b        

 if a  b, then T0 = 2k and therefore 

5.1 1( )( ) ( )k a b a b T a b      therefore 

5.2 1 0( ) , 2k a b T T k    

Let us see some consequent series of Lucas type: – 

(1) p = 1, q = 1, k = 2, T0 = 4, T1 = 2  a multiple of Lucas 

(2) p = 1, q = 2, k = 2, T0 = 4, T1 = 4  see below 

(3) p = 2, q = 1, k = 2, T0 = 4, T1 = 2  see below 

(4) p = 1, q = 2, k = 0.5, T0 = 1, T1 = 1  see below 
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Just for fun, we will try with DERIVE again.  

For (1) we can apply a and b from above because p = q = 1, for (2) we have to recalculate a 
and b using the algorithm from above: 

 

 

 

 

These are all of Lucas type of series because: – 

0 1 0( ), 0, ( ) , 2n n
nT k a b T T k a b k q T k         
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If we wish to have three consecutive terms forming a Pythagorean triple, we take: – 

6.0 2 2 2
2 1n n nT T T     where 

6.1 2 1n n np T q T T      

6.2 If 2 1,n n

n n

T T
p q

T T
     then 

6.3 
2 2

2 1n n
n

n n

T T
T

T T
     Q.E.D. 

e.g. 3, 4, 5, 6.4, …;  5, 12, 13, 256/13, …;  8, 15, 17, 375/17, ... . 

 

Now to consider the special case where the roots of the quadratic denominator of the generating func-
tion are equal,  i.e. a = b. Rather than rework the whole exercise, use the rule of L’Hospital. 

7.0 
1 1

1 0[ ( ) ( )]n n n n

n

T a b T a b a b
T

a b

     



 

7.1 1 1 1
1 0lim ( )n n n

n
b a

T T n a T b n a b  


        

which in case of a Fibonacci series, reduces to Tn = n. 
 
 
with T0 = 0, T1 = 1, p = –1, q = 2, a = b = 1 we obtain 0, 1, 2, 3, 4, 5 etc. 

 

Possibly, we may have already thought of the natural numbers as constituting a recursive series, 
but not realised how much they have in common with the Fibonacci series. This will also be shown 
later with Tribonacci series etc.. 

Now for some examples of series with rational values for a, b. In order that the discriminant be a 
perfect square, 

Let  = (2m + 1)2, where p = m2 + m, q = 1, k = 1 and m is any integer greater than zero, for a Lucas-

type of series. 

NAME m p q a b SERIES 

BiLucas 1 2 1 2 –1 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, ... 

HexaLucas 2 6 1 3 –2 2, 1, 13, 19, 97, 211, 793, ... 

DodecaLucas 3 12 1 4 –3 2, 1, 25, 37, 337, 781, ... 

IcosaLucas 4 20 1 5 –4 2, 1, 41, 61, 881, ... 

find your own      ... 

 

The generating functions for DodecaLucas and IcosaLucas together with the closed formulae 
for their nth element: 
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Now for some Fibonacci-type with a and b being complex, (see FibComp-n in table below). 

This can be calculated from either 
n n

n

a b
T

a b




 or by using a substitution cos( )
2

q

p
 


 which 

leads to two representations in trig-form which better illustrates the periodicity either using (a, b) or 
(p, q): 

1
121

2

1

( ) sin cos
2( ) sin( phase( ))

or .
sin(phase( ))

sin cos
2

n

n

n n

q
p n

pab n a
T T

a q

p






 
        

 
   

 

NAME p q a b θ SERIES 

FibComp-1 –2 2 1+i 1–i 
4


 0, 1, 2, 2, 0, –4, –8, ... 

FibComp-2 –13 4 2+3i 2–3i 1 2
cos

13

  
 
 

0, 1, 4, 3, –40,–199, ...  

FibComp-3 –1 1  1
2 1 3i   1

2 1 3i  
3


 0, 1, 1, 0, –1, –1, 0, 1, ... 

FibComp-4 –1 √3  1
2 3 i   1

2 3 i  
6


 0,1, 3, 2, 3,1, 0,1, ... 

FibComp-5 11
2  7

2   1
4 7 39i   1

4 7 39i  1 7
cos

44

22 
 
 
 

7 27 35
0,1, , , ,

2 4 8
  ... 

 

I will use DERIVE again to generate the presented Fibo-type series using these three repre-
sentations of the explicit formulae: 
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You are invited to check the remaining two “Fib-Comps” and to create your own series. 

 

It has been shown, thus far, that if a series is to be described a ‘Fibonacci-type’ then its nth term 
must have the form 

n n

n

a b
T

a b




. 

If a series is to be described as a ‘Lucas-type’ then its nth term must be of the form 

( )n n
nT k a b   . 

So that the numerator of the nth term in a Fibonacci series does not contain the term with factor T0
, 

then T0 must be 0, however in some problems this may appear to be not so, but to simplify calcula-
tions, it may be assumed; viz: – 

If we are given 2, 3, 5, 8, and asked to find a further terms, we could call T0 = 2 and T3 = 8 then 

4 4 3 3

4

3( ) 2 ( ) (9 5 4 5)
13

5

a b a b a b
T

a b

      


      (with 
1 5 1 5

,
2 2

a b
   ) 

or we could call T6 = 8 whence  7

832 5
13.

64 5
T    

 

The Sum of a Recursive Series 

If the recursion is Tn = pTn–2 + qTn–1 then 

0 1 2 1

0 1 2 3

0 2 3 4 1

0 0 1 1

0 1 1

8.0 ...

8.1 ...

8.2 ( ) ...

8.3

8.4 ( 1)

Sum n n

Sum n

Sum n n n

Sum n n

Sum n n

p T p T p T p T p T p T

q T q T q T q T q T q T

p q T q T T T T T T p T

q T T T T T p T

q T T T p T T









           
           
           

       
       

 

therefore 

0 1 1( 1)
8.5

1
n n

Sum

q T p T T T
T

p q
     

 
 iff p + q ≠ 1 
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For Fibonacci Series and Lucas Series: 

1 1Sum n nT T T    . 

It’s just for fun, demonstrating the generalized sum formulae with TI-NspireCAS (applying 
equations 3.1 for 8.5): 
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Recursion over Previous Three Terms 

Let us now consider a general admixture series (GAS) where three terms are combined in a nomi-
nated proportion to produce the fourth term. We shall call it a Tribonacci-type series: – 

3 2 1n n n nT p T q T r T         where terms T0, T1 and T2 are chosen arbitrarily. 

Here are two Tribonacci series generated by an ITERATES-construct: 

 

Let there be a series S(x) 

9.0 2 3 1
0 1 2 3 1( ) ... n n

n nS x T T x T x T x T x T x
             for n+1 terms. 

Now multiply S(x) by rx, qx2 and px3 respectively: 
2 3 4 1

0 1 2 3 2 1

2 2 3 4 1
0 1 2 3 2

3 3 4 1
0 1 4 3

9.1 ( ) ...

9.2 ( ) ...

9.3 ( ) ...

n n
n n

n n
n n

n n
n n

r S x x r T x r T x r T x r T x r T x r T x

q S x x q T x q T x q T x q T x q T x

p S x x p T x p T x p T x p T x


 


 


 

                    

                 

              

 

Adding equations 9.1, 9.2 and 9.3 and then solving for S(x): 

3

2 3 2 2 3
0 1 0 2 1 0

2 2 2
0 1 0 0 1 2

9.4 ( ) ( ) ( ) ...

