
Résumé 1 – Part 2 

Symbolic and numerical solution of equations and systems of equations,  

comments and additions to differential equations 

 
1.8  Example of a “symbolic” response   

When considering a polynomial equation of degree 5 or more, we can always find, in floating-point 

arithmetic, all solutions. Let to fix the ideas 5 3 0x x .+ + =  Derive returns the equation, unless you 

approximate.  Since its "SOLUTIONS" function returns a matrix, the exact mode can return an empty 

matrix!   

 

Figure 1.12 
 
Maple:  for a polynomial, the "RootOf" structure allows to use each of the roots. 

>  
 

Figure 1.13 

1.9  Example and common sense 

When considering a non-polynomial equation, then symbolic systems do not replace the user's analysis 

and imagination and common sense are still required.  There is no formula to solve the equation  

sin 1
6

x
x = − .  The TI calculator "warns" the user that some solutions may be forgotten: 

 

Figure 1.14   



 

A graph of each side of the equation indicates that there are, in total, 5 solutions.  We can see from 

Figure 1.14, that Nspire CX CAS has indeed found (in this case) these 5 solutions when the system 

switches to approximate mode.  In exact mode, it returns only the equation in equivalent form.  And 

guiding the "nsolve"-procedure can be useful (by adding boundaries for possible solutions).   

Let's look at the responses of Maple and WolframAlpha in Figure 1.15. 
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Figure 1.15 

  



And how does Derive respond? Initially, a window containing the graphs of each side of the equation 

shows 5 intersections in total, as indicated earlier: 

 

 

Figure 1.16 

In Derive, there has never been something like a "RootOf" structure: 

 

Figure 1.17 

1.10  Polynomial systems   

Such systems are solvable using an algorithm (Gröbner basis) fortunately implemented in symbolic 

systems. 

1.11 The function LambertW 

This is probably one of the best recent implementations of a mathematical function (2 of the authors 

were at the TIME-2004 symposium held at ÉTS in July 2004.  Many other developers also came to the 

ACA 2009conference also held at ÉTS in June 2009 as well as to ACA 2019 in July 2019). Let's start 

with the following example that leads us well on the track of this special function!  

  

http://www.time-2004.etsmtl.ca/
http://aca2009.etsmtl.ca/
http://aca2019.etsmtl.ca/


1.11.1  Example   

We are looking for all real and complex solutions of the equation 

62x x .=  

A graph shows two intersections on either side of the origin but a third real (and positive) solution 

necessarily exists since the exponential function 2x will eventually dominate the power function x6.   

Seen otherwise, since this solution is positive, we can transform the original equation into 

ln ln 2

6

x

x
=  

and since function  
ln x

x
  

tends to 0 when x tends to infinity, a third solution exists.  It can be easily located by making a table of 

values for example.  This is what we would find: 
 

 

Figure 1.18 

 

 

In order to visualize complex solutions, we apply the method introduced in 1.4.2. 

 

Figure 1.19 shows the following.  We separate real part and imaginary part.  The graphs of the two 

respective implicit curves were then plotted in the same window.  In the neighborhood of the origin we 

can see four complex solutions in addition to the two real ones close to 0.  These solutions can be found 

numerically soon. 

 

 



 

 
  

Figure 1.19 

How to explain what Maple does with the same equation?  Its Solver uses a famous function that seems 

to have been invented to solve equations like zz e w= . In order to understand what is going on, let's 

assume that α designates one of the six sixth roots of 1, so we have to solve the equation 
/ 62x x = which is equivalent to the following: 

ln(2) ln(2) ln(2)

6 6 6
ln(2) ln(2)

6 6

x x x
x

e x xe e  

− −

=  =  − = − . 

So we have to solve an equation of type XX e Y=  lösen. In our example: 
ln(2)

6

x
X = − and  

ln(2)

6
Y


= −  with 

1 3
1, .

2 2
i

  
    

  
 

Note that the function 
xx xe is not bijective but will become so by considering the two parts on either 

side of its absolute minimum: by inverting, we obtain two branches denoted by W0(x) ("main branch") 

and W-1(x) as shown in Figure 1.20. Only these two branches provide real values (although they also 

give complex values when x < –e-1). The other branches Wk for integer k always give complex values. 

 

 

Figure 1.20 



The different branches of the LambertW function are separated as follows.  The curve (given here in 

parametric form) 

cot
,

x t t
t

y t
 

= −
−  

=
 

to which we add the point (1, 0) separates the main branch W0(x) from the two branches W1(x) and  

W-1(x). ). The interval ]−∞ −1] separates the branches W1(x) and W-1(x). Finally, the other branches are 

separated by the curves 

cot
, 2 (2 1) , 1,2,3,

x t t
k t k k

y t
 

= −
   + =

=
 

The LambertW function is therefore "multiform" and is therefore the reciprocal function of .xy xe=  

We can now continue our example. We can now continue our example. 

