
Automating the Simplification of Mathematical Expressions 
Albert D. Rich, Hawaii 

The following commentary refers to the slides at the end of this document. 

What�s Really Under the Hood of your CAS? 
It is perfectly possible to drive a car with little or no understanding of what�s under the hood.  That is 
until the car breaks down late at night, on a lonely stretch of road, � 

Similarly, just about everyone who has used a computer algebra system to teach or do mathematics has, 
on occasion, been surprised and frustrated at the �simplified� results returned by the system.  For this 
reason it is important to have a basic understanding of what is under the hood of your CAS.  Such 
knowledge makes it easier to obtain the results you want, and to avoid those you don�t. 

As one of the authors of Derive® and its predecessor, muMATH�, I would like to pass on some of the 
insights I have gained over the last 25 years implementing these computer algebra systems.  I will discuss 
the principles and methodologies Derive uses to automate the simplification of mathematical expressions. 

I begin by summarizing at the overall design of Derive. 

Overall System Design 
This slide illustrates the lines of communication between the major components of Derive 5.  Also shown 
is the programming language in which each component is written, the size of its source files, and its 
primary author. 

• The User Interface handles all interactions with the user and sends appropriate commands to the 
various components of Derive.  Theresa Shelby is the author of the User Interface.  Ever since 
starting work at Soft Warehouse, Inc. in the early 1990s, she has dedicated her considerable talents 
to making Derive the world�s friendliest computer algebra system.  Now Theresa is employed by 
Texas Instruments Incorporated to carry on the Derive tradition. 

• The On-line Help displays context-sensitive help on all the menu commands available to the user; 
and provides comprehensive documentation on the functions, operators, and constants defined in the 
system. 

• Bernhard Kutzler and Vlasta Kokol-Voljè are the authors of the Introduction to Derive for 
Windows manual.  Loaded with examples, this book provides a step-by-step introduction to Derive�s 
capabilities. 

• Recognizing the importance of efficiently making 2 and 3D plots, David Stoutemyer wrote the 
Floating Point Evaluator to rapidly approximate expressions using the floating point hardware.  
This provides about 18 digits of precision, more than sufficient for most plotting purposes. 

• The 2D Plot Renderer produces 2 dimensional explicit, implicit, inequality, parametric, and data 
point plots in rectangular or polar coordinates.  Theresa and David collaborated on this component of 
Derive. 

• The 3D Plot Renderer produces 3 dimensional explicit, parametric, and data point plots in 
rectangular, spherical, or cylindrical coordinates; and rotates them in real-time with hidden line 
removal.  David Parker wrote this amazing piece of software in Pentium assembly language. 

• The Math Engine analytically simplifies expressions and numerically approximates them to any 
specified precision.  Because of inherent limitations in the design of muMATH, David and I began 
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writing a math engine in the mid 1980s using a radical new recursive representation for mathematical 
expressions, that is both compact and efficient.  The Engine is written in the muLISP programming 
language. 

• In the late 1970s, I wrote the first version of muLISP for the Intel 8080 microprocessor with its 64 
kilobytes of memory.  Since then muLISP has evolved into a general purpose pseudo-code LISP 
interpreter that takes advantage of the Pentium�s 4 gigabyte address space.  Specially adapted for 
computer algebra, it provides over 500 functions efficiently defined in assembly language, including 
ones for exact, and high precision approximate, rational arithmetic. 

Each one of these components could easily be the basis for a talk itself.  But in the interest of time, I will 
concentrate on how the Math Engine simplifies mathematical expressions. 

Expression Processing 
This blow-up of the Math Engine illustrates how its three components process an expression sent by the 
User Interface. 

First, the Parser converts the expression into a form suitable for use by the Simplifier.  Next, the 
Simplifier transforms the expression into a simpler equivalent, if possible.  Finally, the Formatter 
converts the simplified result into a form suitable for sending back to the User Interface. 

Before going into more detail on how the Simplifier works, I will briefly summarize the function of the 
Parser and Formatter. 

