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I hope that one or the other URL might be of interest for you: 
 
Articles for Educators: 
http://www.articlesforeducators.com/directory.asp?fid=6 
 
Calc101.com Automatic Calculus and Algebra Help 
http://calc101.com/ 
 
Canadian Mathematical Society 
http://cms.math.ca/crux/ 
 
An Internet Service for Mathematics Teachers and Students 
http://mathcentral.uregina.ca/index.php 
 
Custom Worksheets 
http://www.mathfactcafe.com/worksheet/wordproblem/ 
 
Mathematics Contests + Solutions 
http://mathleague.com/index.php/annualcontestinformation/samplecontests 
 
A Gallery of Multimedia Learning Material (English & German) 
http://www.univie.ac.at/future.media/moe/ 
 
A rich collection of Science Jokes 
http://jcdverha.home.xs4all.nl/scijokes/ 
 
Many e-books (in German only) can be downloaded for free from: 
http://bookboon.com/de/statistik-mathematik-ebooks 
 

  
After a long while another nice mathematics painting created by Pierre Charland 
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Dear DUG Members, 

I know, this DNL is very long overdue. I 
apologize and give the main reason which 
is documented by the picture below: my 
wife a I did a long planned travel to and 
through Brazil. 

The Iguaçu Waterfalls was one the 
many highlights of our tour. 

In July I participated at ACA 2015 
which offered a very well organized 
Educational Session. You can find a list 
of the lectures plus links to the ab-
stracts. 

Rob Gough sent a very extended paper 
on Prime Pairs. This issue offers the 

first part accomplished by an advice 
how to transfer DERIVE Data to Excel. 

My Polish colleague and friend Leon 
Magiera transmitted a some hundred 
pages book manuscript about Physics 
Examples treated by CAS. He left the 
decision what to do with the paper to 
me. I present some paragraphs. Maybe 
that we will offer the whole opus on the 
DUG or/and ACDCA website (after add-
ing some DERIVE and Nspire related 
comments). 

Best regards until next time 

Josef 

 
 

 
 

Download all DNL-DERIVE- and TI-files from 
http://www.austromath.at/dug/ 

  
In December we will celebrate DNL#100 (= 25 Years DUG). It will be great if 
some of you – especially members from the early DUG Years – will contrib-
ute for this very exceptional issue. All articles, notes, comments, memories, 
… are very welcome, Josef. 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group. 
It is published at least four times a year 
with a content of 40 pages minimum. The 
goals of the DNL are to enable the ex-
change of experiences made with DERIVE, 
TI-CAS and other CAS as well to create a 
group to discuss the possibilities of new 
methodical and didactical manners in 
teaching mathematics. 
 

Editor: Mag. Josef Böhm 
D´Lust 1, A-3042 Würmla, Austria 
Phone: ++43-(0)660 3136365 
e-mail: nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & CAS-TI Newsletter will be. 
 
Next issue:          December 2015 
 

 
Preview:  Contributions waiting to be published 
 
 Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER 
 Wonderful World of Pedal Curves, J. Böhm, AUT 
 Tools for 3D-Problems, P. Lüke-Rosendahl, GER 
 Hill-Encryption, J. Böhm, AUT 
 Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT 
 An Interesting Problem with a Triangle, Steiner Point, P. Lüke-Rosendahl, GER 
 Graphics World, Currency Change, P. Charland, CAN 
 Cubics, Quartics – Interesting features, T. Koller & J. Böhm, AUT 
 Logos of Companies as an Inspiration for Math Teaching 
 Exciting Surfaces in the FAZ / Pierre Charland´s Graphics Gallery 
 BooleanPlots.mth, P. Schofield, UK 
 Old traditional examples for a CAS – what´s new? J. Böhm, AUT 
 Where oh Where is It? (GPS with CAS), C. & P. Leinbach, USA 
 Mandelbrot and Newton with DERIVE, Roman Hašek, CZK 
 Tutorials for the NSpireCAS, G. Herweyers, BEL 
 Some Projects with Students, R. Schröder, GER 
 Dirac Algebra, Clifford Algebra, D. R. Lunsford, USA 
 A New Approach to Taylor Series, D. Oertel, GER 
 Henon & Co; Find your very own Strange Attractor, J. Böhm, AUT 
 Rational Hooks, J. Lechner, AUT 
 Simulation of Dynamic Systems with various Tools, J. Böhm, AUT 
 Statistics of Shuffling Cards, Charge in a Magnetic Field, H. Ludwig, GER 
 Pavement in Funchal, Th. Alvermann, GER 
 Next Number?, B. Grabinger, GER 
  
 and others 

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag. Josef Böhm 
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Computer Algebra in Education 
at ACA'2015 to be held July 20-23, 2015 in Kalamata, Greece 

Organizers:  

Alkis Akritas, University of Thessaly, Greece 
Michael Wester, University of New Mexico, USA 
Michel Beaudin, ETS, Canada 
José Luis Galán García, Universidad de Málaga, Spain 
Elena Varbanova, Technical University of Sofia, Bulgaria 

Overview:  

Education has become one of the fastest growing application areas for computers in general 
and computer algebra in particular. Computer Algebra Systems (CAS) make for powerful 
teaching and learning tools within mathematics, physics, chemistry, biology, economics, etc. 
Among them are:  
(a) the commercial "heavy weights" such as Casio ClassPad 330, Derive, Magma, Maple, 
Mathematica, MuPAD, TI NSpire CAS, and TI Voyage 200, and  
(b) the free software/open source systems such as Axiom, Euler, Fermat, wxMaxima, Reduce, 
and the rising stars such as GeoGebra, Sage, SymPy and Xcas (the swiss knife for mathemat-
ics).  

