
THE DERIVE - NEWSLETTER #20

ISSN 1990-7079

T H E B U L L E T I N O F T H E

U S E R G R O U P

 C o n t e n t s:

 1 Letter of the Editor

 2 Editorial - Preview

 3 DERIVE User Forum

 Benno Grabinger
 8 Playing-Cards Shuffling with DERIVE

 José-Luis Llorens Fuster
 10 Improvements on the Resolution of ODEs

 George Douros
 29 Differential Equations with DERIVE

 Ales Kozubík
 37 Asymptotically stable solutions

 G P Speck
 40 Müller´s Method

 Thomas Weth
 48 A Lexicon of Curves (7) – The Cardiod

 Jan Vermeylen & Josef Böhm
 54 Vieta at Random

 Johannes Wiesenbauer
 56 Titbits 6 – The regular 17-Edge

revised Version 2009 December 1995

 D-N-L#20

I N F O R M A T I O N - B o o k S h e l f

 D-N-L#20

[1] DERIVE-Projekte im Unterricht, MU, Jahrgang 41, Heft 4/95

Friedrich Verlag, 30917 Seelze

[2] Materialien zum M-Unterricht mit Computer und DERIVE,

Landesmedienzentrum in Rheinland-Pfalz, 1995, Hofstr. 257, 56077 Koblenz

[3] Learning Linear Algebra through DERIVE, Brian Denton,

Prentice Hall, 1995, ISBN 013 122664 9, 351 pages

[4] Business Calculus today with Spreadsheets and DERIVE, R. L. Richardson,

Saunders College Publishing, 1996, ISBN 0 03 017554 2, 416 pages

[5] Resources by Discovery, MAA Notes 27-31, The Mathematical Association of America

[6] transferts, Cahiers de la Cellule Recherche Innovations Pédagogiques, Numero 7
 Derive: Utilisation d´un logiciel de calcul formel
 C.R.I.P. Rectorat de l´académie de Lille, 20 rue Saint Jacques, 59000 Lille, France
 Dominique Lymer, one of the authors and a DUG member since long sent one copy (170

pages). It is an interesting collection of work sheets for students with accompanying
support material for teachers. Merci, Dominique. Dominique has submitted a contribution
which is one of my favourites for the next issue.

[7] Matemáticas con DERIVE en la economia y la empresa, Alfonso Gonzáles, Pareja,

ra – ma, ISBN 84 7897 201 3

Exchange for DERIVE Teaching
materials in the DNL

The wheel has not to be invented twice.

Börse für DERIVE Unterrichts-
materialien im DNL

Das Rad muss nicht zweimal erfunden werden.

I can offer:

Binomial Theorem, GCD & LCM, System of Coordinates (in English and in Ger-
man as well), Modelling Word Problems with DERIVE

DERIVE Days Leeds

Spring School on Teaching and Learning
Mathematics with DERIVE and the TI-92

Trinity and All Saints College, Leeds

13 – 15 April 1996

For receiving an announcement please send a self-addressed A4 envelope to:
John Monaghan, Centre for Studies in Science and Mathematics Education,
University of Leeds, Leeds LS2 9JT

 D-N-L#20

L E T T E R O F T H E E D I T O R

p 1

Liebe DUG-Mitglieder,

Gleich zu Beginn möchte ich uns allen zum fünf-
jährigen Bestehen der DUG gratulieren. Mit dem
ersten Mitglied aus Namibia, das ich recht herz-
lich in unserem aller Namen begrüße, sind nun
alle fünf Kontinente in der DUG vertreten.

Für das Jahr 1996 steht eine interessante Auswei-
tung des DNL in Aussicht. Bert Waits von der
Ohio State University (OSU) und Bernhard Kutz-
ler von SWHE, zwei TI-92 Spezialisten, haben
angeregt, eine TI-92 Kolumne in den DNL aufzu-
nehmen. Sie haben auch versprochen, die ersten
Beiträge zu liefern und Anfragen zum TI-92 zu
beantworten. Das „klassische“ DERIVE für den
PC wird dabei weiterhin nicht zu kurz kommen.

Die Beiträge dieser Ausgabe sind schwerpunkt-
mäßig den Differentialgleichungen gewidmet. Das
ist vielleicht für manche von Ihnen zu einseitige
Kost. Ich kann Ihnen Abwechslung ankündigen:
1996 wird es einen ausgesprochen sportlichen
DNL geben: eine Projektarbeit über das Schi-
springen, eine Geometrie des Fußballs, Baseball,
ein Vergleich von sportlichen Leistungen und
vielleicht ein Beitrag „DERIVE und das Tennis-
netz“ versprechen allerhand.