Expression Parsing 
In Derive, mathematical expressions are entered by typing a line of text on the expression entry line.  
Parsing is the process of converting this linear input into a tree structure, exactly corresponding to the 
underlying structure of the mathematical expression.  

For example, consider this linear string of characters and its corresponding tree structure.  Given a pointer 
to the tree, it is easy for the Simplifier to determine that the expression is a sum whose first term is raised 
to the 2nd power, and whose second term is a quotient, etc. 

A distinguishing characteristic of Derive�s Parser is its high degree of tolerance for the shortcuts the user 
can take advantage of while entering expressions.  As in this example, an asterisk is not required between 
�x� and �sin� to indicate multiplication.  Also, parentheses are not required following �sin� since its 
argument is a variable. 

Expression Formatting 
As you might expect, formatting is the converse of parsing mathematical expressions.  Thus given a tree 
structure, the Formatter converts it into lines of text.  Multiple lines are returned so the User Interface 
can display the expression in 2 dimensions, greatly improving the readability of complicated expressions.  
Here, raised exponents and built-up fractions make clear the underlying structure of the expression.   

However, if you intended to enter this expression, it is immediately obvious that a mistake was made.  
You need parentheses around the desired argument of the sine function. 

Parsing and formatting are fascinating subjects in themselves, but that is not the subject of this paper.  
Instead I will focus in on simplification.   

You may be wondering why I am restricting my talk to the simplification of mathematical expressions.  
After all, Derive can factor polynomials, solve equations, integrate and differentiate expressions, invert 
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matrices, etc.  So before I go on, let me explain why all these operations can be regarded as a form of 
simplification. 

Integrating an Expression 
Consider the process of how you integrate an expression in Derive using a specific example: 

• First you enter and highlight the integrand.   

• Next you click on the Integrate button and this dialog box is displayed.  

• Then you enter the integration variable and the limits of integration.  

• Finally you click on the Simplify button and this closed-form result is displayed.  

By the way, if your favorite computer algebra system is not Derive, you might try evaluating this definite 
integral on the competition.  In 2001, Vladimir Bondarenko at Simferopol State University in the Ukraine 
contributed the elegant rule that enables Derive to integrate the reciprocal of any binomial from 0 to 
infinity. 

Integration vs. Simplification 
The interaction cycle on the previous slide might lead you to think that the User Interface sends an 
Integrate command to the Math Engine along with the integrand, integration variable, and the limits of 
integration, as depicted in the top diagram of this slide. 

However, what actually happens is that the Interface combines the integrand, the integration variable, 
and the limits of integration into a single expression using the INT function.   Then the Math Engine 
simplifies this definite integral to the desired closed-form value.  

Therefore, the bottom diagram is a more accurate depiction of how Derive simplifies definite integrals to 
find their value. 

Examples of Simplification 
Here are some other operations Derive does: 

• expand factorials  

• approximate irrational expressions to any desired precision  

• factor polynomials  

• differentiate arbitrary functions  

• find antiderivatives  

• solve equations  

Note that all these operations are treated as simplification problems by the Math Engine.  Therefore 
simplification includes virtually all the mathematically interesting things that Derive does.  Thus the 
scope of my talk may not be as limited as you might have thought. 

So that brings us to the question:  Just what is simplification?  

As the relative size of the boxes in these examples illustrate , the primary goal of simplification is not the 
most compact representation of an expression.  
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Simplification Process 
To answer the question, you need to know that Derive does simplification in two distinct phases: 

First the Reduction Phase recursively reduces expressions to their most elemental form using the lowest 
level function and operators possible.  This reduction maximizes opportunities for cancellations and 
collections of similar terms and factors to occur.  However, the result is often huge and difficult to 
comprehend.  

Therefore, the Restoration Phase restores reduced expressions using higher level functions and 
operators.  This results in a more compact and comprehensible form to humans.  But, the transformations 
done during restoration are just cosmetic, and no additional mathematically significant cancellations will 
occur.  