The goal of this session is to exchange ideas, discuss classroom experiences, and to explore 
significant issues relating to CAS tools/use within education. Subjects of interest for this ses-
sion will include new CAS-based teaching/learning strategies, curriculum changes, new sup-
port materials, assessment practices from all scientific fields, and experiences of joint use of 
applied mathematics and CAS.  

If you are interested in proposing a talk, please send an abstract to Michel Beaudin who will 
then redistribute it to the other organizers. Note that it is planned to compile an electronic 
(PDF) book of abstracts for the meeting. Please use this LaTeX template for your abstract and 
send both the LaTeX source and a compiled PDF version. If you do not work with LaTeX, the 
submission may be sent in Word format (.doc or .docx file) and later, once accepted, we will 
try to adapt the proposal to the LaTeX template.  

Talks 

1. About balanced application of CAS in undergraduate mathematics 
(Elena Varbanova, Technical University of Sofia, Bulgaria) 

2. Some reflections about open vs. proprietary Computer Algebra Systems in mathematics 
teaching 
(F. Botana, University of Vigo, Spain) 

3. Create SageMath Interacts for All Your Math Courses 
(Razvan A. Mezei, Lenoir-Rhyne University, Hickory, NC, USA) 

4. Using SageMathCell and Sage Interacts to Reach Mathematically Weak Business Stu-
dents 
(Gregory V. Bard, University of Wisconsin—Stout, Wisconsin, USA) 

5. GINI-Coefficient, GOZINTO-Graph and Option Prices 
(Josef Böhm, Austria) 
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6. When Mathematics Meet Computer Software 
(M. Beaudin and F. Henri, ÉTS, Montréal, Canada) 

7. Revival of a Classical Topic in Differential Geometry: Envelopes of Parametrized Fami-
lies of Curves and Surfaces 
(Th. Dana-Picard and N. Zehavi, Israel) 

8. Generating animations of JPEG images of closed surfaces in space using Maple and 
Quicktime 
(G. Labelle, UQAM, Montréal, Canada) 

9. Plotting technologies for the study of functions of two real variables 
(David Zeitoun and Thierry Dana-Picard, Israel) 

10. Some remarks on Taylor's polynomials visualization using Mathematica in context of 
function approximation 
(Wlodzimierz Wojas and Jan Krupa, Warsaw University of Life Sciences, Poland) 

11. Visualization of Orthonormal Triads in Cylindrical and Spherical Coordinates 
(Jeanett López García, Jorge J. Jiménez Zamudio and Ma. Eugenia Canut Díaz Velarde, 
UNAM, Mexico) 

12. Contemporary interpretation of a historical locus problem with an unexpected discovery 
(R. Hasek, University of South Bohemia, Czech Republic) 

13. A Constructive Proof of Feuerbach’s Theorem Using a Computer Algebra System 
(Michael Xue, Vroom Laboratory for Advanced Computing, USA) 

14. Math Partner and Math Tutor 
(Gennadi and Nastasha Malaschonok, Tambov State University, Russia) 

15. Ideas for Teaching Using CAS 
(Michel Beaudin, ETS, Montréal, Québec, Canada) 

16. Solving Brain Teasers/Twisters - CAS Assisted 
(Josef Böhm, Austria) 

17. Various New Methods for Computing Subresultant Polynomial Remainder Sequences 
(PRS’s) 
(Alkiviadis G. Akritas, University of Thessaly, Volos, Greece) 

18. Teaching improper integrals with CAS 
(G. Aguilera, J.L. Galán, M.Á. Galán, Y. Padilla, P. Rodríguez, R. Rodríguez, Spain) 

19. Application of wxMaxima System in LP problem of compound feed mass minimization 
(Wlodzimierz Wojas and Jan Krupa, Warsaw University of Life Sciences, Poland) 

20. The Use of CAS for Logical Analysis in Mathematics Education 
(T. Takahashi, T. Sakai, F. Iwama, Japan) 

21. Indexed elementary functions in Maple 
(David Jeffrey, University of Western Ontario, Canada) 
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Prime Pairs & Goldbach’s Conjecture 
by 

Rob Gough 

 
Goldbach’s Conjecture requires that every even number, E, is the sum of at 
least one pair of prime numbers. This paper develops an accurate technique for 
estimating the number of prime pairs. This is based on the prime content of E 
and a pairing probability called the generalized prime pair measure. It is shown 
that the estimates are based on simple ratios of the prime content of E com-
bined with the generalized, probabilistic pairing measure. 