Als kleines Weihnachtsgeschenk finden Sie unter
den Dateien im Unterverzeichnis <STEREO>
einige Stereogramme, an denen Sie Ihren „magi-
schen Blick“ testen können. Laden Sie die Bilder
in ein Bildbetrachtungsprogramm (zB
IRFANVIEW). Sie lassen sich ausdrucken oder am
Bildschirm betrachten. Ich wünsche Ihnen viel
Spaß damit. Die Bilder wurden mit POPOUT-
LITE erstellt.

(Geom. Figuren, Geckos+DUG, Geckos, SWHE-
Logo, DERIVE in Rahmen und Gecko+DERIVE)

Bitte vergessen Sie nicht, Ihre Mitgliedschaft
rechtzeitig zu erneuern, wenn Sie der DUG die
Treue halten wollen.

Damit bleibt mir nur noch, Ihnen und Ihrer Fami-
lie in meinem und im Namen meiner Frau alles
Schöne für das bevorstehende Weihnachtsfest und
ein glückliches Neues Jahr 1996 zu wünschen.

Herzliche Grüße

Dear DUG Members,

Let me start with a congratulation: It is your
merit that we can celebrate the 5th year of the
existence of the DUG. As we have now a
member from Namibia who joined us two
months ago we can really say that the DUG is
represented on all five continents. We will
express our warm welcome.
For 1996 I am looking forward to having an
interesting enrichment in the DNL. Bert Waits
form the Ohio State University (OSU) and
Bernhard Kutzler (SWHE) – two TI-92 special-
ists –suggested including a TI-92 column in
the DNL. They both have promised to submit
the first contributions and to answer TI-92
related requests.
Some contributions of this issue focus on
differential equations. I’d like to ask our
friends who are not involved so much in these
applications for patience. I can promise for
1996 a really “sportive” DNL: a student’s pro-
ject on ski jumping, geometry of the soccer
ball, base ball, a comparison of sportsmen’s
performances and hopefully an article
“DERIVE and the tennis net”.
Among the files you can find a small Christ-
mas gift. There are some stereograms in the
folder <STEREO>. Try your “magic eyes” by
loading them into any graphics program (e.g.
IRFANVIEW). You can either print the pic-
tures or inspect them on the PC-screen. I
used POPOUT-LITE to create the pictures.
(Geometric shapes, geckos+DUG, geckos,
SWHE-Logo, DERIVE in frames and
gecko+DERIVE).
Please don’t forget renewing your member-
ship for 1996.
My wife and I wish you and your family the
best for Christmas and a Happy New Year
1996

Best regards

I met Joe Fiedler at a TI-92 workshop in Houston. Unfortunately I didn’t realize that Joe has
been a DUG member, so I didn’t introduce myself. Joe, you were great. I enjoyed your and
Wade Ellis´ workshop immensely. I had many nice hours at the ICTCM including the DUG-
meeting. But this workshop was one of the top events for me. Many thanks.

 p 2

E D I T O R I A L

 D-N-L#20

The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE User Group. It is pub-
lished at least four times a year with a con-
tents of 30 pages minimum. The goals of
the D-N-L are to enable the exchange of
experiences made with DERIVE as well as
to create a group to discuss the possibilities
of new methodical and didactical manners
in teaching mathematics.

Editor: Mag. Josef Böhm
A-3042 Würmla
D´Lust 1
Austria
Phone: 43-(0)2275/8207

Contributions:
Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the D-N-L.
It must be said, though, that non-English
articles are very welcome nonetheless.
Your contributions will be edited but not
assessed. By submitting articles the author
gives his consent for reprinting it in D-N-
L. The more contributions you will send,
the more lively and richer in contents the
DERIVE Newsletter will be.

Preview: (Contributions for the next issues):

 Graphic Integration, Probability Theory, Linear Programming, Böhm, A
 LOGO in DERIVE, Lechner, A
 DREIECK.MTH, Wadsack, AUS
 IMP Logo and Misguided Missiles, Sawada, HAWAII
 3D Geometry, Reichel, AUS
 Parallel- and Central Projection, Böhm, AUS
 Vector and Vector Indices Sorting, Biryukov, RUS
 Algebra at A-Level, Goldstein, UK
 Tilgung fremd erregter Schwingungen, Klingen, GER
 Utility for Complex Dynamic Systems, Lechner, A
 Notes on DERIVE 2.6 functions and limits, Speck, NZL
 Ski Jump, a project with students, Scheuermann, GER
 Linear Mappings and Computer Graphics, Kümmel, GER
 Julia Sets, Kümmel, GER
 Solving Word Problems with DERIVE, Böhm, AUT
 and