( )

n
n

T

S x r x q x p x r T x r T x q T x r T q T p T x T x

r T x r T x q T x S x T T x T x

                        

              



Therefore 

9.5   
2

0 1 0 2 1 0
2 3

( ) ( )
( )

1

T T r T x T r T q T x
S x

r x q x p x

         


     
 

We can show that 9.5 is the generating function for the Tribonacci series: 
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Suppose that we can factorise the denominator into three linear factors, where a, b and c are recip-

rocals of the roots of the cubic: – 

9.6 2 31 (1 ) (1 ) (1 )r x q x p x a x b x c x              

9.7 r = a + b + c,  q = – a b – b c – c a,  p = a b c 

There are four cases to consider for the nth term Tn 

Case 1:  Three different roots a ≠ b, b ≠ c, a ≠ c: 

9.8 2 1 0 2 1 0 2 1 0( ( ) ) ( ( ) ) ( ( ) )

( )( ) ( )( ) ( )( )

n n n

n

a T b c T bcT b T a c T acT c T a b T abT
T

a b c a a b b c b c c a

           
  

     
 

Take the example from above with a = 2, b = 3, c = 4, T0 = T1 = 1, T2 = 2 → p = 24, q = –26, r = 9 

 

Case 2:  Two roots are equal: a = b ≠ c: 

9.9 See expression for TSN2 below. 

 
The second example shows that we can generate the sequence of the natural numbers as a 

Tribonacci series 3 2 1 0 1 25 11 7 ; 1, 1, 2n n n nT T T T T T T        . 

Case 3:  All three roots are equal: a = b = c: 

9.10     
2

2 2 20 1 2
0 1 2 0 1 2

( 1)( 2)( 2 )
( 1)( 3 5 2 ) 3 3

2
n

n

n n a T aT T
T a n a T aT T a T aT T              

 
 

Examples: (1) a = 2; (p = 8, q = –12, r = 6) with 0, 1, 1 as the first three terms 

  (2) a = 1; (p = 1, q = –3, r = –3) 

  Let’s take three examples for (2), dependent on the choice of the first three terms. 
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0, 0, 1, ... is not particularly interesting – the differences are increasing by 1, which leads to a quad-
ratic, 

0, 1, 2, ... gives the natural numbers, again, 

0, 1, 4, ... gives the squares of the natural numbers. 

All of these can be anticipated by substituting for T0, T1 and T2 in equation 9.10. 

 

Case 4:  a is the real root, b, c are complex roots with b, c = (cos( ) sin( ));k i k b      

9.11 

2 1 2 2
1 2 0 1

2 2

1
2 0

2 2

(2 cos ) sin ( sin(( 2) ) sin( ))

sin (2 cos )

( sin(( 1) ) sin( )) ( sin(( 2) ) sin(( 1) ))

sin (2 cos )

n n

n

n n

a k T T k T k T k n a n
T

a k k a

k T k n a n a k T k n a n

a k k a

   
 

   
 





           
 

    
            

    

 

e.g. a = 1, b = 1 + i, c = 1 – i  hence p, q, r, = 2, –4, 3 and T0, T1, T2 = 0, 0, 1 gives: 

( 1)
1 ( 2) 2 sin sin

4 4
n

n

n n
T

           
    

 = 0, 0, 1, 3, 5, 5, 1, –7, ... 

If we choose a different set of three initial terms 1, 1, 2 then we have 

( 1)
2 ( 2) 2 sin sin

4 4
n

n

n n
T

           
    

 = 1, 1, 2, 4, 6, 6, 2, -6, ... 

See which results are provided by DERIVE: 

(TSN4 is defined according equation 9.11 with ABS(b) = k and PHASE(b) = θ.) 

 

 

If we now examine the traditional Tribonacci series, where p = q = r = 1 and the series ap-
pears as 1, 1, 2, 4, 7, 13, 24, 44, ..., then we have a lot more to calculate. 

According to 9.5 a, b, c are the reciprocals of the roots of the cubic: 
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These bulky expressions are roots a1 (real) and a2, a3 (complex): 

  
Does formula 9.11 hold (in its CAS-realisation?) 

 

Yes, it works! But by approximation only, simplifying these nested roots is too much, even for 
DERIVE. 

What I (Josef) found out: 

I tried TSN1 (three different real roots treating Case 4): 

 

and was surprised to obtain the correct series. 

One more example: a = 2, b, c = –3 ± 4i → p, q, r = – 4, 50, – 13, T0, T1, T2 = 1, 2, 3 

Here is this series generated in various ways: 
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The Sum of a Number Sequence 

The sum to n terms for such a series may be deduced: – 

Let Sn represent the sum to n terms for Tribonacci-type series: – 

0 1 2 3 2 1

0 1 2 3

0 1 2 1

0 1 2 1

0 1 0 1 2 1

10.0 ...

10.1 ...

10.2 ...

10.3 ...

10.4 ( ) ( ) ( )

n n n n

n n

n n n

n n n n

n n n

S T T T T T T T

r S r T r T r T r T r T

q S q T q T q T q T q T

p S p T p T p T p T p T

p q r S q r T r T S T T T T

 



 



       
           
           
           
              1

0 1 2 1 1

( )

( 1) ( 1) ( )
10.5 iff 1

1

n n

n n n
n

p q T p T

q r T r T T p q T p T T
S p q r

p q r



 

   

               
  

 

This equation simplifies for particular examples e. g. Standard Tribonacci 

0 2 2 2 1
10.6

2 2
n n n n

n

T T T T T T
S         

 

 

Limiting Ratio of Successive Terms in these Number Series 

To find limiting ratio, R, as n increases indefinitely 

1

Fib 1 1

11.0 lim

11.1 lim

n

n
n

n n

n nn

T
R

T

a b
R

a b




 






 

However 0 < | b | < 1 therefore 

Fib 1
11.2

n

n

a
R a

a    

However, for a more general look at the G.A.S. we can see that for certain values of p > q + 1 we 
find that b has a modulus greater than unity, so the previous argument does not obtain. Instead we use 
identical methods for all series, whether recursive over the last two terms or over the last three terms. 

Fibonacci-type Series: 

11.3 b < a;   i.e. b = k  a where 0 < | k | < 1 

FibType 1 1 1 1

(1 )
11.4 lim lim

(1 )

n n n n

n n n nn n

a b a k
R a

a b a k    

   
 
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Similarly, with the more complicated ratios in Tribonacci-type series: 

We choose whichever is the largest of the roots and hence find that the limiting value is the value 
of the largest root. Take the case where a > b > c, our ratio is of the form 

TribType 1 11 1 1

1

11.5 lim lim

1

n n

n n n

n nn n nn n

l d m e
a

k kk a l b m c
R a

l d m ek a l b m c
k k

    

            
       

 

Similarly, when two roots are equal a = b and a > c then the limit is a, but if a < c then the limit is c. 

11.6 When all roots are equal then a = b = c is the limiting ratio. 

11.7 When the real root is a and b, c are complex then the limiting ratio is the larger out of a and 
ABS(b). 

 
a, b, c = 2, 3, 4 

 

 

 
a, = b = 2, c = 3 

 

 

 
a = b = c = –2 

 

 

 
 
a = 1, b = 1 + i, c = 1– i 

divergent! 

 

 
a = 3, b = 1 + i, c = 1– i 
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Inspecting the last two examples from above you can observe that 11.7 only holds if a > k  
(k = abs(b)). Otherwise the limit of the ratio does not exist. There are much more points out-
side of the detail of the graph. 

 
 

Recursion over m Previous Terms 

Now to a further observation and concomitant conundrum/challenge. Let us consider further num-
ber series, that are progressively recursive over an increasing number of terms, so that the denominator 
is a polynomial of degree m, whose ‘factors’ may be real or complex and accordingly the expressions 
for Tn will depend on the precise nature of these roots of the polynomial denominator of S(x), and can 
be summarised in a chart: – 

The denominator of a real polynomial of the mth degree has m factors, which may be all real, all 
imaginary, or mixed real and imaginary. Now consider them one at a time. 

The nub of the problem centres around the splitting of a fraction into partial fractions. The de-
nominator of the fraction is a real polynomial of mth degree with (m+1) terms. The partial fractions 
must have a variety of monomial denominators mostly, which, for some cases, may be squared or 
cubed. So, in essence, one deems the polynomials to be factorised, so one needs to consider the hypo-
thetical number of cases of the ‘roots’ of a given polynomial. 

Let the general univariate polynomial be P(x) 

2 3
1 2 3

1

( ) 1 ... 1
n

n r
n r

r

P x a x a x a x a x a x


         

The various cases for the ‘roots’ subsume: – 

1) all are real, equal, different etc ... 

2 for m even, all can be conjugate complex pairs, equal, different etc ... 