 
 

1. The pairing measures 
 
1.1 Symbols & relationships 

E  Even number ( 6E  ) 

N  Number of pairs of odd numbers adding up to E 
A  Lower group of odd integers 
B  Upper group of odd integers 

ai  ith integer element of lower group A ( 1 3a  ) 

bi  ith integer element of upper group B 
 
 i ia b E   where 1 i N   

Given that 1 3a   and all a, b are odd then 2 1a i
i
  , 2 1ib E i    

The relationship between E and N is given by 

 1
4

E
N   

  
 

The number of primes and composites in A and B, for any value of E, is given by: 
 

( )n A   Number of primes in A 

( )n B   Number of primes in B 

( )n A   Number of composites in A 

( )n B   Number of composites in B 

( ) ( ) ( ) ( )n A n A n B n B N     
 
Finally, there are the four pairing measures for any value of E: 
 

( , )n A B  Number of prime-prime pairs 

( , )n A B  Number of A-primes pairing with B-composites 

( , )n A B  Number of A-composites pairing with B-primes 

( , )n A B  Number of composite-composite pairs 

( , ) ( , ) ( , ) ( , )n A B n A B n A B n A B N     

( , ) ( , ) ( ), ( , ) ( , ) ( )n A B n A B n A n A B n A B n B     
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1.2 Simple Examples 

  
Note: 

1. The primes are shown in red. 
2. New odd numbers enter to the left at B. As E increases these numbers move to the right 

through B until they become fixed, sequentially in A. 
3. There are two values of E for every N. 
4. The Nth element of A and B has the same value for every alternate value of E. This means that 

n(A) and n(B) may include one common prime (as in 22E  ). 

 
From the simple examples above we have the following values: 
 

E N ( )n A  ( )n B  ( , )n A B ( , )n A B ( , )n A B ( , )n A B  

18 4 3 2 2 1 0 1 

20 4 3 3 2 1 1 0 

22 5 4 4 3 1 1 0 

24 5 4 3 3 1 0 1 

 
1.3 General pairing maxima and minima 

It follows from Section 1.1 that there are certain maxima and minima in the four pairing measures. 
These relate to the conditions when Goldbach’s Conjecture is false (GCF – when there are no prime 
pairs) and when it is true maximally (GCTmax – when all the B-primes are paired with A-primes).  
The table below sets out the limits within which our measures must operate.  

 GCF GCTmax 

( , )n A B  0 [min]  ( ) [max]n B  

( , )n A B  ( ) [max]n A  ( ) ( ) [min]n A n B

( , )n A B  ( ) [max]n B  0 [min]  

( , )n A B  ( ) ( ) [min]N n A n B  ( ) [max]N n A  

 
One other thing stands out from the above analysis: the difference between the maximum and mini-
mum values of all four measures is exactly n(B). 
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Graph 1 shows all four pairing measures, ( , )n A B , ( , )n A B , ( , )n A B  and ( , )n A B  against the even 

numbers, E, up to 2048. Graph 2 shows the prime measure, ( , )n A B , and Graph 3 shows the com-

posite measure, ( , )n A B . This initial data was created using Excel. All subsequent analysis is based on 

the values of E, N, ( )n A , and the four pairing measures. 
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1.4 Initial analysis of Excel data 

The following points can be made about the Excel graphs and data. 

 The individual data points of each pairing measure seem to be random but with clusterings 
into two major populations 

 Concentrating on ( , )n A B  and ( , )n A B  these clusters are more dense at the lower values, 

suggesting that these two measure are sympathetic 

 Closer analysis shows that the lower cluster consist more of E-numbers of either pure power-2 
numbers or with single large primes. The less dense upper cluster contains the prime 3 and 
other small prime mixtures. 

 Generally the pure 2 E-numbers form the lowest strata of the denser main cluster in ( , )n A B  

and ( , )n A B  

 E-numbers containing 3-multiples make up 1/3 of the composites in ( , )n A B , pushing this 

measure up into the less dense upper cluster. The 2/3 non-3 multiples form the more dense 
lower cluster 

 The reason the 3-multiple composites form the upper cluster of ( , )n A B  is because these mul-

tiples boost the number of composite pairs generally 

 And because of the sympathetic relationship of ( , )n A B  to ( , )n A B , the 3-multiple compos-

ites also boost the number of prime pairs (see Section 1.5 below for proof). 
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1.5 The sympathetic prime and composite pairing relationships 

Using the identities of Section 1.1 it is possible to formulate the sympathetic relationship of the prime 
and composite measures (this will be called the delta rule) as follows: 

( , ) ( , ) ( ) ( )n A B n A B N n A n B       

As Δ is fixed by ,  ( ) and ( )N n A n B then for any particular E if ( , )n A B is large so too will ( , )n A B  be, 

and the converse.  This new measure, Δ, will prove useful later on. 

 
1.6 Normalised measures 

As the various measures increase with E, it is useful to construct normalized measures as follows: 

( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( )      ( )      ( )      ( )      

n A n B n A n B
n A n B n A n B

N N N N
   

 

The prime and composite pairing measures are: 

( , ) ( , )
ˆ ˆ( , )   and  ( , )

n A B n A B
n A B n A B

N N
 

 

and the normalized delta rule is: 

ˆ ˆ ˆ ˆ( , ) ( , ) 1 ( ) ( )n A B n A B n A n B
N




       

1.7 Normalized graphs 

Graph 4 and 5 shows the normalized prime and composite measures respectively. 
 