Setif, FRA; Vermeylen, Belgium; Lymer, FRA; Leinbach, USA, Aue, GER;
Weth, GER, Wiesenbauer, AUT; Keunecke, GER, Weller, GER, …

and messages from the derive-news@mailbase.ac.uk

Impressum:
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA
Richtung: Fachzeitschrift
Herausgeber: Mag.Josef Böhm
Herstellung: Selbstverlag

 D-N-L#20

D E R I V E - U S E R - F O R U M

 p 3

Glynn D Williams, Gwynedd, UK
Dear Sir,

I have used DERIVE 3.0 for just over a year now, and find that it is a significant improve-
ment over the previous versions, both in the functions available and in speed of operation.
But I feel, that there are still some loose ends which need tidying up:

1. It seems that the configurable menu system was added as an afterthought, because no
error checking is done on the menu items to see that
a) the menu tree is workable, with all brackets and quotation marks correctly matched up;
b) all the menu items on a particular branch of the menu tree have distinct hotkeys;

c) there is a way out, using Quit or its alias.
Any of the above kinds of error can cause the program to simply hang up, requiring a re-
boot. This is unacceptable: errors should be indicated, with a chance to escape. I use a
modified menu myself, because I like Substitute and Renumber (frequently wanted, but
buried two levels down the menu-tree!) to be one-key operations; I also like Save, Load
and Merge to be near the top of the menu.

2. There are some bugs in the code: factor ([]) returns [1] instead of [], making this
function unworkable when used with the factors() function. Of course one could write
one's own factor() function e.g. myfactor(a):=if(a=[],[],factors(a)) to
squash the bug, but it is messy, and such "patches" should be unnecessary.

3. The mouse could be usefully employed to select areas of graphs or expressions to be cop-
ied, pasted, or zoomed.

4. One area which needs to be attended urgently is the presentation of brackets in multi-line
expressions. These are currently always represented as square; this can cause ambiguity
if the function definition contains vectors or if the header accepts them as parameters. The
Newsletter suffers from this; it is sometimes difficult to decide whether a bracket or a pa-
renthesis should be keyed when typing in code. The explanation in the manual is that this
is unavoidable because of the limitations of the IBM-compatible character-set.

5. How about a proper ring- or spiral-bound manual, so that one can open the book out flat:
one has both hands in use when working at a keyboard, and a book which tends to close
is a nuisance in these circumstances?

Yours faithfully Glyn D Williams

DNL: I sent your ideas to Soft Warehouse and I am sure you will receive an answer. In my DERIVE
versions 3.04 and 3.06 factor ([]) returns [] .Concerning point 4. of your complaints I must
admit that you are right: two souls are fighting in my breast. The expressions written in DERIVE syn-
tax are easy to type in, but they often don't represent the mathematical contents as clear as wanted. I
will pay more attention to this aspect in the future. Maybe it will be possible to "mix" the two forms of
representing DERIVE expressions.

Martin Lindsay, Footscray Campus, Melbourne, Australia
I am a beginning mathematics education PhD student who is interested in using DERIVE as
a project for my research. I teach upper secondary / lower tertiary students (17 -21 year -
olds) mainly precalculus and calculus topics. I would like to hear from anyone who has come

 p 4

D E R I V E - U S E R - F O R U M

 D-N-L#20

across a concept (or topic) which can be investigated from an educational point of view, and
which has, in their opinion the potential to contribute to our understanding of how students
learn mathematics via a computer.
Regards. Martin Lindsay. e-mail: Martin Lindsay@vut.edu.au; FAX: ++6136884050

DNL: I sent some own materials to Martin and I hope that there are some other DUG members who
will support his work. Are there any suggestions for projects? It could be interesting to compare pro-
jects done in different countries und under various circumstances and conditions. Hopely we will hear
about results. Additionally I can recommend the Resources for Calculus Collection from the MAA,
which I bought in Houston last week and transferts (in French). You will find more information in the
Book Shelf.

In the last DNL you could find an interesting request about a square root simplification. I received two
respective answers. one from the Fachhochschule Osnabrück and another one from Albert Rich,
SWHH, which explains the issue.

FHS Osnabrück
The fact described by Mr. Pröpper in DNL#19 has more odd aspects. If one having defined
the interval [-1,1) for x, tries to simplify expression #1 he will obtain the expected result (#5).
Only expression #2 (derived by DERIVE) will not simplify. Although DERIVE recognizes #1
and #3 as equal, they are treated differently when they are simplified.
The next example shows the same: the declaration of the interval –1 < x 1 is considered in
simplifying expressions #1, #9 and #11. Simplifying #13 (included #2) fails again.