3) a mixture of real and conjugate complex pairs 

Let R = the number of cases for real ‘roots, U = the number of cases for conjugate complex ‘roots’ and 
M = the number of cases for an admixture of real and imaginary roots. 

Let T = R + U + M = the total number of cases. 

DEGREE NAME REAL UNREAL MIXED TOTAL 

1 Monomial 1 0 0 1 

2 Quadratic (Fibonacci, Lucas, etc.) 2 1 0 3 

3 Cubic (Tribonacci) 3 0 1 4 

4 Quartic (Quattraci) 5 2 2 9 

5 Quintic (Pentonacci) 7 0 5 12 

6 Sextic (Hexonacci) 11 3 9 23 

7 Septic (Septonacci) 15 0 16 31 

8 Octic (Octonacci) 22 5 27 54 

9 Nonic 30 0 43 73 

10 Decic 42 7 69 118 

11 Undecic 56 0 103 159 

12 Diodecic 77 11 123 211 
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Let’s check this for degree 4: 

There are 5 possibilities for only real solutions: 

(r1, r2, r3, r4), (r1 = r2, r3 = r4), (r1 = r2 = r3, r4), (r1 = r2, r3, r4) and (r1 = r2 = r3 = r4) 

There are 2 possibilities for only complex solutions: 

(c1,2, c3,4) and (c1,2 = c3,4) 

And finally there are 2 possibilities for mixed solutions: 

(r1, r2, c1,2) and (r1 = r2, c1,2) 

which makes 9 different cases totally. 

The question remains to find a formula to express the number of solutions for each value of m. 

Also, is it possible to have a more general solution for Tn, which covers for all, (or some more than 
at present), of the several solutions for a particular value of m, whether, or not, some roots are equal? 

 

David’s contribution kept me very busy for a while – one reason for the delay of publishing 
DNL#93 – and we exchanged many mails between Austria and Australia. I sent question, 
David replied answers, updates and DERIVE files. You can find one of his mails below.  
I am very grateful for his careful proof reading. There are so many expressions which had to 
be copied from David’s pdf-file (generated from of Word Perfect document). Moreover I 
wanted to illustrate several steps providing examples calculated with DERIVE or TI-Nspire 
CAS. 

It would be great if somebody of the DERIVE-TI-Nspire  community would feel inspired to 
continue investigating the G.A.S. 

I felt inspired to do some Internet-research for Generating Functions. I found a lot and I found 
interesting facts in some of my textbooks (about Discrete and Combinatorial Mathematics). 
As I announced on page 5 I will present other applications of generating functions. 

 

David’s mail from March 9, 2014: 

Hi Josef  
Thanks. I had several working copies, and also I wrote up an extra couple. I find that Derive is indis-
pensable for much of the work, nevertheless it is always necessary to check out some `pen and paper', 
whereby some simplification usually comes to light. It's mainly to do with factoring, that Derive can-
not do in some instances. 

Incidentally, I have almost completed a rejoinder, with a very special couple of series, recursive over 
four terms, based on a geometrical finding of Charles Dupin in Compte Rendus 1848. He used them 
for estimating any missing figures in a statistical table, very successfully. I have discovered that they 
can represent many known series e.g Any arithmetic progression (A.P.), a series of the squares of any 

A.P. Similarly with the cubes, fourth power and fifth power e.g. 
1

( ) .
n

k

k

a k d


   
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I will present three examples for applying generating functions without giving any explanation. You 
can find them in enumeration problems: 
 
 
(1) In how many ways can we pay 50 Cents using 1, 2 and 5 Cent coins?[1] 

The generating function is 
2 5

1
( )

(1 )(1 )(1 )
g x

x x x


  
 and the solution is the coefficient of x50

 
 of the 

Taylor expansion. 
 

 
 
 
(2) While shopping one Saturday, Mildred buys 12 candies for her children, Carl, Wade, Pat and Jane. 

In how many ways can she distribute the candies, so that Carl and Wade get no more than 4, Wade 
gates at least one, Carl gets at least two, Pat and Jane get at least three candies? [2] 

The solution is the number of all integer solutions of the system: 

  c + w + j + p = 12 
  2  c  4, 1 w  4, p  3, j  3 

The generating function is 2 3 4 2 3 4 3 4 5 6( ) ( )( )( )c x x x x x x x x x x x x          and the number of 

distributions is the coefficient of x12. 

 
 
Is this the correct answer? 19 distributions are not so many. It should be possible to write them all 
down: 

 

Carl Wade Pat Jane Total  Carl Wade Pat Jane Total 
2 1 3 6 12  3 1 3 5 12 
2 1 4 5 12  3 1 4 4 12 
2 1 5 4 12  3 1 5 3 12 
2 1 6 3 12  3 2 3 4 12 
2 2 3 5 12  3 2 4 3 12 
2 2 4 4 12  3 3 3 3 12 
2 2 5 3 12  4 1 3 4 12 
2 3 3 4 12  4 1 4 3 12 
2 3 4 3 12  4 2 3 3 12 
2 4 3 3 12       

 
Do you find more distributions? Did I forget one? 
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(3) Find the generating function for the number of ways an advertising agent can purchase 5 minutes 

of air time if time slots for commercials come in blocks of 30, 60, 120 or 180 seconds. [2] 

 Generalise for n minutes. 

Let 30 seconds represent one time unit. Then the solution is the number of integer solutions to the 
equation 

   a + 2b + 4c + 6d = 10    (a, b, c, d  0) 

The generating function is  

2 2 4 4 8 6 12

2 4 6

( ) (1 ...)(1 ...)(1 ...)(1 ...)

1

(1 )(1 )(1 )(1 )

t x x x x x x x x x

x x x x

            


   

 

The coefficient of x10 is the number of partitions of 10 into 1’s, 2’s, 4’s, and 6’s, the answer to the 
problem. 

 
Correct? Check for 5 minutes (= 6 time units): 
 

180 120 60 30 
1    
 1 1  
 1  2 
  3  
  2 2 
  1 4 
   6 

 
There are seven possible ways to form 5 minutes (6 units) and 7 is the coefficient of x6. 
 
 
[1]

 math-www.upb.de/MatheI_02/vorl/woche_16.pdf 
[2] Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, Addison Wesley 1999 
 Jiri Matousek, Jaroslav Nesetril, Diskrete Mathematik, Springer 2002 
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Light in the Coffee Cup 
Roland Schröder 

When in the morning the lamp is sending its light into the coffee cup and if there is a lucky 
constellation of light source and the positions of cup and observer a nice picture on the sur-
face of the coffee similar to the picture given below can be detected by the careful observer. 
It is not possible to see the many delicate lines but their heart-shaped envelope, the cardiod. 
The bright spot on the right border of the cup symbolizes the light source (which is over the 
cup). The rays sent by the light are reflected by the border of the cup. And where many re-
flected rays are superimposed a white heart-shaped curve can be perceived very well. 

 
The graph can be produced using dynamic 
geometry programs, too. Here we will use 
DERIVE. The command for producing the 
graph is a very short one: 

 
 

   
 

The points must be “connected“ and what is very important: we are working with polar coor-
dinates. The “negative“ graph was produced applying the „Paint“-tool on the graph depicted 
on the left hand side. (Apply the 5th option in the Edit-menu on a the graph copied into the 
Algebra window. Later I will show how to achieve this in another way, too.) It is interesting 
deleting the DERIVE-graph step by step. You can follow the run of each single ray sepa-
rately. 

The cardiod is generated by a punctual light source and parallel light rays generate a “double 
cardiod“, a so called nephroid (“kidney formed“). It is said that it cannot be produced by a 
dynamic geometry software. We will not check this here but we will show that DERIVE has 
not reached the end of its abilities. For demonstrating this we will plot the nephroid using 
another approach i.e. We start with the DERIVE command  

VECTOR([1, MOD(2n,101)·2π/101], n, 1, 101) 

(in polar coordinates with points connected) 
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The light rays are coming from all directions now, but we obtain a cardioid again. Number 
101 has a special role in this representation. Vary this number in order to find out its impor-
tance. Another fact will become clear when deleting the graph:  
 
It is one closed polygon. We change the last DERIVE command at one position and we will 
obtain the nephroid: 
 

VECTOR([1, MOD(3n,101)·2π/101], n, 1, 101) 

  
 
Now the DERIVE user will proceed full of enthusiasm producing four- and five leafed clovers 
(three leafed clovers cause problems). 