 
 



 
 
 p 10  
 

 
Rob Gough: Prime Pairs & Goldbach’s Conjecture 

 

 
 DNL 99  
 

 

 
 

2. Generalized prime & composite measures 
 
The normalized measures mentioned in Section 1 can be considered as probabilities. For example, 
ˆ( )n A  is the probability of finding a prime in A and so on. This leads to the generalized prime-prime 

measure denoted ˆ ( , )on A B that indicates the joint probability that any pair ( , )i ia b  will be prime-prime 

pairs and the generalized composite-composite measure ˆ ( , )on A B  where: 

 ˆ ˆ ˆ( , ) ( ) ( )on A B n A n B   

 ˆ ˆ ˆ ˆ( , ) ( ) ( ) (1 ( ))(1 ( ))on A B n A n B n A n B     

These are called generalized measures because although they depend on the number of primes in A 
and B and therefore on E, they do not depend on the specific prime content of E. 

These two measures also obey the delta rule, namely: 

 ˆ ˆ ˆ ˆ( , ) ( , ) 1 ( ) ( )o on A B n A B n A n B        

Graph 6 shows these generalized measures against the background of ˆ( , )n A B  and ˆ( , )n A B . The fact 

that these generalized measures fit into the empty region between the two clusters should not be a 
surprise: 

 The generalized measures do not depend on the prime factors of E 

 Statistically, the composite measure lies between the one-third of numbers that contain  
3-multiples and the two-thirds of numbers that do not contain 3-multiples. 
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 The generalized measures behaves in a similar way because of the delta rule 

 The generalized measures, however, fit that same developing pattern seen in ˆ( , )n A B and 

ˆ( , )n A B  - a feature that becomes more apparent in the DERIVE analysis that follows. 

 

The generalized measures, however, fit that same developing pattern seen in ˆ( , )n A B  and  ˆ( , )n A B .  

 

3. Prime-pair manipulation using generalized measures 
 
A lot has been learnt from the Excel analysis, but it is now necessary to extend this to larger values of 
E (in the region of 100 million) and in particular look for trends and patterns in our various pairing 
measures. 

 
3.1 The Derive nomenclature 

The setup is basically the same as Section 1, but now E is defined by: 

( , ) 2E      

This way we can look at the influence of individual primes in E on our pair measures. Derive requires 
a new nomenclature and some examples of this are shown in the table below. 
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3.2 Prime & composite measures extended 

Graphs 7 and 8 show how particular -numbers  affect the prime and composite measures as   

increases. From now on we can refer to these curves by their -numbers : 

 1  refers to E with 1   and thus to numbers that are pure powers of 2 

 3  refers to E with 3   and therefore 3 is a factor of E, and so on 

Also included are the curves for the generalized prime and composite measures: 

 0ˆ0 ( ( , ))n A B    

 0ˆ0 ( ( , ))n A B   

Note how well behaved these measures become as E increases (as α increases). The specific calcula-
tion points have been connected to show both the general trend in each curve and to make it easier to 
follow that trend between the curves. For reasons of computation time (generally around 2 hours for 

each measure), these and all future calculations in Derive are based on Ω1 and up to α24. For higher 

Ω, α is reduced accordingly. 
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3.3 Modelling composite & prime measures with Ω3 

We can use the 0  and 0  functions and their interdependence with the   function to create crude 

approximations to the real πΩ measures. We can demonstrate this using the 3  numbers. The com-

posite-composite measure is easily approached as they are more amenable to analysis than the primes. 

The plan is to calculate the number of composite pairs with 3  numbers, called 03
ˆ ( , )n A B , and then 

use the  function to determine 03
ˆ ( , )n A B . In Derive these will be κ03 and π03. 

If E contains 3 then all 3-multiples pair up, and so there are at least 
3

N  composite pairs, plus others 

in the remaining 2
3

N pairs. The arrangement can be shown diagrammatically as follows where the 

pair elements in the A and B groups have been rearranged. 
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The theoretical composite measure for Ω3 is therefore: 

03

2 3 3
ˆ ˆ( , ) 1 ( ) 1 ( )

3 3 2 2

N N
n A B n A n B      

   
   

 

03

1 2 3 3
ˆ ˆ ˆ( , ) 1 ( ) 1 ( )

3 3 2 2
n A B n A n B      

   
   

 

This can be simplified to: 

03 0

3 3
ˆ ˆ ˆ ˆ ˆ ˆ( , ) 1 ( ) ( ) ( ) ( ) ( , )

2 2
n A B n A n B n A n B n A B       

In which case the prime measure is: 

03 0

3 3
ˆ ˆ( , ) ( , ) 0

2 2
n A B n A B  

 

So by isolating a particular group of composite pairs based on a prime present in E, this translates as a 
fractional increase on the generalized prime-prime measure. Note that this is not particularly accurate, 

but it hints at the fact that E-numbers with 1    create larger prime pairs measures, ( , )n A B , than E-

numbers based on pure powers of 2 ( 1  ). 