  1 + x 
#1: √((1 + x)·(1 - x))·√ User
  1 - x 

  x + 1 
#2: √·√((x + 1)·(1 - x)) Simp(#1)
  1 - x 

 2  1 + x 
#3: √(1 - x)·√ Expd(#1')
  1 - x 

#4: x  Real [-1, 1) User

#5: x + 1 Simp(#1)

 2
 √(1 - x)·√(x + 1)
#6:  Simp(#3)
 √(1 - x)

 F(x) ≔
 If x > 2
#7: "false" User
 "true"
 "unknown"

#8: F(x) ≔ true Simp(#7)

 D-N-L#20

D E R I V E - U S E R - F O R U M

 p 5

 G(x) ≔
 If x^2 > 2
#9: "false" User
 "true"
 "unknown"

#10: G(x) ≔ true Simp(#9)

   1 + x  
#11: u ≔ IF√((1 + x)·(1 - x))·√ > 3, false, true, unknown User
   1 - x  

#12: u ≔ true Simp(#11)

  2  1 + x  
#13: v ≔ IF√(1 - x)·√ > 3, false, true, unknown User
   1 - x  

#14: v ≔ unknown Simp(#13)

Albert Rich #1
Dear Josef,

Enjoyed reading the DUG Newsletter #19. You have surpassed the 18 Newsletters
Soft Warehouse published back in the muMATH days!

In your response to Wolfgang Pröpper´s question concerning the simplification of
radicals you wondered why DERIVE did not simplify his example to 1 + x even if x is de-
clared an element of [-1,1). The reason is that DERIVE does not simplify SQRT(1 – x^2) to

SQRT(1 + x) * SQRT(1 – x)
because this requires rational factoring of 1 – x^2. DERIVE only tries square-free factoring on
the argument of radicals because rational factoring can take a very long time (e.g. try rational
factoring 1000 x^4 + x^3 + 1323).

To properly resolve the problem, I will teach DERIVE that factoring the difference of
two squares is easy to do. (DERIVE is an obedient student but it has to be taught each and
every detail!)

On another subject, your readers may be interested in the following recent additions
to the utility file NUMBER.MTH:

The function CONTINUED_FRACTION(u,n) approximates to a vector of n+1 partial
quotients of the continued fraction of u. For example,

CONTINUED_FRACTION(#e,8)

approximates to
[2,1,2,1,1,4,1,1,6]

If question marks (?) appear in the result, use the Options Precision command to increase
the precision. CONTINUED-FRACTION is defined as follows

CONTINUED_FRACTION(u, n) ≔ FLOOR(ITERATES(1/MOD(x_), x_, u, n))

The function PARTITIONS(n) simplifies to the number of decompositions of n integer
summands without regard to order. For example, 4 = 1 + 3 = 2 + 2 = 1 + 1+ 2 = 1 + 1+ 1+ 1
so PARTITIONS(4)= = 5. The following definition of PARTITIONS was contributed by James
FitzSimons:

 p 6

D E R I V E - U S E R - F O R U M

 D-N-L#20

PARTITIONS_AUX(n,m,mn):=

IF(m=1,1,SUM(PARTITIONS_AUX(n-k_,m-1,k_),k_,mn,FLOOR(n,m)))

PARTITIONS(n):=SUM(PARTITIONS_AUX(n,m,1),m,1,n)

PARTITIONS(4)=4

Unfortunately, for n greater than about 50 the above functions take too long because
of explosive fan-out on the recursive calls to PARTITIONS_AUX: Are there any DUG mem-
bers who can come up with an efficient definition for PARTITIONS that Soft Warehouse can
include in NUMBER.MTH? Aloha.

(Are there? Hannes and others, this is a real challenge! I have put these functions and the next ones
together in one file NUMBEXT.MTH. You can merge this file to NUMBER.MTH and so improve
your NUMBER.MTH. Josef)

Albert Rich #2
Dear Josef,

Enclosed is an article that appeared in a recent Science News about consecutive
prime numbers that you might find interesting. I thought that these seven 97-digit primes
would make a good test of DERIVE's NEXT_PRIME function. The enclosed printout shows
that DERIVE does correctly recognize primes of this size.

Since my October 16, 1995 letter we have simplified and renamed the function for
computing the partitions of a number. This is how my comment in this letter should read:

PARTS(n) simplifies to the number of decompositions of n into integer summands
without regard to order. For example, 4 = 1 + 3 = 2 + 2 = 1 + 1+ 2 = 1 + 1 + 1 + 1 so
PARTS(4) = 5.