To make all this more concrete, I will give several examples showing the steps Derive uses to simplify 
some mathematical expressions. 

Simplification of a Trigonometric Expression 
First consider the simplification of this trigonometric expression at the top of the slide.  

• First reduction transformations are applied that replace the secant, tangent, and cotangent functions 
with equivalent expressions using sines and cosines. 

• Next the product of these two sums is expanded.  

• Next the last three terms of the sum are placed over a common denominator.  

• Then the well known identity for sine squared plus cosine squared results in a significant 
simplification.  

• Finally these transformations restore the tangent and secant functions to produce a slightly more 
compact result. 

Clearly most of the �work� involved in simplification is done during the reduction phase.  The restoration 
phase transformations merely tidy up the result. 

Note that Derive uses the same sorts of rules humans do to simplify expressions.  There is nothing 
magical about what Derive can and can�t do. 

Simplification of a Sine Function 
This slides shows how Derive simplifies a sine function using successive angle reductions. 

• The first transformation reduces the coefficient of π to a nonnegative number less than 2.  

• The second reduces the coefficient to a number less than 1.  

• The third reduces the coefficient to a number less than 1/4.  

• The final transformation simplifies the cosine of π/6 to √3/2.  

Note that the second and third transformation rules are valid for all numbers n.   However, it only makes 
sense to apply them when the angle has already been reduced to a certain range by other transformations.  
Applied at the wrong time, these transformations will actually increase the angle instead of reducing it.  
Thus, Derive applies the second transformation only if the coefficient is between 1 and 2, and the third if 
the coefficient is between 1/4 and 1/2. 
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In general, when implementing a computer algebra system, knowing when to apply a rule is as important 
as knowing the rule itself.  If transformation rules are applied indiscriminately, infinite recursion will 
exhaust memory due to a stack overflow. 

Simplification of a Derivative 
This slides shows how Derive simplifies a derivative involving log and trig functions. 

• The first transformation is the rule for the derivative of a quotient; 

• The second is for the derivative of a logarithm; 

• The third is for the derivative of a power; and 

• The fourth is for the derivative of a sine. 

• The final transformation cancels sine x squared from the numerator and denominator of the quotient, 
giving a more compact result. 

However, this fortuitous cancellation results in a loss of information that makes integrating this derivative 
something of a challenge.  So, I will show how Derive does it. 

Simplification of an Integral 
This slides shows how Derive simplifies an integral involving log and trig functions. 

• The first rule transforms the integral of a difference into the difference of integrals. 

• The second rule uses integration by parts to integrate this product . 

• The next rule integrates the sine of an expression raised to any power times the cosine of the same 
expression. 

• The next rule differentiates the derivative introduced by integration by parts. 

• Here the common factors in the numerator and denominator are cancelled. 

• Finally the remaining integrals conveniently cancel each other out, leaving a closed-form result 
identical to the original expression in the previous slide. 

Note that near the beginning of this process, you have the difference of two integrals neither of which has 
a closed-form antiderivative.  Instead of giving up, Derive reduces such integrals to their simplest form so 
exact cancellations can occur as they do here.  Also, this reduction makes it easier to numerically 
approximate definite integrals using quadrature.  This strategy is used throughout Derive�s integrator. 

Simplification of an Equation 
This slides shows how Derive simplifies an equation.  In this case, the simplification actually solves the 
equation. 

• The key here is using the first rule to transform the sum of two arctangents into a single arctangent 
having two arguments. 

• The next rule transforms the two argument arctangent into a single argument arctangent plus a π/2 
term. 

• Finally cancellation of the common factor in the numerator and denominator simplifies the argument 
of the arctangent to −x.  
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In the course of finding interesting examples for this paper, I derived this formulation of the rule for the 
sum of two arctangents.  It is valid for all real x and y.  The other formulations I have seen in Abromowitz 
& Stegun, and elsewhere, impose restrictions on the domain of x and y that make it difficult to apply the 
transformation in this example. 