All these graphs are closed polygons which connect p points on the circumference of a circle. 
The properties of p must be investigated by experts in number theory. The second coordi-
nates, which are the arc lengths of the rotations form so called modular sequences of the 
powers of two, three, four, ...)  

 
Roland wrote about problems producing the nephroid by a dynamic geometry program. I tried TI-
NspireCAS and found the nephroid as envelope of the reflected rays – but could not produce the enve-
lope as a curve. It could have been possible to add the curve using its parameter representation which 
is: 

3 3(6 cos 4 cos ,4 sin )a a a    
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See the TI-NspireCAS plot above. 
 
The right side picture is a screen shot from Ge-
ometry Expressions. This program finds the en-
velope in two parts as we have two families of 
reflected rays. 
Try to find the four-leafed clover as it is shown 
below. 
Try to find the three leafed clover, too. 

FG
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Josef 
Thanks for your attached extract from DNL90, which I read with great interest. I have been interested 
in Fresnel Integrals and Cornu's Spiral, (also known as Klothoid, Euler's Spiral and Railway Transition 
Curve), for many years. When my first son was a pre-teen, I constructed a table-top railway track for a 
train set. I designed the curves, as closely as I could, to be Klothoids, due to the need to provide even 
'wear and tear' on the rails as the train cornered. 

This brought to mind many other seemingly overlooked occurrences. I strongly feel that there are 
many neglected facts of mathematics and/or science. One of the main reasons for this neglect is due to 
the seemingly exponential explosion of information in the last 100+ years. Curricula of schools and 
universities have had to make space for so much more course contents, that much material perhaps, in 
some cases, was wrongfully eliminated. 

 

THIS IS A SHORT LIST OF WHAT I HAVE INVESTIGATED OVER THE YEARS 

I have researched a vast amount of the mathematics of the 19th Century by working my way through 
countless journals from UK, USA and Europe, in my search for topics of special interest to me, until I 
noticed in the early 1900s, that I didn't understand the titles, let alone the contents, of most of those 
20th Century papers. Thuswise, I was able to notice the absence of development of many topics, that, 
in my humble opinion, "cried out" for continuation of development. 

e.g.1) Intrinsic Geometry, (using Intrinsic Coordinates), 

e.g.2) Other coordinate systems in the plane and their interrelationships, 

e.g.3) Osculants, penosculants and orders-of-contact, 

e.g.4) Asymptotes, 

e.g.5) Deviation (aberrancy) and higher order qualities. 

etc. 

There have been several serendipitous events/occurrences during, and since, university days, without 
which I would have never been where I am today, mathematically speaking. 

One of my professors was the highly respected Felix Adelbert Behrend. To me, the most memorable 
parts of his class were the chapters on "Logic" and "The Analysis of the Quadratic Form in Two 
Cartesian Coordinates", (The Conic Sections, real, imaginary and/or degenerate). I added to it with 
my findings on the "Absolute Invariants" and their geometric meanings, such as area, latus rectum, 
diameter, etc.. 

Another fortuitous event occurred while in the Melbourne Public Library. I came across an article in 
an earlier edition of Encyclopaedia Britannica on Curves (Special), in which a `strange' new coordi-
nate system, named for Cesàro, was used to define some curves, without any explanation of its mean-
ing. It took me a few years to find anything worthwhile on Ernesto Cesàro, but it was only a reference 
to an Italian language publication of his series of lectures, given at the Royal Neapolitan University in 
the last decade of the 19th Century. 
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Then one day in 1969, while in a city book store, I had the "effrontery" to ask them if they had any-
thing on Cesàro. Lo and behold, they found reference to a 1968 publication of Gerhard Kowalewski's 
1901 German translation of Cesàro's book, which the Johnson Reprint Corp. had the wisdom to choose 
as worthwhile for reprinting. I ordered it and consequently started on a translation of the planar sec-
tion, thus introducing me to the immense power of Cesàro's Intrinsic Coordinates. 

Later on, this was helped enormously by the discovery of an original German language publication by 
Kowalewski, some 30 years later on Lie Transformations, in the first third of which, he expounded the 
foundations of Intrinsic Geometry as a necessity for his findings Lie. However, serendipitously for me, 
he used a more modern notation and terminology than Cesàro used, especially with the use of infini-
tesimals, and some of his proofs were more rigorous and easily understandable. 

I have a copy of `Opere Scelte', a three-volume compendium of Cesàro's papers. Disappointingly, it 
has very few papers on Intrinsic Geometry, so I had to order in those papers from various universities 
around the world. 

There have been many rewards for me from Cesàro's work, including the "Angle of Contingency", 
"Circular Asymptotes", many higher ordersof-contact for osculants, than the traditional tangent, 
curvature and deviation (aberrancy). 

I have written a review of Norman Wildberger's strange new book on his idiosyncratic version of Ge-
ometry, "Divine Proportions, (2005)". 

I made a surprisingly unsuspected discovery of the Froude Number, when formulating a simple equa-
tion for Sand Dunes. 

I was able to help a senior lecturer in the Chemistry dept. of Melb. Uni. in 1980, who presented me 
with a problem, that needed a computer-assisted solution. After telling him that I could not help him, 
he gave me a couple of sheets with trigonometric equations and diagrams to just look at it, in case. I 
showed it to my 15-year-old son, with whom I shared ownership of a Euro Apple II and he said that if 
I did the math., he would do the programming in Apple Basic, and we solved the equations much to 
the joy of the lecturer. 

In 1979, my son Geoffrey and I, together with a few friends, founded the Apple Users Society of Mel-
bourne (AUSOM). Eventually it grew considerably to have 2000 members and many Special Interest 
Groups (SIGs), one of which was the Math. Sig, which I ran. 

In 1987, I bought an XT PC and joined the Melbourne PC User Group, for whom I wrote a software 
review on an interesting product. It is called "Expert Thinker" and is a Logic Problem Solver, Theo-
rem Prover and Predicate Calculus to Clause Form Converter. It is an expert system, which uses a 
special algorithm, which is complete for first order predicate calculus. 

In 1989, an industrial chemist, (a member of AUSOM's Math. SIG), who worked for a paint manufac-
turer, presented me with a problem, that he needed solving, with or without a computer. It dealt with 
colloidal particles of dyes and their brightness and shade. It was an algorithm for an analytical solution 
of the conversion of absolute colour coordinates of standard and sample to coordinates of strength 
difference, brightness difference and shade difference. I was able to convert the problem to the scalar 
product of vectors, which were either collinear or orthogonal; voila! 
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A water-sprinkler problem, published by a math lecturer in USA. I provided a simpler solution in In-
trinsic Coordinates and also identified the curve, which had not been done by the author. 

I foresee a new analysis of Cricket results, (and maybe Tennis and other sports), over the decades, 
based on the analysis of Baseball results by the American, Steven Jay Gould, using the Bell Curve, the 
number of standard deviations above the mean etc.. 

Some of my math. findings are:- 

A symbolic representation of John Horton Conway's Fractran set of 14 fractions as a "prime produc-
ing machine". (This topic was presented by J.H. Conway at the Felix Behrend Memorial lecture in 
1999.) 

Fractional Derivatives (inspired by Oliver Heaviside), 

Fractional Iterates (with the assistance of Professor George Szekeres in 1989, recommended by his 
friend Paul Erdös), 

The River Meander & other sinuous curves, and their relationship to the Elastica. This was helped by 
the 1951 work of Hermann von Schelling and his analysis of Random Walks and Most Probable Paths.  

I shall attach a copy, since it demonstrates some variations of shape, that your natural equations 
in DNL 90 have demonstrated. 

"Glove Osculants" and a homologous recursive series for the "Super Osculants". 

Subsequently I discovered the work of:- 

Benjamin Peirce, who taught math. using his "Circular Coordinates". 

I spent 3 days in the Houghton Library at Harvard in 1984, going through most of 21 boxes of per-
sonal letters, poetry and other writings of Benjamin Peirce, and I now have many photocopies of much 
of his engrossing work. 