PARTS_AUX(n,m)≔IF(n<2m,1,1+∑(PARTS_AUX(n-k_,k_),k_,m,FLOOR(n,2)))
PARTS(n)≔IF(n<1,0,PARTS_AUX(n,1))
PARTS(4)=5

PARTS(50)=204226

(needs 8.05 sec)

Recent Derive versions have another PARTS-function implemented. It looks very bulky but it
is much more efficient than the earlier one - and it works without the auxiliary function:
PARTS(n)≔IF(n<2,1,FLOOR(APPROX(∑(-1/π√(k_/2)∑(IF(GCD(h_,k_)=1,
 COS(π(∑((i_/k_-1/2)(MOD(i_h_/k_)-1/2),i_,1,k_-1)-2nh_/k_)),0),
 h_,1,k_)2√6e^(-π√(24n-1)/(6k_))(e^(π√(24n-1)/(3k_))
 (6k_-π√(24n-1))-6k_-π√(24n-1))/(k_(24n-1)^(3/2)),
 k_,1,√n/LOG(n,11)),LOG(1/(4n√3)e^(π√(2n/3)),10)+5)+1/2))

PARTS(50)=204226

(needs 0.000 sec!! Josef)

 D-N-L#20

D E R I V E - U S E R - F O R U M

 p 7

DISTINCT_PARTS(n) simplifies to the number of decompositions of n into distinct in-
teger summands without regard to order.
For example, 4 = 1 + 3 so DISTINCT_PARTS(4) = 2.

DISTINCT_PARTS_AUX(n,m)≔IF(n<2·m,1,1+∑(DISTINCT_PARTS_AUX(n-
k_,k_+1),k_,m,FLOOR(n,2)))

DISTINCT_PARTS(n)≔IF(n<1,0,DISTINCT_PARTS_AUX(n-1,1))
DISTINCT_PARTS(100) = 444793

(needs 16.5 sec)

The function which is implemented now works also without any auxiliary function. Compare
the calculation time.

DISTINCT_PARTS(n)≔∑(IF(n-16i_+1=FLOOR(√(8n-16i_+1))^2,PARTS(i_),0),
 i_,0,n/2)

DISTINCT_PARTS(100)=444793

(needs 0.047 sec)

All for now,
Aloha, Albert D. Rich, Applied Logician

(Albert's letter closes again with his challenge to improve these functions. Find now the included file
for Harvey Dubner's first of seven consecutive primes separated by 210. That is a new record, the
previous had been numerous examples involving six consecutive primes in arithmetic progression.
Albert refers to an article from SCIENCE NEWS, vol. 148, September 1995. The article starts
"Searches for patterns among prime numbers have long served as stiff tests of the ingenuity and per-
severance of mathematicians." You can obviously see that not only our column writer Johannes
Wiesenbauer is dealing with prime numbers. H. Dubner and H. Nelson ended up using seven com-
puters, running continuously for about 2 weeks, to find the sequence. Now they are thinking about
going to eight consecutive primes. They estimate that it would take 20 times longer - at least 2.5 com-
puter years - to accomplish this search on their souped-up personal computers. Josef)

"Harvey Dubner's first of 7 consecutive primes separated by 210:"

p:=10895334312470593108757803789229577329080364929931381953852
 13105561742150447308967213141717486151

"The following verifies the difference of the 7 consecutive primes"

"and that DERIVE's primality is working good:"

v:=ITERATES(NEXT_PRIME(n),n,p,8)

"You might simplify #5 to see the 8 huge prime numbers"

VECTOR(v SUB (n_+1)-v SUB n_,n_,DIMENSION(v)-1)

[210,210,210,210,210,210,120,52]

 P 8

Benno Grabinger: Playing-Cards Shuffling

 D-N-L#20

Playing-Cards Shuffling with DERIVE

Benno Grabinger, Neustadt, Germany

In DNL#12 Mr Chuan from Taiwan posed the following question:

Is it a surprise that after perfectly shuffling only 8 times a deck of 52 cards, the origi-
nal position of the cards is restored?

With the help of DERIVE it is no problem to understand what is going on. The perfect shuffling is
described by the permutation

1 2 3 4 ... 49 50 51 52
1 27 2 28 ... 25 51 26 52

p  
=  
 

.

It is well known that each permutation is a product of cycles (having no common elements). The func-
tion CYCLE(p) creates a product of cycles which represents the permutation p:

Applying this function to the given permutation p leads to:

[[1], [27, 14, 33, 17, 9, 5, 3, 2], [28, 40, 46, 49, 25, 13, 7, 4], [29, 15, 8, 30, 41, 21, 11, 6], [31, 16, 34,
43, 22, 37, 19, 10], [32, 42, 47, 24, 38, 45, 23, 12], [35, 18], [36, 44, 48, 50, 51, 26, 39, 20], [52]]

It can easily be seen that this product consists of 6 cycles of length 8 and one cycle of length 2. There-
fore, if p has been applied 8 times the original distribution will be restored.