Simplification of an Equation (continued) 
To recap, the top box is the original equation, and the second box is how far we have progressed.  

• Since the discriminate of this quadratic polynomial is negative, its sign can be determined using the 
first transformation rule. 

• The next rule uses the fact that the arctangent is a anti-symmetric about the origin allowing the minus 
sign to be moved outside the function. 

• Next the constant term is moved to the other side of the equation. 

• The next rule says that if an arctangent equals an expression having a value between −π/2 and π/2, the 
argument of the arctangent equals the tangent of the expression. 

• Finally, the tangent of π/4 is transformed to 1. 

So simplification alone has solved the original equation.  Critical to Derive�s ability to solve this equation 
is its use of bottom-up simplification.  Note how the simplification of the left side of this equation is done 
before any equation solving is done. 

Bottom-up Simplification 
Bottom-up simplification means that simplification begins at the bottom of an expression�s parse tree and 
works its way up.  In this example, when the simplification of the left side of the equation works its way 
up to the + operator, my rule for the sum of two arctangents fires.  This ultimately results in a much 
simpler equation, making it trivial to solve. 

Derive always uses bottom-up simplification; however, there are examples where top-down simplification 
is preferable. 

Bottom-up vs. Top-down Simplification 
This is a classic example why top-down simplification sometimes is vastly superior to bottom-up.  Using 
the bottom-up approach, Derive obediently expands the factorials in the numerator and denominator of 
this quotient, and then divides these two 35 thousand digit numbers.  So, it takes Derive about 2 seconds 
to simplify this example.  However, if a top-down approach were used, this transformation for the 
quotient of two factorials would almost instantly get the answer without having to expand the factorials. 

Top-down simplification means that the simplifier would have to deal with unsimplified arguments.  As 
the example on the previous slide shows, simplified arguments are a crucial assumption made throughout 
Derive.  Also, it is nice to know that there are still some problems where human reason beats computer 
power. 

Exponential Transformation Rules 
So, in Derive simplification is done from the bottom-up by repeatedly applying transformations until the 
expression is fully reduced and then fully restored.  This slide shows some of the reduction and 
restoration rules used to simplify expressions involving the exponential function.   
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• During the reduction phase, the first rule replaces e raised to a power with the exponential function.  
Later the corresponding restoration rule restores the e notation preferred by most people. 

• The next two rules replace exponentials of known constants with their values.   

• The fourth rule is a generalization of the well-known fact that e to the log of z equals z. 

• If either condition is satisfied, the fifth rule removes the numeric factor from the argument of the 
exponential function. 

• The sixth rule says the exponential of a sum is the product of the exponentials. 

• The final rule transforms the exponential of a complex expression into rectangular form. 

In general the reduction rules aim to simplify the arguments of the exponential function as much as 
possible.  However, as the bottom three rules show, this reduction can actually increase the overall size of 
the result.  Therefore, during the restoration phase, the converses of these three rules are used to produce a 
more compact form.  

Logarithm Transformation Rules 
This slide shows the rules used to simplify expressions involving logarithms.   

As one would expect, there are a lot of parallels with the rules for exponentials.  However, as is generally 
the case with inverse functions, the rules for simplifying logarithms are more complicated and have more 
conditions than their exponential counterparts.  For example, the log of a product equals the sum of the 
logs, only if at least one of the factors is positive.  However, the exponential of a sum always equals the 
product of the exponentials. 

Elementary Function Rules 
The previous two slides showed 25 of the rules Derive uses to simplify expressions involving 
exponentials and logarithms.  This chart shows the distribution of the 334 rules Derive uses to simplify all 
the elementary functions.  The purple bars indicates the number of inverse function rules in each 
category.  Thus the first bar from the left represents the number of exponential rules, and the second bar 
represents the number of log rules.  