Thanks to Charles Dupin, we have the Telegraph Curve, a previously unknown derived curve. Based 
on his work, I formulated the Paragraph Curve, which ranges from being a Parallel Curve to that of a 
Telegraph Curve, being a hybrid of both, as well as their inverses. There is the possibility of Dupin's 
methodology to be used in today's statistics, having escaped modern day techniques. 

William Watson, who investigated many coordinate systems. 

Thomas Hill, who investigated many coordinate systems. 

Moritz Cantor, whose doctoral dissertation was a little-known coordinate system. 

Karol Taubner and Vilmos Fest, who wrote their prize-winning essays in 1844 on the quadratic form 
in intrinsic coordinates, apparently way back before Matrix Algebra was available, since neither of 
them used matrices. 

William Whewell, who used a different pair of intrinsic coordinates (s,ö), and who presented them and 
many plane curves in the Cambridge Philosophical Transactions. I have a set of 2 books on Whewell 
by Isaac Todhunter, and a great many photocopies of much of his writings. 

I have written a Seance paper, which is a `Mathematics Fiction' to compare with good Science Fiction. 
The maths is flawless; only the setting is fiction. 
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I have written "Vermischte Geschichte" a selection of humorous epitaphs of famous mathematicians, 
referring to their achievements. 

Yet another fortuitous event was, when attending Open Day at Melbourne Uni. in 1967, I was looking 
around the book room and I saw the Science Review annual, in which was a paper "Time is the Es-
sence" by Dewey B. Larson. This entranced me so much, that I contacted the research dept. of Ency-
clopaedia Britannica for information on the author and/or any of his publications. In 1968 I received 
the address of the publisher of 2-3 of Larson's books and within a few weeks I was corresponding with 
the author. Within a few months, I was introduced, by mail, to a group of academics, who were study-
ing Larson's Reciprocal System of Theory (RST). I especially befriended Frank Meyer, a Professor of 
Physics at Wisconsin University, and we corresponded frequently. 

By 1979, I was able to take a vacation in USA and attend an RST conference at Wisconsin Uni., 
hosted by Professor Meyer, where I met a large group of academics from many states of USA and also 
Canada, who all shared an interest in this new paradigm. RST was able to predict Quasars and Pulsars 
two years before they were discovered, as well as explain, by alternate means to Relativity, the Perihe-
lion of Mercury problem, and the bending of light rays during an eclipse, both of which Newton's 
equations could not do accurately or at all resp. and which only Relativity had done until RST made its 
appearance in the 1950s. 

I attended several further conferences and have been a member of the board of trustees for over 25 
years, even serving as vice president for one term. I have presented papers when attending, and many 
other papers for the quarterly journal over the years. My friendship with Dewey Larson extended over 
22 years until his death in 1990, aged 90. 

My focus of interest in RST was primarily on the mathematics, and my latest paper exemplifies this, 
being an original finding on the actual spin, (the gyroscopic motion), of atoms and subatomic parti-
cles. 

I re-introduced the almost unknown concept of "Intractance" and its higher order counterparts. This 
paper represents an extension of Newtonian mathematics, however, perhaps not as far-reaching as 
Professor Moti Milgrom's MOND. (Yet to be investigated). 

I am half-way through a more difficult extension to Newton's equations, for neither linear motion, nor 
gyroscopic motion; in other words, planetary orbits, with the hope that it will explain the Perihelion of 
Mercury more accurately as well as Einstein's relativity Equations, without recourse to tensors. The 
D.E.s are challenging, however! 

Also, I opine that because String Theory has evolved over the years with several successive definitions 
for the actual string, (the latest being a heterotic string, yet is not free from cognitive dissonances), 
then it is worth trying out a new replacement for the string, coming from RST, known by the aficiona-
dos as the "Oscillating Space Unit". 

An interesting side issue, is a homologous series of never-beforeseen plane curves, which I have 
named for Larson, and which can be plotted as planar curve triplets by projecting the spinning atoms 
and subatomic particles onto the three orthogonal planes, or as a 3-D shape. 

There is an interesting paradigm by Robert Oros Di Bartini, which, in some respects, resembles RST, 
however it is difficult for me to come to grips with it; it uses Combinatorial Topology. It was first 
published in Doklady Akademii Nauk SSSR 1965, later translated in part by the Americans, and the 
balance of it translated about 1970 at my behest and expense by someone chosen by the `chief' of the 
language laboratory at Melbourne University. 
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As a result of Felix Behrend's erudite expositions, 

1) I have written a logic paper, which continued on from where he left off, by using £ukasiewicz nota-
tion, resulting in the solution of many logic problems, with greater facility. (a la Wff'n Proof by Pro-
fessor Layman Allen of Michigan University) 

2) I have written papers, wholly, or partly, on:- 

a) "The Analysis of the Quadratic Form in Three Cartesian Coordinates", (The Quadric Sur-
faces), including many absolute invariants and their meanings, such as surface area, volume etc.. 

b) "The Analysis of the Quadratic Form in Two Intrinsic Coordinates, (ñ,s)" (Cesàro). 

c) "The Analysis of the Quadratic Form in Two Intrinsic Coordinates, (s,ö)" (Whewell). 

d) "The Analysis of the Quadratic Form in Two Intrinsic Coordinates, (ñ,ö)" (Euler). 

e) "The Analysis of the Quadratic Form in Two Cartesian Coordinates under deformation" 

3) A `general solution' of Euler's Equation in "Calculus of Variations in the Plane", thus enabling a 
direct solution of planar problems to be written straightaway in intrinsic coordinates. (No solving a 
D.E. is necessary.) 

4) Many derived curves, especially an infinite set of families of "Base Curve and Pursuit Curve" in 
closed form. Similarly with the Pseudo-Pursuit Curve. 

5) Anallagmatic Curves and the discovery of the innermost relationship between the equation to the 
curve and the coordinate system, to which it is referred, resulting in their theoretical breakdown to 
Prime Curves and Composite Curves. 
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Josef, 
Many thanks for the 9 page part 1, just received 13:45 Sunday afternoon, when I was about to 

complete my correction to FibComp Table, so I shall send that together with a few extra bits and 
pieces, and then I shall take much pleasure in going thru your proof with all the extra insertions from 
Derive etc. 

I note how you show great preference for Derive's ability to make things easier, which is the case 
most of the time. 

I, however, use its simplifications with a degree of caution, since on many occasions it cannot do 
what a human can do with pen and paper. I prepared this paper on Recursive Series with pen and paper 
completely many years ago. I look for patterns so as to regroup expressions, sometimes replacing them 
temporarily with a single variable, so as to manipulate them with great facility. 

Coincidentally, in the last month I have been working on three papers, simultaneously, dealing 
with recursion over 4, 6 & 8 terms resp, with incredible unsuspected findings. It will be a while before 
I complete them. 

I had never intended to do any more on recursion, but for the serendipitous picking up a photo-
copy of two papers by Dupin from Compte Rendus 1847, which I have had in my filing cabinet for 
many years. 

A French friend, Alain, who I see about once or twice a year, used to be a maths. professor in 
Paris at the Sorbonne. Last month I was due to visit him and I thought to take Charles Dupin's papers 
to him for his evaluation.  

Anyhow, we had other matters to discuss, so it was not looked at. When I got home 'the penny 
dropped' and I realised that Dupin's geometrical finding/linking of data from a statistical table, was, in 
fact, a finite recursive series of 4 and 6 terms resp.. 

So I decided to treat them as definitions of an infinite series and therefore investigate their proper-
ties" :- nth term, sum to n terms etc.. I was `gob-smacked' at what I discovered. 

Ausgezeichnet Dupin!!! 
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Third International DERIVE/TI-92 Conference 

Keynote Address 
 

Why CAS must mean more than symbolic manipulation by computer (or calcu-
lator) - or - the case of the People versus Symbolic Manipulators. 

 
Adrian Oldknow, a_oldknow@compuserve.com 

Honorary Research Fellow, King's College London 
Emeritus Professor, Chichester Institute of Higher Education, UK 

 
Abstract: Taking examples from pure mathematics (such as Geometry) and applied mathematics 
(such as Modelling) the talk illustrates the power of using computer symbolic manipulation (CSM) 
in problem-solving, but also highlights some of the dangers of using it without the other tools 
(such as numerical and graphical), associated with Computer Algebra System (CAS) software 
packages, to validate results. 