 D-N-L#20

Benno Grabinger: Playing-Cards Shuffling

 p 9

Two nice graphics from Belgium

G P Speck, the author of the contribution “Mueller´s Method” lives in Wanganui, New Zealand.
The Wanganui River is the main river on the Northern Island of New Zealand. One of the famous
places in the Wanganui region is the “Bridge to Nowhere”. Regards to wonderful New Zealand

p10

J.-L. Fuster: Improvements on the Resolution of ODEs

D-N-L#20

SOME IMPROVEMENTS ON THE RESOLUTION OF

ORDINARY DIFFERENTIAL EQUATIONS
José-Luis Llorens Fuster

Universidad Politécnica de Valencia
Departamento de Matemática Aplicada

46071-VALENCIA, SPAIN

First order equations

 The general solution of the first order differential equation

 (,) d (,) d 0p x y x q x y y+ = [a]

can be obtained using function DSOLVE1_GEN(p,q,x,y,c), which is incorporated in the
ODE1.MTH file (see [1], chap. 5, p.333; [2] chap. 9.6, p.252), always that this equation be:

• Separable
• Linear
• Homogeneous
• Exact
• Equation having an integrating factor which depends only on x or only on y.

When the differential equation is not one of the previous type, if we simplify the men-

tioned function we obtain “inapplicable”. If we want to obtain the particular solution of this
differential equation satisfying the initial condition (x0,y0), we can use the
DSOLVE1(p,q,x,y,x0,y0) function.

Thus, the general solution of the equation (taking from [1], p. 353,ex. 3)

Ex. 1: 2 2sin cosy x y′ =

can be obtained simplifying the expression DSOLVE1_GEN(cos2y, –sin2x). The general solu-
tion will be obtained depending on the constant .c∈\

 In the ODE1.MTH file (which is now FirstOrderODEs.mth, Josef) there are some in-
dependent functions for these types of differential equations:

 SEPARABLE_GEN(p, q, x, y, c) for the separable differential equation having the

form () ().y p x q y′ =

 LINEAR1_GEN(p, q, x, y, c) for the linear DE having the form () ().y p x y q x′ + =

 HOMOGENEOUS_GEN(r, x, y, c) for the homogeneous,

 EXACT_GEN(p, q, x, y, c) for the exact,

 D-N-L#20

J.-L. Fuster: Improvements on the Resolution of ODEs

 p11

 INTEGRATING_FACTOR_GEN(p, q, x, y, c) for these equations having an inte-
grating factor which depends only on x or only on y. In the last three functions we suppose
that the differential equation is written in the implicit form [a]. The DSOLVE1_GEN func-
tion chains the previous functions using the corresponding tests to identify each type of the
equation. For example, if the differential equation satisfies:

p q
y x
∂ ∂

=
∂ ∂

then it is an exact one. Thus the definition of the function contains a sentence of the type
IF(DIF(p,y) = DIF(q,x), EXACT_GEN(p,q,x,y,c),…). From this we can conclude that the
efficiency of this function depends not only on the previous five definitions but also on the
corresponding test.

 On the other hand, it is possible to modify the way how to present the differential
equation [a]. For example, we can write it as:

 d (,) .
d (,)
y p x y
x q x y
= − [b]

 So, in order to solve it we simplify the expression

DSOLVE1_GEN(-p(x,y)/q(x,y),–1)

and obviously we expect to obtain the same solution (or an equivalent one). However, the
following illustration shows the behaviour of DERIVE (v. 3.01) with respect to the separable
differential equation of example 1:

 Obviously, the bug is not in the resolution of the equation (because, as you can see,
the SEPARABLE_GEN function works correctly) but in the test. But this is not an excep-
tional example: the following differential equations (taking from [1], p. 353, ex. 15, 18, 43, 45
and 46) are also of separable form:

Ex. 2: 3 2 (4)y xx y −′ =
Ex. 3: (2 1) (1)yx y y x−′ = −
Ex. 4: 2 2sec tan d sec tan d 0x y y y x x+ =
Ex. 5: 2 (1)cscy x yx y +′ =
Ex. 6: 2 2sin cos d cos d 0y y x x y+ =

 p12

J.-L. Fuster: Improvements on the Resolution of ODEs

 D-N-L#20

Before following Llorens Fuster´s very valuable suggestions from 1995 let´s look at
DERIVE´s solutions from today, Josef

The TI-92, Voyage 200 and TI-NSpireCAS are performing pretty the same:

We continue with Llorens Fuster from 1995:

D-N-L#20

J.-L. Fuster: Improvements on the Resolution of ODEs

p13

 The way to solve this problem is suggested from the first example. In all these cases,
DERIVE seems to recognize more easily that the differential equation is separable if it is writ-
ten in the explicit form [b] than in the implicit one [a]. So, we propose the following modifi-
cation in the ODE1.MTH file:

a) We change the name of the functions DSOLVE1_GEN and DSOLVE1 respectively by
SOLVE1_GEN and SOLVE1.

b) After that we add the following functions:

DSOLVE1(p, q, x, y, x0, y0, a_) ≔ IF("inapplicable" = a_ ≔ SOLVE1(p, q, x, y, x0, y0),

SOLVE1(- p/q, -1, x, y, x0, y0), a_, a_)

DSOLVE1_GEN(p, q, x, y, c, a_) ≔ IF("inapplicable" = a_ ≔ SOLVE1_GEN(p, q, x, y, c),

SOLVE1_GEN(- p/q, -1, x, y, c), a_, a_)

 The meaning of these new functions is obvious: If the original function DSOLVE1
(now named SOLVE1) gives “inapplicable” then we try to apply it again writing the differen-
tial equation in the form [b]. Thus we solve all the examples from above:

 We have suggested to Soft Warehouse to include “officially” this modification in the
ODE1.MTH file, although some strange examples are still remaining:

Ex. 7: 2 2 2 2(1)d (2 2 2 2)d 0x y y x x x y x y x y x y− + − + − + + − + =

(taking from [1], p. 354, ex. 31) which admits the integrating factor 2arctan() .yy eµ −= How-
ever, in this way the general solution is not obtained. The new definition of the DSOLVE1
function does not act because the given result is not “inapplicable”. DERIVE identifies cor-
rectly the type of differential equation but is not able to obtain the solution because it cannot
evaluate the integrals involved:

 p14

J.-L. Fuster: Improvements on the Resolution of ODEs

 D-N-L#20

 As it is shown in the third expression in the previous illustration, it is solved if we
write the equation in form [b]: This is due to the fact that now the integrating factor is

2 1,
1

y
y

µ +
=

+
 which is leading to an exact differential without appearing the mentioned inte-

grals. Obviously this example is very rare. To solve this problem we need to modify more
deeply the ODE1.MTH file.

As you can see even DERIVE 6 is not perfect in solving ODEs. It needs the same rewriting
as in 1995.

It is interesting that the TI-family shows no
problem to solve this “rare” kind of differen-
tial equation without hesitating.

 D-N-L#20

J.-L. Fuster: Improvements on the Resolution of ODEs

 p15

 Finally we show an example that is neither a limitation of this function nor in general
of the program. The linear differential equation

Ex. 8: cos sin 2y y x x′ + =

([1], p. 366, ex. 56) is not correctly solved if we don´t select Manage-Trigonometry-
Expand:

This is no problem for DERIVE 6.

But it is a problem for the Voyage 200 – and
TI-NspireCAS as well – which can be re-
solved expanding the trig expression before
integrating the differential equation.

This is the recent form of DSOLVE1_GEN how it is implemented in DERIVE 6. José-Luis
suggestion for improving the version from DERIVE 3 was obviously accepted by Soft Ware-
house and extended to include other cases, too.

 p16

J.-L. Fuster: Improvements on the Resolution of ODEs

 D-N-L#20

Second order equations

 When a second order differential equation (, ,)y u x y y′′ ′= is incomplete, i.e., when
some of its terms in x, y, or y’ do not appear, sometimes it is possible to solve it directly or
reduce it to two first order equations. So:

a) y and x do not appear: the equations are of the form ().y f y′′ ′= The parametric equa-
tions of the general solution as a function of the parameter v and the constants c and k,
are:

d d, .
() ()
v v vx c y k

f v f v
= + = +⌠ ⌠


⌡⌡

b) y’ and x do not appear: the equations are of the form ().y f y′′ = The general solution
can be written in one of the following expressions as a function of the constants c and k:

d , 2 ()d d .
2 ()d

yx c y f y y k x c
f y y k

= + = + +
+

⌠

⌡

∫ ∫
∫

c) y does not appear: using the change v y′= we transform it to a first order differential
equation (in v’, v, x). The general solution of this equation is, obviously, another first
order equation.

d) x does not appear: the changes , ,y v y v v′ ′′ ′= = ⋅ transform it to a first order differential
equation with the variables v (in place of y) and y (in place of x). The general solution of
this equation is, again, another first order equation.