 

3.4 Modelling composite & prime measures with Ωp (p-multiples) 

The analysis of Section 3.3 can be extended to any prime p present in E ( p  ).  
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The theoretical composite measure for Ωp is therefore: 

0

1
ˆ ˆ( , ) 1 ( ) 1 ( )

1 1
p

N p p p
n A B N n A n B

p p p p


   

 

       
       

       
 

0

1 1
ˆ ˆ ˆ( , ) 1 ( ) 1 ( )

1 1
p

p p p
n A B n A n B

p p p p


   

 

       
       

       
 

This can be simplified to: 

 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) 1 ( ) ( ) ( ) ( ) ( ) ( )

1 1
p

p p
n A B n A n B n A n B n A n B

p p
     

 
   
   
   

  

In which case: 

0 0
ˆ ˆ( , ) ( , ) 0

1 1
p

p p
n A B n A B

p p
 

 
   
   
   

 

If we introduce a new measure, called the *  function (where the star denotes that it is a theoretical 

function, relating how the p-prime boosts the prime-prime pairing) then: 

0 0

0* *

0

ˆ ( , )

ˆ ( , ) 1
and in the notation: 0 0.

p p

pn A B p

n A B p
DERIVE p   


 

 

 

 
3.5 Modelling composite & prime measures with Ωpq (pq-multiples) 

 

From this is can be shown that the total number of composite pairs is: 
 

0

1 1
ˆ ˆ( , ) 1 ( ) 1 ( )

1 1
pq

p q pq p q pq pq
n A B N N n A n B

pq pq pq p q pq p q

    
   

     

         
         

         
 

which simplifies to   0
ˆ ˆ( , ) ( ) ( )

1
pq

pq
n A B N n A n B

pq p q
  

  
 
 
 
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Therefore the normalized composite pair measure is 

0
ˆ ˆ ˆ( , ) ( ) ( )

1
pq

pq
n A B n A n B

pq p q
 

  
 
 
 

 

The normalized prime pair measure is therefore: 

0 0
ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )

1 1
pq

pq pq
n A B n A n B n A B

pq p q pq p q
 

     
   
   
   

 

In which case it can be shown that: 

0*

0

0

ˆ ( , )

ˆ ( , ) 1 1 1
pq

pq

n A B pq p q

n A B pq p q p q
   

    
    
    
    

 

From this it follows that: * * *

0 0 0pq p q     

and these measures are multiplicative. The theoretical prime pair measure is therefore:  

*

00 0.ppq     

 

3.6 Comments on calculated composite & prime pairs based on π0 

In Derive the following measures have been calculated: 

* *

30 5003 0  and  05 0          

Graph 9 shows some of these calculated functions based on π0 alongside two real prime pair meas-
ures, πΩ3 and πΩ5. They show that: 

 They are all well behaved 

 Their spacings are of the right order 

 The theoretical measures are too large compared to the real measures, but this is to be ex-
pected as π0 is rather large – being larger than all the single prime pair measures except πΩ3. 
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There are two approaches we must take to overcome the excessive size of the π0p functions compared 
to the real measures, but they are all based on the idea that Ω1 numbers form the lowest real prime pair 
measures. This is a reasonable assumption based on the evidence of Graphs 1 to 5 but with some res-
ervations to be mentioned later (Section 4). These approaches are: 
 

 Calculate the ratio of πΩ1 to π0. This will be called the 10  function. 

 Find more accurate methods to mimic πΩp measures from the new base-line of πΩ1 
 
From these three approaches we will try to forge a synthesis. 
 

3.7 The beta function applied to πΩ1  

The 10  function (this has no star because it is calculated on real data) is defined as: 

10

1
( , )

0
.


 




   

The Derive data gives a final value of β10 to 9 decimal places as: 

10 0.660337319   

Graph 10 shows how this function develops with increasing α. After initial fluctuations this seems to 

settle down until at  100,000,000E   the value is about 0.660 to 3dp. For more of a matter of con-

venience I will adopt this as a fixed value of  10  where: 

10 0.660   

These calculations were performed in Derive with the function called β10 and took 28 hours of com-
puter time. 
 

 
At this point there is no clear reason why 10  should have this particular value. This awaits later de-

velopments.       (Part 2 will follow in the next DNL.) 
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I had a very intense communication with Rob concerning his paper and the respective 
DERIVE and Excel files. I was surprised that all his figures were done using MS Excel. 
Finally he sent psi modified.dfw in order to demonstrate how Graph 6 (page 11) can be 
created using DERIVE. Rob wrote: 

One of my big problems was presenting the data in a simple and neat form. I decided to liter-
ally manually transfer all data from the DERIVE files to Excel. Painfully slow, but ultimately 
rewarding because of the superior graph quality available in Excel. If you know a simple way 
of transferring DERIVE data into Excel spreadsheets I would like to know it. 
 
I will come back to his problem later. Let’s first show psi modified.dfw and some of its 
results. 
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In contrary to Rob I did not evaluate #41 - #44 before plotting but plotted them directly in the  
2D-plot window. 

 

 

Finally I wanted to reproduce one or two graphs of Rob’s Graph 7 (page 12). I approximated 
K(3,3,n) with n = 15 to 21 which needed 10, 20, 42, …, 898, 2548 seconds. After some 1000 
seconds calculation time I gave up approximating K(3,3,22) which is expression # 18 in the 
above DERIVE file. K(3,3,21) is the red graph. 
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K(1,3,n) with n = 15 to 23 approximates a bit faster with 8.6, 18, …, 1600, 4850 seconds. 
The blue graph is the final result. You may imagine how much time was spent by Rob to 
write his paper!! 

 

 
 
In the following I will describe how to transfer the data (coordinates of the points) to  
MS Excel. 

1st step: Calculate and approximate in DERIVE. 
 

 
 
2nd step: Copy the result into the Edit Line. 
 