 
Preliminary remarks to the jury 
First I must thank the conference chairs, Carl and Bert, for inviting me to give this opening keynote 
address - it is both a pleasure and an honour. Some of you here were, I think, at another conference in 
Koblenz last September - the third International Conference on Teaching Mathematics with Technol-
ogy (ICTMT-3), chaired by Prof. Wolfgang Fraunholz. There Bert was scheduled to give a keynote 
entitled: What is the appropriate role, if any, of hand-held computer symbolic algebra in the 
teaching and learning of mathematics? (Oldknow & Waits, 1997) Unfortunately at the last minute 
Bert had to return to the USA for personal reasons, and so my invitation to give that keynote was with 
considerably less notice than I received on this occasion - just at breakfast the day before the talk! That 
story also allows me to get in a "plug" for the next ICTMT conference which is to be held in Ply-
mouth, UK from August 9 - 12, 1999 with Prof. John Berry as chair. 
 

Exhibit 1: a single cone 
To illustrate that talk I took an example which I first used in a graphing calculator workshop with my 
colleague, Warwick Evans, at the first ICTMT conference in 1993 in Birmingham, UK with Prof. 
Leone Burton as chair. The basic problem is a simple optimisation one. 
 
A segment is cut from a circular piece of paper of unit 
radius, and folded to form a cone with a circular base 
of radius r. What is the value of r if the cone is to 
have maximum volume? 
 
Well that is the kind of problem - an application of 
differential calculus - which is meat and drink (with 
apologies to vegetarians and tea-totallers) to computer 
symbolic manipulation (CSM). The slant-height of the cone is the radius of the original circle i.e. 1, so 

the vertical height h is given by Pythagoras: h = (1 – r2) and so the volume is 1/3 π r2 h =  

= 1/3 π r2 (1 – r2) , and it is sufficient to find the extrema of the function v(r) = r2 (1 – r2) . Using 

the "calculus differentiate" function of the TI-92 we have the derivative as: 

2 r (1 – r2) – r3/(1 – r2) 

and using the "zeros" function we find the extrema as: {0 , -(6)/3 , (6)/3}. From our knowledge of 

the problem we recognise the first as a minimum and the second as unrelated to the physical problem, 
hence we know that the third value is the required value of r for the cone with the maximum volume. 
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This use of the CSM aspect of a CAS serves to illustrate the issues which divide academics on its use. 
On the one hand it liberates the problem-solver from the tedium of algebraic manipulation and the 
application of the rules of calculus - thus allowing the intelligent human to be the supervisor, defining 
the strategy, and the dumb computer to be the slave performing the humdrum algorithms (without 
making the kind of slips which characterise human manipulations). On the other hand it is that very 
human manipulative performance, with accuracy, which has been long regarded as the hallmark of a 
good mathematician - a skill which many academics still hold very dear. Later I shall return to a varia-
tion of this same cone problem. 
 

Connections with the Accused 
Now I just want to wander down memory lane a bit to remind you and I how I come to be in the posi-
tion of addressing you today. My background is that of a smart kid who was very slick at doing just 
those kinds of "advanced level" manipulations accurately and fast - and so getting very high scores on 
the UK public examinations at 15 and 17, culminating in the high point of my academic career: an 
open scholarship in mathematics at Oxford University. Evelyn Waugh, a former student at the same 
college, Hertford, wrote a book called "Decline and Fall" (Waugh, 1928), which neatly sums up my 
own undergraduate career! Computers were, of course, more or less unheard of among Oxford 
mathematicians in the 1960s. 
 
After teaching mathematics in schools, I took up a post in 1970 as a lecturer in mathematics and com-
puter science. The speed with which people were able to trade-up jobs at that boom time in the com-
puter industry accounted for the need to draft in ignorant, but willing, staff into the lower paid jobs, 
such as teaching! So I found myself learning Basic programming over the summer holiday from (Ke-
meny & Kurtz, 1964) - still never having seen or used a computer! Like many before me, I cut my 
programming teeth on problems such as writing routines for performing integer arithmetic with num-
bers of arbitrary length. After a year I got sent on a day-release Master's course in Computer Science 
where I first came across (Knuth, 1968) and the ideas of programming languages other than Basic, 
such as LISP; of data structures other than matrices, such as threaded lists; and of operations with data 
other than numbers, such as symbolic manipulation. 
 
Later, as primitive classroom computers first became available, I did, in a small way, some pioneering 
work in their application to mathematics teaching in the UK. Through my contacts with colleagues 
abroad I became aware of the development of mu-Math for MS-DOS. Advertised as "a college educa-
tion for $200" I readily parted with my own money to get a copy on 5.25" floppies, written in mu-
Lisp, for my Z-80 based DOS machine (and later for the graphic additions in Basic!). So OK, you 
have some software which comfortably copes with the majority of questions on A-level math exami-
nation papers (the UK equivalent of AP) – but how can you use it constructively to do something you 
haven't done before? As far as I do anything recognisable as "research", it is this kind of question I try 
to address in my own work. 
 

Exhibit 2: expansions of tan 
The aspect that took my fancy was the ability to compute many terms of the Taylor expansion 
of a function. I guessed I knew a fair amount about the theory of sine, cosine, logarithmic and 
exponential functions - but was curious about why I didn't remember anything about the series 

expansion of the tangent function. Using "taylor(tan(x),x,7,0)" on the TI-92 gives:  
17x7/315 + 2x5/15 + x3/3 + x where the coefficients are expressed as rational numbers in lowest terms. 
I wanted to be able to study the ratios of the successive terms of these polynomials. 
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But the degree 7 version doesn't give much information. So it would be nice to have at least terms up 
to degree 15. However, even using Derive for Windows on my nice Pentium based laptop we run into 
one of the principal problems using CAS systems - that of knowing just how long to wait when an 
answer does not appear! I leave you to test this for yourself, but certainly my old Z80 DOS machine 
showed no signs of ever getting there! Now the derivative of tan(x) is sec2(x) , and very soon the 
higher derivatives become enormously involved. But we know from Pythagoras that we can rewrite: 
sec2(x) = 1 + tan2(x) . If we write t for tan(x) then dt/dx = 1 + t2, and denote the n-th derivative of tan(x) 

w.r.t. x in terms of t by d(n,t) then we have the recurrence: d(n+1,t) = d/dt(d(n,t))(1+ t2) for  

n = 0,1,2,.... where d(0,t) = t . With the old version of mu-Math it was possible to write procedures in 
the programming language mu-Lisp to carry out such an algorithm. Here I guess we can use the vector 
functions of Derive, but TI-92 programs, or better still functions, might be easier to follow: 

 

  
 

  
 

Here the list "d" holds the successive derivatives of tan(x) as polynomials in t. 

The list "num" substitutes t = 0 for the Taylor expansion around x = 0 to get the numerators of the 
non-zero coefficients (the odd powers of x), which are divided by the appropriate factorials to arrive at 

the list "tancoeff(m)" of the actual coefficients from which the successive ratios are computed in the 

function "tanseq(m)". 
 
A call to "tanseq(15)" gives: {1/3 , 2/5 , 17/42, 62/153 , 691/1705 , 10922/26949 } 
 
but it is hard in this representation to see if these ratios are converging. So clearly the facility for the 
user to write algorithms is an important aspect of CAS if we are to be able to use human intellect to 
help CAS when it gets stuck in a blind alley! But we also need the numerical facility to convert ra-
tional numbers to decimal approximations. Doing this on the TI-92, and rounding to 5 d.p. yields: 

{.33333 , .4 , .40476 , .40523 , .40528 , .40528 } 

and we have convergence to 5 decimals - but to what number? Let's call it k. Then we have found that 
the long term behaviour of the Taylor series for tan(x) is that the ratio of successive terms tends to kx2. 
 
This means that there is an underlying geometric progression with common ratio kx2 and first term x - 
and this is easy to find by summation to infinity (assuming convergence) as x/(1 – kx2) which can be 
put into partial fractions as: 
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1/(2p) [1/(1– px) – 1/(1+ px)] , where k = p2 . 