Not surprisingly there are more trig rules than exponential ones.  But what is interesting is that there are 
more inverse exponential rules than direct ones; whereas, there are more direct trig rules than inverse 
ones.  This lack of symmetry may actually exist, or it may just indicate ignorance on my part of more 
rules. 

Note that there are relatively few rules for the hyperbolic functions, since they are almost immediately 
transformed into trig functions in the complex plane. 
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Transformation Rules 
Moving up a level, this chart summarizes the distribution of the 1380 rules Derive uses to simplify the 
various categories of mathematical functions and the logical operators.  The elementary operators were 
omitted because their ubiquity makes them difficult to count.  Also not counted were the rules for the 
vector, matrix, and set functions and operators.   

I would guess that there are well over 2000 rules in Derive.  However, let me caution against using a raw 
rule count to evaluate the �intelligence� of any computer algebra system. 

Quality vs. Quantity of Rules 
Currently Derive uses these rules to simplify the first four integrals of this family.  It seemed to me during 
the writing of this talk that there should exist a single rule that can simplify any member of the family.  
Using Sloane and Plouffe�s Encyclopedia of Integer Sequences on the coefficients of the log terms, I 
was able to deduce just such a rule. 

So when I replace the four existing rules with this new rule, it will extend the class of definite integrals 
Derive can find and reduce the rule count by 3.  Therefore, when comparing computer algebra systems, 
the quality of rules is at least as important as the quantity.  Also, as stated earlier, now matter how many 
rules a system has, knowing when to apply them is as important as knowing the rule itself. 

In Summary 
• Simplification includes virtually all the mathematically interesting things Derive does. 

• Simplification is done in two distinct phases:  Reduction then Restoration. 

• A transformation rule should be applied only if it results in a simpler expression. 

• There is a trade-off between bottom-up and top-down simplification.  Derive does the former. 

• Derive employs over 2000 mathematical factoids called transformation rules to simplify expressions. 

• The quality of rules in a computer algebra system is at least as important as the quantity. 
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of Mathematical Expressions 
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Free-lance Applied Logician 
Kawaihae, Big Island, Hawaii 
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User Interface 
Visual C++ 

1.8 megabytes 
Theresa Shelby 

 

Floating Point 
Evaluator 

C 
77 kilobytes 

David Stoutemyer 
 

2D Plot 
Renderer 
Visual C++ 

150 kilobytes 
Theresa Shelby & 
David Stoutemyer 

On-line Help 
RoboHelp/MS Word 

1.3 megabytes 
Albert Rich 

 

Math 
Engine 
muLISP 

1.3 megabytes 
Albert Rich & 

David Stoutemyer 

3D Plot 
Renderer 

Pentium assembly 
823 kilobytes 
David Parker 

 

muLISP 
Pseudo-code 

Interpreter 
Pentium assembly 

786 kilobytes 
Albert Rich 

Printed Manual 
MS Word 

20 megabytes 
Bernhard Kutlzer & 
Vlasta Kokol-Voljè 

Derive 5 
 



Expression Processing 

Expression 
Parser 

Expression 
Simplifier 

Expression 
Formatter 

Simplified 
Result 

Unsimplified 
Expression 

Math Engine 
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Expression Parsing 

Expression 
Parser 

 

Tree Structure 
Output 

Linear Text 
Input 

Linear Text Input 

x^2+xsiny/5 

Tree Structure Output 

+ 

x 

^ 

2 

 12 

x 

/ 

· 

SIN 

5 

y 



Expression Formatting 

Expression 
Formatter 

 

2D Text 
Representation Tree Structure 

 

Linear Text Input 

x^2+xsiny/5 

Corresponding Expression Displayed in 2D 

 2    x·SIN(y)  
x  + ���������� 
          5     

Intended Expression Displayed in 2D 

 2         y  
x  + x·SIN��� 
           5  
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Integrating an Expression 
Integrand 

    1    
��������  

  7     
 x  + 1   

Integration Dialog Box 

 

Closed-form Result 
     π     

�����������  
       π    
 7·SIN���   
       7    

 14 



Integration vs. Simplification 
 
 