 
 
3nd step: Copy and paste the contents of the Edit Line to your text processing program. The 
first lines will look like: 
 
[50, 0.3333333333; 52, 0.25; 54, 0.3846153846; 56, 0.2307692307; 58, 0.2857142857; 60, 
0.4285714285; 62, 0.2; 64, 0.3333333333; 66, 0.375; 68, 0.125; 70, 0.2941176470; 72, 0.3529411764; 
74, 0.2777777777; 76, 0.2777777777; 78, 0.3684210526; 80, 0.2105263157; 82, 0.25; 84, 0.4; 86, 
0.2380952380; 88, 0.1904761904; 90, 0.4090909090; 92, 0.1818181818; 94, 0.2173913043; 96, 
0.3043478260; 98, 0.125; 100, 0.25; 102, 0.32; 104, 0.2; 106, 0.2307692307; 108, 0.3076923076; 110, 
0.2222222222; 112, 0.2592592592; 114, 0.3571428571; 116, 0.2142857142; 118, 0.2068965517; 120, 
0.4137931034; 122, 
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4th step: Remove the brackets, then replace the 
semicolons by the end of paragraph character. Now 
it should look like shown on the right. 
 
 
5th step: Convert the text into a table (2 columns) 
with a comma as separation mark. This should 
result in a 2 columns table: 

 

 

 

 
6th step: Copy the table and paste it into the first cell of your spreadsheet program. 
(Important for all decimal comma users: You have to change to decimal point input now or 
you have to replace the decimal point by a comma in the prior step.) 
 

 
 
This gives a table with 2 columns and 1000 rows. Then you can easily produce the diagram 
according to your ideas. 
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Maxima® for Physics Examples 
Electric Field  
 
Introduction 

The most elementary part of physics dealing with electromagnetic interactions is called electro-
statics. Electrostatics describes the interaction between stationary electric charges. The force of inter-

action between two point charges obeys Coulomb’s law. The force F


acting on a charge ,q  whose 

position is ,r
  due to a charge Q at ,R


 is given by  


 

 
F

qQ

r R
r R




1
4 0

3
( ) , 

where o denotes the permittivity of free space. 

 

Electrostatic interactions may also be described in a different way, by means of the concept of 

an electric field. Within this formalism, the force F


 acting on a charge q is the product of the 

charge q and the electric field E


 caused by the charge Q  

,F qE
 

 

hence 

3
0

1
( ) .

4

F Q
E r R

q r R
  



 
  

The modern formulation of electrostatics is based on Gauss’s law, which may be written in the 
form  

dS ,
S

o

Q
E





  

where  Q is the total charge giving rise to the electrostatic field E


, confined by a closed surface S.  
In differential notation  Gauss‘s law is of the form  

,
o

divE






 

where  is the charge density. 

One very important property of an electrostatic field is the fact that it can be  described by a sca-
lar function called the potential. This is a consequence of conservative nature of electrostatic force. 

The field intensity

E  and the potential  are related to each other by the equation 

.E grad  

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Thus, Gauss’s law, expressed in terms of the potential, reads 

2 ,
o




     

which is known as Poisson’s law ( 2 denotes the Laplace operator). 

The electric field created by a system of electric charges  is the vector sum of the fields created 
by the individual charges (the principle of superposition).  

Using the equations given above, we can solve standard exercises as presented below. Some of 
them will deal with discrete charges, the other ones with the continuously distributed charges. 

 
PROBLEMS 

I.1 Split the point Charge Q into two point charges q and (Q-q), separated by a distance of d, so 
that the force of interaction between them is maximum. 

Solution: According to Coulomb’s law, the magnitude of the force of repulsion between the 
charges is given by 

 
 
and  

 
 
The problem can also be directly solved by finding the maximum value of the function F (even its 
nominator only) i.e. by solving the equation 

( ) 0.
d

q Q q
dq

   

Let’s find the solution of the above equation 
 

 
 
and afterwards sign evaluation  of the second derivative at the obtained solution 
 

 
 
From %o3  and %o5 we see that at q=Q/2 the interactive force is maximum. 

Note In the above exercise evaluation of sign function is not necessary. See below  
 

 
 
■▬▬▬▬▬▬▬▬ 
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I will skip the DERIVE and the TI-Nspire treatment as well because we recognize the quad-
ratic function with zeros at q1 = 0 and q2 = Q. As the graph is a downwards open parabola its 
vertex is at q0 = Q/2. 

 

I.2 We consider a system of an infinite number of point charges Q, which are distributed on half-
line in such a way that the first charge is put at a distance of d from the beginning of the half-

line, A, and each successive distance is chosen to be as  big as the previous one. Find the 

force exerted on a point charge q placed at A.  

Solution: The resultant force acting on q is the algebraic sum of Coulomb forces originating from 
the successive charges Q. 

 
 
Let’s try to evaluate the above  expression  
 

 
 
The above sum was calculated i.e. the force takes the simple form for   

For we get 
 

 
 
 

Let us notice that in our series (geometrical series) the ratio  
2

1


appears  
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Hence the solution of our problem  (

This is the DERIVE solution: 

 
 
On the TI-Nspire we cannot distinguish between lower and uppercase characters, so we de-
note Q as qq: 
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The third example is a bit more complex: 

 

I.3 Three stationary charges 321  and  , QQQ  are placed at the following positions 

)z ,,( and  )z ,,( ),z ,,( 333322221111 yxRyxRyxR


, respectively. 