So, the solutions of the equation 62x x=  are 
6 ln(2)

Lambert , .
ln(2) 6

x W k
 

= − − 
 

 Maple gives: 

 

>  

 

( )( ) ( )W z y
kW z e z ye z y W z= =  =  

http://www.orcca.on.ca/LambertW/ 

Figure 1.21 

When we program this function with its different branches, we can then evaluate it. We did this it in the 

kit_ets_mb library. One finds it via its function "ProductLog":in Maple and in Mathematica as well: 

 

http://www.orcca.on.ca/LambertW/


 

Figure 1.22 

We can even add several other complex solutions (which can be seen by enlarging the window given 

by Derive in Figure 1.19). 

 
 

Figure 1.23 

 

 

1.11.2 Simplifications using LambertW   

If we stick to solving equations, then any equation reducible to the form yye z= , where z is a given 

(possibly complex) number and where y is the unknown to be found, can be solved by taking the 

LambertW function on each side of this equation.  In other words, using "W" to denote any branch of 

index "k" of the Lambert function W(k, z), then we have 

( ) .yW ye y=  

In particular one has (what was noticed besides from the figure 1.21) 

( ) .
( )

W z z
e

W z
=  

1.11.3 Example   

It is easy to find by eye the solutions 2 and 4 of the equation x2 = 2x.  The third real solution (as well as 

2 and 4), as well as all complex solutions are easy to find via LambertW. Indeed, the equation is 

equivalent to ln(2) / 2xx e=   which in turn is equal to  

ln(2) / 2ln 2 ln 2
.

2 2

xx e−− =   

But then again 
2 ln 2

ln 2 2
x W

 
− = −  

 
 where "W" denotes a LambertW branch. Let us note that 

ln 2 1

2 e
−  −  and therefore the branches k = 0 and k = -1 will be used to evaluate the value of 



ln 2

2
W

 
− 

 
 and the branch k = 0 will be used to evaluate 

ln 2
.

2
W

 
 
 

 The real solutions are thus found 

among the 3 following values: 

2 ln 2 2 ln 2 2 ln 2
0, , 0, and 1, .

ln 2 2 ln 2 2 ln 2 2
W W W

− −     
− − − −     

     
 

 

The first answer gives 0.766665... .  Now let’s note: in W(y ey)  we replace y by – ln(x) and using the 

fact that for non-zero x we always have exp(ln(x)) = x - and thus exp(-ln(x)) = 1/x -, we find that 

ln
ln .

x
W x

x

 
− = − 

 
  But then the image of the k = 0 branch consisting of the real numbers ≥ –1 and 

since –ln(2) > –1, we can write 

2 ln 2 2
0, ( ln 2) 2.

ln 2 2 ln 2
W

− 
− = −  − = 

 
 

An because the image of the branch k = –1 consists of the real numbers ≤ –1 and –ln 4 < –1, we can 

write 

2 ln 2 2 2ln 2 2 ln 4 2
1, 1, 1, .

ln 2 2 ln 2 4 ln 2 4 ln 2
( ln4) 4W W W

− − −     
− − = − − = − − = −     

     
 − =  

 

1.11.4 Example 

In if we now replace y by ln(x) in ( ) ,yW y e y= and still use the fact that for non-zero x we always have 

exp(ln(x)) = x, we find that ( ln ) ln .W x x x=  This shows that the (positive) solution to the equation  
3

33 is 3.xx =  Indeed, a calculation shows that we end up with 3 ln ln3,x x =  hence 

( )3 3ln 3ln3x x = , hence 3 3( ln( )) (3ln3) ln3W x x W= =  and thus ( )3ln ln3x = and finally 3 3.x =  

 

1.12 Remark and definition 

In the case of numerically given solutions, which "magic" methods do symbolic systems use?  Probably, 

it is a "mix" of different methods. 

Two of them we will present now. The first one is the fixed-point method and the second one is Newton's 

method. Each of these methods will be extended to systems of equations and the use of a calculator is 

very useful, even necessary here. 

A function g is said to have a fixed point if there exists a number r such that g(r) = r. If, moreover, 

function g is differentiable, we will say that this fixed point is an attractor if ( ) 1.g r   

Thus, it is easy to find that the fixed points of the function  

2

2

(4 )
( )

1 4

x x
g x

x

+
=

+
 

are 0, 1 and −1, and that 0 is not an attractor.  Then we can then ask ourselves if, by iterating g(x), it will 

converge or not?  Thus, starting "close" to 0, say 0.2, we would find that it converges but not to 0 but 

rather to 1:  the "ITERATES" function of Derive has an optional last argument:  Precision is limited to 

14 digits in TI-Nspire (we see in figure 1.25 the display at "float 6"):: 

  



“ITERATES” is implemented in Derive: 

 
 

Figure 1.24 
 
“iterates“ is part of the kit_ets_mb library for TI-Nspire: 

 

 

 

Figure 1.25 

 

 

To be continued 