Integrating an expression 
 

         
    1     

��������  
  7       

 x  + 1   
         

Integrate 
for x=0 to ∞ 

     π     
�����������  
       π    
 7·SIN���   
       7    

 

 
 
 
 
 
 
 
 
 
 

Actual Expression Processing 

     π    
�����������  
       π   
 7·SIN���  
       7   

INT(1/(x^7+1),x,0,∞) Math Engine 
 

Simplifying an integral 

⌠∞        
      1     

  �������� dx  
    7      

⌡   x  + 1    
 0        

Simplify 
     π     

�����������  
       π    
 7·SIN���   
       7    
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Examples of Simplification 

100 ! Simplify 
9332621544394415268169923885626670049071
5968264381621468592963895217599993229915
6089414639761565182862536979208272237582
51185210916864000000000000000000000000 

APPROX(π, 100) 
Simplify 3.14159265358979323846264338327950288419

7169399375105820974944592307816406286208
998628034825342117067 

        6 
FACTOR(x  - 1, x) 

Simplify                   2            2          
(x + 1)·(x - 1)·(x  + x + 1)·(x  - x + 1) 

d   F(x) 
�� ������ 
dx  G(x) 

 

 
 Simplify 

 G(x)·F'(x) - F(x)·G'(x)   
�������������������������  
              2            
          G(x)             

⌠       3 
⌡ SIN(x) ·LN(SIN(x)) dx 

 
 

Simplify       x                                
LNTAN��� - COS(x)·LN(SIN(x)) + COS(x)  
      2                                

       3   2 
SOLVE(x + x + 1 = 0, x, Real) 

Simplify        29     √93 1/3   √93     29 1/3   1   
x = - ���� - �����   - ����� + ����   - ���  
       54      18        18     54       3   
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Simplification Process 

Reduction 
Phase 

Restoration 
Phase 

Simplified 
tree structure 

Unsimplified 
tree structure 

Expression Simplifier 
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Simplification of a Trigonometric Expression 
Transformation Rule Expression 

(SEC(x) - COS(x))·(TAN(x) + COT(x)) 

    1              SIN(x)     COS(x)  
�������� - COS(x)·�������� + �������� 
 COS(x)            COS(x)     SIN(x)  

                                       2   
  SIN(x)        1                COS(x)    

��������� + �������� - SIN(x) - ���������  
       2     SIN(x)               SIN(x)   

 COS(x)                    

                        2         2    
  SIN(x)     1 - (SIN(x)  + COS(x) )   
��������� + �������������������������  

       2              SIN(x)       
 COS(x)                  

SEC(x) → 1/COS(x) 
  TAN(x) → SIN(x)/COS(x) 

(a + b)·(c + d) → a·c + a·d + b·c + b·d 

a/b + c/d → (a·d + b·c)/(b·d) 

  SIN(x)      1 - 1   
��������� + ��������  
       2     SIN(x)   

 COS(x)         

  SIN(x)   
���������  
       2   
 COS(x)   

a + 0 → a 

TAN(x)·SEC(x) 

SIN(x)/COS(x) → TAN(x) 
1/COS(x) → SEC(x) 

SIN(x)^2 + COS(x)^2 → 1 

Reduction 
Restoration 
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Simplification of a Sine Function 

Transformation Rule Expression 

    10    
SIN����·π 
     3    

    4    
SIN���·π 
    3    

      1    
� SIN���·π 
      3    

      1    
� COS���·π 
      6    

COS(1/6·π) → √3/2 

SIN(n·π) → COS((1/2−n)·π) 

SIN(n·π) → SIN(MOD(n,2)·π) 

SIN(n·π) → � SIN((n-1)·π) SIN(n·π) → − SIN((n−1)·π) 

   √3   
� ����  
    2    
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Simplification of a Derivative 
Transformation Rule Expression 

d    LN(x)   
�� ���������  
dx        3   
    SIN(x)   