But now we just have to remember what the actual problem was, and that tan(x) has a bunch of singu-

larities, the first of which occur at x = /2 and x = -/2 ! So it's pretty obvious that p must be equal to 

2/ , giving k = p 2 = 4/2 0.4052847 . So we have found a remarkably good approximation to tan(x) 

as P1(x) = ( 2/8) [(/2 – x)-1 – (/2 + x) -1] as the graphing functions of e.g. Derive or the TI-92 soon 

reveal. But we need not stop there. We can study the Taylor expansion of the difference between 
tan(x) and P1(x) - and find that this, too, has an underlying GP whose sum is given by the function: 

P2(x) = ( 2/8) [(3/2 – x)-1 - (3/2 + x)-1] 

and by induction that we can write tan(x) = Pr(x) where r runs from 1 to infinity. 

where Pr(x) = (  2/8) [((2r – 1)/2 – x)-1 – ((2r – 1)/2 + x)+] , r = 1,2,3.... 
 
I have to admit I felt pretty pleased with myself when I made this discovery - so much that I used it in 
a talk I gave to the Sussex branch of the Mathematical Association. So you can image my dismay 
when one of the academics in the audience said that he remembered that form of series expansion 
from a course of complex analysis he used to give to postgraduates - and that I should look up the 
work of the Swedish mathematician Gösta Mittag-Leffler (1846-1927) who had beaten me to it by 
about 90 years! So at least I was saved from the ignominy of claiming an original result. But I was 
certainly guilty of using CSM like George Bernard Shaw's drunkard used a lamp-post - more for sup-
port than illumination. And that comes back to what it takes to be a mathematician - accurate symbol 
manipulation (by man or machine) is necessary, but not sufficient, to make advances. CSM is just 
another tool, like the astronomer's telescope and the biologist's microscope, which produces data from 
which information may, or may not, be extracted. I should have been smart enough to have thought 
about the singularities of tan(x) before I set off on my naive voyage on the good ship "Symbol Ma-
nipulation". 
 

Exhibit 3: Sprinkling water on the grass 
The first two exhibits were clearly from mainstream "pure mathematics", in the sense in which we use 
that term in the UK in pre-university education. That is to say practising the "applicable" techniques of 
the calculus either without a context or within a very contrived one. The next exhibits move first to the 
field of "applied mathematics" and then to that field which most people would agree to be "pure" - 
geometry. 
 
In the UK our weather pattern is quite changeable now, and there are times in the summer when we do 
have long periods without rain. As you know we like our gardens, and, particularly our carefully 
tended patches of flat green grass known as "lawns". So in dry weather we need to water these to keep 
them green. A common type of water sprinkler has a bar studded with holes which can oscillate from 
side-to-side. A simple turn of a knob alters the sprinkling pattern between large sweeps left, large 
sweeps right, large sweeps both sides and small sweeps both sides. Closer inspection reveals that the 
mechanism is based on a common design in mechanical engineering, called the four-bar linkage (Old-
know, 1997a). 
 
In the quadrilateral ABCD, the frame AB is fixed. The rotor arm AC, called the driver crank, is driven 
round a circle at constant velocity by a small water turbine. The sprinkler bar turns freely about B and 
is aligned with the follower crank DB. The coupler CD is loosely jointed at C and D. The knob alters 
the length of CD. So we need to design a mechanism in which the lengths AB = d, AC = a and CD = b 
are constant parameters constrained by physical dimensions of the artefact and BD = c is a variable 
parameter for which there are 4 values which correspond to the required water sprinkling pattern.  



 
 
 D-N-L#93 
 

 
Adrian Oldknow: Keynote Address 

 

 
 p 37 
 

 
 
If we take the angle  = BAC as the independent variable, then we seek to find the angle ß = ABD 

as a function of  and the parameters a,b,c,d. To do this we have to solve the quadrilateral, which 

means dividing it into triangles, such as ABC and BCD. In ABC we know the sides AB = d and  

AC = a, as well as the angle BAC =  - and so we can find the length BC = e and angle ABC = γ , 

e.g. from the cosine rule applied twice. In BCD we now know the three sides BC = e , CD = b ,  

BD = c and so we can find the angle CBD = δ, again from the cosine rule. Hence we can write a 

function to define the angle ß as a function of angle . Alternatively on the TI-92 we can just enter the 

function definitions for e, γ , δ , ß in the function graphing screen as y1(x), y2(x), y3(x) and y4(x): 
 

y1(x)=√(a^2+d^2-2*a*d*cos(x)) 
y2(x)=cos-1((d^2+y1(x)^2-a^2)/(2*d*y1(x))) 
y3(x)=cos-1((c^2+y1(x)^2-b^2)/(2*c*y1(x))) 
y4(x)=y2(x)+y3(x) 

 
and with suitable values stored in a,b,c,d we can graph 
the response curve as the angle x describes a full rotation 

from 0 to 2. The following graph is obtained from 

values: a = 2 , b = 5 , c = 5 , d = 4 . 
 
As you can see I did it with TI-NspireCAS. It is pretty 
the same procedure (Josef): 
 

     
 

   
 
At this point we could feel quite happy with ourselves - although we have used symbolic definitions of 
the functions, when numerical values are substituted we get a respectable looking graph. But what 

happens if we go between 0 and 4 ? Can you interpret this graph physically? The motion should be 

smooth, so clearly we are encountering problems between  and 2 (left picture below). 

Here we should give thought to the range of the inverse cosine function! We have used the numerical 
and graphical tools to validate our symbolic model - and found it wanting! We can also attempt to 

debug the problem and by using the sine rule in ABC instead, redefine y2(x) giving the smooth peri-

odic (but non-sinusoidal) graph shown below. 
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So clearly the validation of a model cannot done just by reworking the symbolic manipulations! It is 
essential to compare results calculated from them with values measured or independently computed. 
Here the numeric, programming, graphing, geometry and statistics functions of the TI-92 can all be 
used to this end. 
 

Exhibit 4: Analytic plane geometry 
There are many ways of converting objects in 2D or higher dimensions into algebraic objects, such as 
Cartesian coordinates, homogeneous coordinates, vectors and complex numbers. As soon as any de-
gree of geometric complexity is encountered the corresponding algebraic expressions can easily be-
come quite unwieldy. Take for example an algebraic attempt to solve Fermat's problem - given points 
A,B,C to find the position of a point P for which the sum of distances AP+BP+CP is minimal. We 
know A,B,C are coplanar so we can assume that P lies in that plane and so try using 2D Cartesian co-
ordinates. We can choose A, say as origin (0,0) and AB as x-axis with B at (2,0) say. Then C(p,q) can 
be anywhere in the plane, though we can restrict it without loss of generality to lie in the upper half-
plane q>0. 
 
The problem then becomes to find values of x,y so that P(x,y) minimises the function: 

f(x,y) = √(x2 + y2) + √((x – 2)2 + y2) + √((x – p)2 + (y – q)2) 

and we just have to solve the pair of simultaneous (non-linear) equations: 

df/dx = 0 = df/dy for x and y. 

Well, I haven't managed to do that on Derive or the TI-92! But, of course, we can substitute numeric 
values for the parameters p, q e.g. p = 1/2 , q = 2 and plot the surface z = f(x,y) to see if it has a mini-
mum. Oddly enough even trying to solve the differentials now doesn't seem to be any more tractable! 
But this problem was solved by Fermat using "pure" geometry. 
 
We just have to find the vertices C' and B' such that ABC' and ACB' are 
equilateral triangles described outwards from ABC. Then find the inter-
section F of CC' and BB'. Provided no angle of the triangle ABC exceeds 

120then F is the solution, other-wise it is the vertex with the largest angle 

(Coxeter, 1969). It is easy to find that the coordinates of C' are (1, -3), and 

rotating C through 60about A we get B' as ((p – q3)/2 , (p3 + q)/2) . 
 