(a) Write down expressions describing the field potential at the point 

r x y z( , , ) . 

(b) Compute the resultant force acting on an electron of charge q  for the data: 

x= 6m, y= -7m, z= 9m, 1 2 34 ,  3 ,  (1 2)Q C Q C Q C    , 

1 2 3(0,  2,  0),  ( 3,2,0)  and (0,0,0)R R R
  

. 

Solution: The potential at the point 

r , due to a single charge Qj placed at the point given by the 

position vector jR


 can be expressed as 

    
4

1

0 j

j
j

Rr

Q





  

 

According to the principle of superposition, the resultant potential is 


j

j   , 

a) To make the notation more concise the components of the position vectors jR


of the charges 

jQ  are entered in the form of the matrix R_. 
 

 
 

while the charges as components of the vector Q_. 
 

 
 
Then the resultant potential at ( , , )r x y z


can be written as follows 
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with 
 

 
 
 

b) Desired force has the form  

 .  F F F
 

  
where  

   gradEEqF


    ,  

We load the file “vect” and  enter the above relations. 
 

 
 

The magnitude of the resultant force is 
 

 
 

We import the value of the electron charge and electric constant from the utility file “physi-

cal_constants”. 
 

 

 
 
In the next step we evaluate  the magnitude of the resultant force at the point [6, 7,9]r 

m. 
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In the final step  we replace symbol “.” by ”*”. 

 
 
Simplifying units returns 
 
 

 
■▬▬▬▬▬▬▬▬ 

 
This is the DERIVE version: 

 

 
 
 
The next page shows how to work with TI-Nspire CX CAS. The gradient function is not pro-
vided, so we use Michel Beaudin’s library (presented in DNL#98) in order to apply his grad 
function. 
 

Elementary charge q and electric constant (permittivity in a vacuum) ε0 are provided among 

the “Constants” in the “Unit Conversions” which can be found in the Documents Toolbox. 
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KIT_ETS_MB for NspireCAS 2 (and for DERIVE, of course) 

Michel Beaudin (Montréal, CAN) and Josef Böhm (Würmla, AUT) 
 
I present the first three functions and give applications after introducing them. 
 
 
euler_ode(f,x,y,x0,y0,h,n) 
 
Application of Euler’s method on the differential equa-

tion 0 0( , ), ( )
dy

f x y y x y
dx

   with n steps h to produce a 

matrix of n+1 rows showing n+1 coordinate pairs of 
points that approximates the solution curve of the equa-
tion. 

Note: The functions euler and rk23 implemented in TI-
Nspire CAS are programs for solving systems of DEs. 

 

 

 
picard(f,p,x,y,x0,y0) 
 
The iterative method of Picard is applied for finding an 

approximation for the DE 0 0( , ), ( )
dy

f x y y x y
dx

  . 

s is the chosen integration variable (function internally). 
 
eu_ca_ode(a,b,x,y,r) 
 

Gives a solution for 2 ( ),x y a x y b y r x     which 

cannot be solved by deSolve. 

 

 
 

 
Comment on picard (from the DERIVE Online Help): 

PICARD(r, p, x, y, x0, y0) expands to an improved approximate series solution of the equation  
y' = r(x, y), given the approximate series solution p(x).  Expanding with respect to x often gives a more 
useful form than just simplifying the expression.   
 
The Picard method involves integrating r(x, p(x)).  If no integrals remain in the simplified result, you 
can try another iteration using the improved approximation for p, and so on.  If you have no better first 
approximation, use the constant y0. 
 
 
lin_frac_ode(r,a,b,d,p,q,k,x,y) 
 
finds a solution for the first order differential equation 

.
dy ax by d

r
dx px qy k

 
 

 
 

This DE cannot be solved with TI-Nspire by the deSolve 
command. 
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Examples: 

Solve 
3 2 10

; (0) 3
2 3 5

x y
y y

x y

    
 

 

 
 
As we cannot apply deSolve, so we use Euler’s method, convert the two columns of the resulting 
matrix to lists and then plot the scatter diagram (in blue see below). Another approximating method is 
Picard iteration which is giving a closed result only for the first iteration. 
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The following two screen shots show two more examples applying Picard’s iteration method. 
 

  
 

  
Another note from the DERIVE Online Help: Note that the highest order terms generated by 
the Picard method are often incorrect.  For example, the coefficient of the above x³ term 
should be 1.  Distrust terms whose coefficients are not the same for two successive iterates.  
For this reason and for efficiency, it is wise to discard all but the next higher order term after 
each iteration.  For example, you should discard the above x³ and x² terms for the next 
iteration. 
If any iterate yields a result containing an integral, you can try approximating r(x, p(x)) to 
make it integrable. 
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I must admit that I was not very familiar with Picard’s iteration method, so I wrote to Michel: 
 

Dear Michel, 
 
I have a question concerning the Picard Iteration:  
 
I can apply your function picard() without any problems, but I am not quite sure about the 
function of parameter p (= y0?). 
 
Best regards 
Josef 
 
 

This is what Michel answered: 

 
Josef, here is  a good example.  Consider the ODE y’ = 3*y^(2/3), y(2) = 0.  This ODE does not satisfy 

the uniqueness theorem in any neighborhood of the point (2, 0) : so we can’t expect a unique 

solution and, in fact, 2 different solutions can be found, namely :  y1(x) = 0 for all x and  

y2(x) = (x‐2)^3  (the « desolve » yields the latest one). 