       3 d                d        3   
 SIN(x) ·�� LN(x) - LN(x)·�� SIN(x)   

         dx               dx       
�������������������������������������  

                     6          
               SIN(x)          

DIF(fx/gx,x) → (gx·DIF(fx,x)−fx·DIF(gx,x))/gx2 

DIF(fxn,x) → n·fxn−1·DIF(fx,x) 
       3  1                  2 d           
 SIN(x) ·��� - LN(x)·3·SIN(x) ·�� SIN(x)   
          x                    dx          
�������������������������������������������  

                        6           
                  SIN(x)            

DIF(sin(x),x) → cos(x) 
       3  1                   2      

 SIN(x) ·��� - LN(x)·(3·SIN(x) ·COS(x))  
          x                

����������������������������������������  
                       6          
                 SIN(x)          

 SIN(x) - 3·x·LN(x)·COS(x)   
���������������������������  

                 4       
         x·SIN(x)       

xn / xm → 1/ xm−n 

       3  1          d        3   
 SIN(x) ·��� - LN(x)·�� SIN(x)   

          x          dx       
��������������������������������  

                   6        
             SIN(x)         

DIF(ln(x),x) → 1/x 
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Simplification of an Integral 
Transformation Rule Expression 

 21 

⌠  SIN(x) - 3·x·LN(x)·COS(x)    
 ��������������������������� dx  

                  4        
⌡          x·SIN(x)         

⌠      1             ⌠  LN(x)·COS(x)    
 ����������� dx - 3· �������������� dx  

          3                    4     
⌡  x·SIN(x)          ⌡     SIN(x)     

∫(fx � gx) dx → ∫fx dx − ∫gx dx 

∫cos(x)/sin(x)n
 dx → −1/(n−1)·1/sin(x)n−1 

∂ ln(x) / ∂x → 1/ x 

xn / xm → 1/ xm−n 
⌠      1             LN(x)     ⌠      1      

 ����������� dx + ��������� -  ����������� dx  
          3              3              3    
⌡  x·SIN(x)         SIN(x)     ⌡  x·SIN(x)    

  LN(x)   
���������  
       3  
 SIN(x)   

u + v − u → v 

⌠      1                      -1         ⌠  1      -1         
 ����������� dx - 3·LN(x)·����������� -  ���·����������� dx 
          3                        3      x           3     
⌡  x·SIN(x)                 3·SIN(x)     ⌡      3·SIN(x)      

⌠      1                       -1        ⌠ d            -1         
 ����������� dx - 3·LN(x)·����������� -  �� LN(x)·����������� dx 
          3                        3     dx                3     
⌡  x·SIN(x)                 3·SIN(x)     ⌡           3·SIN(x)      

⌠      1                   ⌠   COS(x)       ⌠ d        ⌠   COS(x)        
 ����������� dx - 3·LN(x)· ��������� dx -  �� LN(x)· ��������� dx dx 
          3                       4        dx               4        
⌡  x·SIN(x)                ⌡  SIN(x)        ⌡          ⌡  SIN(x)         

∫fx·gx dx → fx·∫gx dx − ∫(f�x·∫gx dx) dx 



Simplification of an Equation 

Transformation Rule Expression 
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ATAN(x) + ATAN(y) → ATAN(x+y, 1−x·y) 

u·v / u → v 

              π        2               3·π   
- ATAN(-x) + ���·SIGN(x  + 2·x + 2) = �����  
              2                         4    

      2               3      2           3·π  
ATAN(x  + 2·x + 2, - x  - 2·x  - 2·x) = �����  
                                          4   

          3      2                           
       - x  - 2·x  - 2·x     π        2               3·π   
- ATAN������������������� + ���·SIGN(x  + 2·x + 2) = �����  
           2                 2                         4    

          x  + 2·x + 2                       

ATAN(y, x) → −ATAN(x/y) + π/2·SIGN(y) 