But even finding the coordinates of F(xf, yf) seems too much for the TI-92, 
though not Derive, which gives: 

 
xf = 3(3p2 + 20(2q + 3) + q(3q + 2))/(3(p2 – 2 p + q2 + 23q + 4)) 
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and something equally horrid for yf. Substituting theses values of xf and yf in the derivatives still does 
not produce the expected zero values - but many terms involving the SIGN function. Even defining the 
inequalities for p and q so that F is internal to ABC fails to do the trick: q > 0 , q >–√3p , q > √3(p – 2) 
and (p – 1)2 + (y + 1/√3)2 > 4/3 . But putting in numerical values for p and q, such as 1/2, 2, again 

produces the expected zeros for the derivative.[] 

 
What this tells us is that is not difficult to find even simple problems where the symbolic manipula-
tions soon become either more than the CAS systems can handle, or produce unwieldy and unenlight-
ening results. So the researcher has to work with the CAS in a symbiotic mode, often employing a 
variety of tools such as a CAS package, a programming language and dynamic geometry software 
(Cabri or Sketchpad) together with pencil and paper, and a lot of thought! As part of such a team, CAS 
certainly has a large part to play. 
 
I have been working both alone, and with a collaborator, Prof. Brian Griffiths of Southampton Univer-
sity, in the field of triangle geometry. Many of our discoveries have relied upon finding some remark-
able and surprising factorisations using CSM that we could not possibly have performed manually - 
but to get there we had to help the CSM very considerably! These results will not be described here in 
detail, but references to such work include (Griffiths & Oldknow, 1998), (Oldknow, 1995a),  
(Oldknow, 1995c), (Oldknow, 1996), (Oldknow, 1997b). One of my proudest moments was doing the 
inevitable ego-kick search on "oldknow" with a web-crawler. To my amazement some nice guy has 
included some of my discoveries on his website. 
 
One thing worth mentioning here is the lack of references to the use of CSM in academic papers in 
pure mathematics. In his address at the International Mathematica Symposium in Southampton, 1995, 
Prof. J.H. Davenport of Bath University said that nearly all the results of recent research in his own 
field of number theory and encryption would have been impossible to find without CSM, but that it 
was not in the nature of academic publication, nor the psyche of pure mathematicians, to give away 
details of how results were discovered - just to prove their validity! This secretiveness makes it much 
harder for mathematics departments to justify their claims for improved computer resources! 
 

Exhibit 5: A pair of cones 
So my final piece of evidence for the prosecution against the unvalidated use of CSM comes from the 
same cone problem as exhibit 1. Here we found that taking a sector of a circle, which accounts for 

(6)/3 82% of the circle, produces the cone of maximum volume. But in these green and conserva-

tionist times we need to realise that we could make another cone, albeit a small one, with the little 
piece that's left. So that raises the question: how should we divide the unit circle into two sectors so 
that the sum of the volumes of the resulting cones is maximum? 
Well the answer seems very obvious, doesn't it? But we might as well see if CSM can produce it for 
us. We can easily verify that if the radius of the base circle of one cone is r, then that of the other 
cone is 1 – r. So the total volume is a multiple of the function: 
 

s(r) = v(r) + v(1 – r) where v(r) = r2 (1 – r2), and its derivative is: 

2 r (1 – r2) – r3 /(1 – r2) + 2(r – 1)(–r (r – 2)) – (r – 1)3/(–r (r – 2)) 

Asking for the zeros of this on the TI-92 in exact mode gives: {1/2} as expected. 
 
[] Heinz Rainer Geyer provided a contribution treating the Fermat Point in DNL#16 from 1994. 
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But remarkably FMAX(s(r),r) returns: 
 

 
 

where the 6th degree polynomial: 18 r6 - 54 r5 +24 r4 + 42 r3 – 42 r2 + 12 r – 1 cannot be factored - 
and the value r = 1/2 does not appear! Just to confirm the expected result we can graph the function 
s(x) on the domain [0,1] and check that its maximum is on the line of symmetry at x = 1/2 as in the 
next figure. But hang on! This function is incredibly flat – are we sure it always increasing on [0,1/2]? 
 
If we use F5 Math Maximum we don't get x = 1/2 . Try zooming in to get more detail. (Oldknow, 
1995b). 

  
 
Well, that's the clincher - unthinking and unvalidated use of CSM must be guilty as charged. Not only 
has it goofed up on finding a maximum - it's actually dished in a minimum! What, then, are the values 
of r which produce the maxima? Well suppose we switch to AUTOMATIC or APPROXIMATE mode 
and find the zeros of the derivative again, we get: {.324013851832 , 1/2 , .675986148169} as the set 
of values of r for the extrema of s(r) , whereas if we find the approximate zeros of the 6th degree 
polynomial above we find there are an additional 4 spurious values induced by the manipulations:  
{ -1.00392 , .14798 , .85202 , 2.00393} of which 2 are outside the domain of r. But our 6 roots appear 
in 3 pairs which each sum to one. I leave it the reader to show that the sixth degree polynomial can be 
expressed as: 

(x – u)(x – (1 – u)) (x – v)(x – (1 – v)) (x – w)(x – (1 – w)) = (x2 – x + a) (x2 – x + b) (x2 – x + c) 

where: a + b + c = -5/3 , ab + bc + ca = -2/3 and abc = -1/18 

so that a, b, c are the roots of: x3 + 5/3 x2 - 2/3 x + 1/18 = 0 

The value of a we need is close to 0.219 , and so u is given by: u = 1/2 (1 – (1 – 4a)). 

Applying Cardan's algorithm (which was built into mu-Math!) we find: 

x = 1/2 – 1/6{29 - 36 [ 3(-1121/2916 + 191/324 i) + 3(-1121/2916 – 191/324 i)]} 

But so what - I'm beginning to manipulate the symbols for the sake of it! It must be addictive. 
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Summing Up for the prosection 
Using examples from my own experience I have tried to show (a) just how powerful even the small 
CAS crammed into the TI-92 can be in attacking a wide range of problems, but (b) that CSM is just 
one part of the CAS and that it in realistic situations it is very unwise to rely upon it alone either to 
produce the results in the fashion sought, or a result at all! But in this audience I am teaching my peers 
to suck eggs - none of you would do anything like this! 

 
The Verdict: Guilty as charged 
Well - a foregone conclusion, really. I have set up an "Aunt Sally" that any jury in the land would 
convict. 

 
The Sentence 
Our problem is to communicate to those unfamiliar with the full range of facilities in a CAS that these 
can be used to aid mathematical enquiry - but that the human is always playing the supervisory role, 
defining the strategy, choosing the tools, monitoring the results, validating the solutions, refining the 
problem etc. Academic mathematicians seem to be able to be as frightened, suspicious and challenged 
by CSM (which they call CAS) as others have been about the use of calculators for arithmetic. We 
must be sensitive to their concerns - and try to take the whole mathematics community with us into the 
millennium when computer assistance is seen as just as commonplace in working at, and researching 
in, mathematics as telescopes, microscopes and other instruments are by colleagues in the sciences. 
This view undoubtedly has implications for what should be the knowledge, content and skills of 
mathematical education for the future. There have been some tentative steps in this direction - but I 
guess each country will just have to proceed at its own pace (Oldknow & Flower, 1996), (Sutherland, 
1997), (Oldknow & Waits, 1997). One thing is sure - to be well briefed to plead sound cases in our 
own countries it is essential that we share information about what is going on in other countries - and 
that is one major role for international conferences, such as this. 
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Two more Tribonacci Sequences – the plastic number 

Josef Böhm 

It is really funny that I found in one of my old “Spektrum Dossiers” from 2003 a contribution written 
by Ian Stewart “The plain sister of the Golden Number”. Ian Stewart presents the so called Padovan 
Sequence defined by 

Tn = Tn–2 + Tn–3, T0 = T1 = T2 = 1: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, ... 

The limit of the ratio of neighbouring elements is approximately 1,324718 (the so called plastic num-
ber). Perrin found a sequence following the same rule, starting with 3, 0, 2 giving the same limit for 
the ratio. 

Let’s try with David’s findings and my DERIVE tools: 

The generating functions according 9.5 are: 
2

2 3 2 3

1 3
( ) and

1 1

x x
S x

x x x x

 
   

 respectively. 

 

 
Proof: The Padovan Sequence can be defined as Tn = Tn–1

 + Tn–5, too. 
Do you find out where the plastic number is hidden in the DERIVE file above? 
 