Picard(3*y^(2/3),0,x,y,2,0) will simplify in 0 and we will never find the solution (x‐2)^3.  But if you 

apply successive Picard iteration (and add « |x>2 »), you will find at the end –using approximate 

arithmetic for convenience –  (x‐2)^3!!!  See the file. 

Regards, 

Michel 
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Comparing my Picard iteration and Michel’s one you can see that there are two ways for performing 
the procedure: one can replace the y in the function r by the next iteration or one can replace p by the 
next iteration. 

I had the idea to find a function which 
performs n iterations and returns the 
result: 

 

I was successful in applying my function on the first DE from above and then another one: 

2 2; (0) 0.y y y     
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f6(x) is the exact solution and f7(x) the result of the 
iteration procedure.  

Interesting: this fifth iteration is identical with the 

Taylor expansion of f6!! 

The next screen shows Michel’s example treated 
with picard_its followed by an example from the 
DERIVE Online Help. 
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Now let’s have a look on lin_frac_ode taking the example from above: 

Solve 
3 2 10

; (0) 3
2 3 5

x y
y y

x y

    
 

. 

Silly question: Do you know how to solve this DE without Michel’s lin_frac_ode or DERIVE’s 

lin_frac? I must admit I didn’t know. Then I decoded the DERIVE function (Michel’s Nspire tool is a 

reproduction of lin_frac) following the auxliary functions. 

Follow me, if you like. 

First of all we have to transform this DE with linear numerator and denominator to a homogeneous 
DE. For this reason we solve the system 

 -3m + 2n – 10 = 0 and 2m – 3n – 5 = 0 → m = –8, n = –7. 

(If the solution is not unique then one has to use another function with DERIVE (fun_lin_ccf). 
Michel’s lin_frac_ode recognizes this case and splits internally to another solution method.) 

We can proceed by substitute x = u + m = u – 8 and y = v + n = v – 7 giving 

 
2 33( 8) 2( 7) 10 3 2

.
2( 8) 3( 7) 5 2 3 3 2

v
u v u v uv

vu v u v
u

         
      

 This is now a homogeneuous DE: 

We set 
2 3

3 2

v s
s v s u v s s u

u s

         
 

 

22 3 2 3 2 3

2 3 2 3

ds s s s s
u s

du s s

   
   

 
  The variables can be separated. 

2

(2 3 )

3 3

s ds dx

s x





 which is easy to integrate on both sides. 

ln 1 5ln 1
ln( 1) 5ln( 1)

ln( ) ln( )
6 6 6 6

v v
s s u u

u c u c

                      

Resubstitution and setting 
ln

6

c
 6 for c:    

7 7
ln 1 5ln 1

ln8 8
ln( 8)

6 6 6

y y
cx x

x

                  

1 15
ln 5ln 6ln( 8) ln

8 8

y x y x
x c

x x

   
    

 
 

5

6 6

( 1)( 15) 1

( 8) ( 8)

y x y x

x c x

   


 
 oder 5( 1)( 15)y x y x c      

This is the general solution.  

Now for the particular solution with y(0) = 3: (3 – 0 – 1)(3 + 0 + 15)5 = 3779136 = c. 

Finally the solution is: 5( 1)( 15) 3779136.y x y x      
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Working with lin_frac_ode I wondered if it is really necessary to enter the coefficients of numerator 
and denominator twice. It should be possible to pick them out and then entering the function would be 
more comfortable. The result of my considerations was lin_frac_ode2(r,x,y). 

 

The next idea was to provide a function for finding a particular solution. Unfortunately it is not 
possible to replace the system variable c1 within the function. See how I solved the problem: 
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As we are not able producing an implicit plot with TI-Nspire, we can apply a little trick and plot a this 

slice of the solid z(x,y) = 3779136 + ( x+ y + 15)5  ( x– y +1) in the xy-plane and rotate until we see 

the top view. The DERIVE made implicit plot is presented below. 
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taylor_ode1(f,x,y,x0,y0,n) 
 
gives the Taylor polynomial of order n as approximation 
for the solution of the differential equation 

0 0( , ), ( )
dy

f x y y x y
dx

  . 

 
Solve: 

2

, (0) 2

(0.5) ?

x y xy e y

y

  


 

 
The Graph & Geometry screen shows the Taylor poly-
nomial (black) and the numerical solution produced by 
TI-NspireCAS using the respective Graph Entry option. 

 

 
 

 
 
taylor_ode2(f,x,y,v,x0,y0,v0,n) 
 
gives the Taylor polynomial of order n as approximation 
for the solution of the differential equation 

2

0 0 0 02
( , , ), ( ) , ( ) .

d y
f x y v y x y v x v

dx
    

y  is replaced by v. 

 
Solve: 

2 1
2, (1) 1, (1)

2
(0.5) ?

y x y x y y y

y

       


 

 
y(0.5) ≈ 1.074 

 
Entering the DE is a bit tricky: 
 

 y1’ = y2 with (x0 = 1, y10 = 1) 

 y2’ = x2 y2 + x y1 – 2 with (x0 = 1, y20 = -0.5) 
 
The DERIVE Online Help provides a recipe how to ver-
ify the correctness of the result. 

 

 
 

 

 