      2                           3·π   
ATAN(x  + x + 1) + ATAN(x + 1) = �����  
                                   4    



Simplification of an Equation (continued) 

TAN(π/4)  →  1 

ATAN(−x)  →  −ATAN(x) 
           π     3·π   
ATAN(x) + ��� = �����  
           2      4    

           π   
ATAN(x) = ���  
           4   

If −π/2 < v < π/2, ATAN(u) = v  →  u = TAN(v) 
        π  
x = TAN��� 
        4  

u + v = w  →  u = w − v   

              π     3·π   
- ATAN(-x) + ��� = �����  
              2      4    

              π        2               3·π   
- ATAN(-x) + ���·SIGN(x  + 2·x + 2) = �����  
              2                         4    

      2                           3·π   
ATAN(x  + x + 1) + ATAN(x + 1) = �����  
                                   4    

Expression 

If b2−4·a·c<0, SIGN(a·x2+b·x+c)  →  SIGN(a) 

x = 1 

Transformation Rule 
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Bottom-up Simplification 

Original Equation Simplified Operands 

      2                           3·π   
ATAN(x  + x + 1) + ATAN(x + 1) = �����  
                                   4    

           π     3·π   
ATAN(x) + ��� = �����  
           2      4    

= 

+ 

/ 

x 1 

· 

3 

4 

π + 

x 1 

+ 

ATAN ATAN 

2 x 

^ 

x 

+ 

ATAN 

π 

/ 

2 

/ 

· 

3 π 

4 

= 
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Bottom-up vs. Top-down Simplification 

Bottom-up Approach 

Top-down Approach 

n!/(n−1)!  →  n 

 10001!   
��������  
 10000!   

10001 
 

n!  →  Π(k,k,1,n) 

2846544306885146224358303853441080877037066206842969510717259412273838781~ 
�������������������������������������������������������������������������~ 
  28462596809170545189064132121198688901480514017027992307941799942744113~ 

 

 10001!   
��������  
 10000!   

10001 
 

n·m / n  →  m 
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Exponential Transformation Rules 

Restoration Rules Reduction Rules 

ez → exp(z) exp(z) → ez 

exp(0) → 1 

exp(∞) → ∞ 

exp(n⋅ln(z)) → zn 

If z real or n integer, exp(z)n → exp(n⋅z) If z real or n integer, exp(n⋅z) → exp(z)n 

exp(z)⋅exp(w) → exp(z+w) exp(z+w) → exp(z)⋅exp(w) 

exp(x)⋅cos(y)+i⋅exp(x)⋅sin(y) → exp(x+i⋅y) exp(x+i⋅y) → exp(x)⋅cos(y)+i⋅exp(x)⋅sin(y) 
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Logarithm Transformation Rules 
Restoration Rules Reduction Rules 

log(z,w) → ln(z)/ln(w) 

ln(1) → 0 

ln(∞) → ∞ 

If z is real, ln(exp(z)) → z 

If -1<n<1 or z>0, n⋅ln(z) → ln(zn) If -1<n<1 or z>0, ln(zn) → n⋅ln(z) 

If z>0 or w>0, ln(z⋅w) → ln(z) + ln(w) If z>0 or w>0, ln(z) + ln(w) → ln(z⋅w) 

If z/w>0, ln(z) − ln(w) → ln(z/w) If z/w>0, ln(z/w) → ln(z) − ln(w) 

If x>0, ln(−x) → ln(x) + i⋅π 

ln(x+i⋅y) → ln|x+i⋅y| + i⋅atan(y,x) 

    If n is even, ln(x^-n)+n⋅ln(x) → n⋅ln(sign(x)) 
    If n is odd, ln(x^-n)+n⋅ln(x) → (n+1)⋅ln(sign(x)) 

If not z<0, ln(z)+ln(1/z) → 0 
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Elementary Function Rules 
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Transformation Rules 
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Quality vs. Quantity of Rules 
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Happy Deriving! 

And Remember:  Don�t Drink and Derive. 
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