 It is well known, that in the ODE2.MTH file are only two functions to solve the dif-
ferential equations presented in a) and d). In particular:

 AUTONOMOUS(r,v). We apply it to solve equation d), written in the form
(,) with .y r y v y v′′ ′= = DERIVE simplifies it solving for v’ after applying the previous

change.

 AUTONOMOUS_CONSERVATIVE(r,x,y,x0,y0,v0). We apply it to solve equation
d), written in the form (),y r y′′ = where the initial conditions 0 0 0 0() , ()y x y y x v′= = are sup-

posed. So, it cannot be used to obtain the general solution of the equation.

 Our objective is to define auxiliary functions to obtain the general solution of the dif-
ferential equations of kinds a), b), c) and d).

The following shows what José-Luis proposed in 1995. Then we will have a look how the
utility file SecondOrderODES.mth is supporting solving second order DEs in our times.

 D-N-L#20

J.-L. Fuster: Improvements on the Resolution of ODEs

 p17

 For case a), i.e. () (),y u y u v′′ ′= = it is very easy to define the function:

FALTAYX(u,v,x,y,c,k)≔[x=INT(1/u,v)+c,y=INT(v/u,v)+k]

 Similarly, for the incomplete equations of kind b), i.e. () :y u y′′ =

FALTAXV(u,v)≔["Selec.:",x=INT((2∫(u,y)+k)^(-1/2),y)+c,
 y=INT(2∫(u,y)+k^(1/2),x)+c]

In this way we obtain two equivalent expressions of the general solution. It is possible
that one of the two solutions leads to an unsimplificable integral, depending on the form of
the equation; for these reasons we present the two expressions.

 Finally, for the equations of type c) and d), i.e. (,)y u x y′′ = or (,)y u y v′′ = respec-
tively, we have to define in the first step two auxiliary functions with the following
purpose:

- to solve the first order differential equation obtained after y’ = v as we stated
previously,

- to solve for v in the general solution of this differential equation.

AU1(u,v,x,y,k)≔SOLUTIONS(DSOLVE1_GEN(u,-1,x,v,k),v)

AU2(u,v,x,y,k)≔SOLUTIONS(DSOLVE1_GEN(u/v,-1,y,v,k),v)
(I had to adapt the version from DERIVE 3 to DERIVE 6 because of another form of output
for the SOLVE command.)

Now we define the corresponding main functions in which we apply the
DSOLVE1_GEN function in the obtained solution with each auxiliary function. As it is pos-
sible to obtain two or more different expressions when we solve for v, we use the VECTOR
command:

FALTAY(u,v,x,y,k,c):=
 VECTOR(DSOLVE1_GEN((AU1(u,v,x,y,k))↓i,-1,x,y,c),i,
 DIM(AU1(u, v, x, y, k)))

FALTAX(u,v,x,y,k,c):=
 VECTOR(DSOLVE1_GEN((AU2(u,v,x,y,k))↓i,-1,x,y,c),i,
 DIM(AU2(u, v, x, y, k)))

The efficiency of these functions depends on the following three factors:

- The fact that the first order differential equation obtained after doing the substitution
of the variables belongs to these kind of equations which are recognized by DSOLVE1_GEN;

- The possibility of solving for v in the solution of this equation;

- The fact that the new differential equation obtained in this process is again of a type
of equation which is recognized by DSOLVE1_GEN.

p18

J.-L. Fuster: Improvements on the Resolution of ODEs

D-N-L#20

In the following functions we study the way how DERIVE identifies the kind of in-

complete equation and, as a consequence, applies the right function to solve it.

 TESTX(u,v)≔IF(∂(u,x)=0,FALTAX(u,v),"inapplicable",
 "inapplicable")

TESTY(u,v)≔IF(∂(u,y)=0,FALTAY(u,v),TESTX(u,v),TESTX(u,v))
TESTV(u,v)≔IF(∂(u,v)=0 AND ∂(u,x)=0,FALTAXV(u,v),

 TESTY(u,v),TESTY(u, v))

 ODE2I(u,v)≔IF(∂(u,x)=0 AND ∂(u,y)=0,FALTAYX(u),
 TESTV(u,v),TESTV(u,v))

 DSOLVE2I(u,v,w)≔ODE2I((SOLUTIONS(u,w))↓1,v)

We apply the ODE2I function for the second order equation (, ,).y u x y v′′ = The result
is “inapplicable” if the equation does not belong to any of the types a) , b) c) or d). In other
case we obtain the solution with the restrictions noted previously for the kinds c) and d).

We apply the DSOLVE2I function for the second order equation (, , ,) 0,u w v x y =
where .w y′′= Thus, is the main function, where it is not necessary solving w y′′= before.
Given an equation, it is sufficient to substitute , ,w y v y′′ ′= = as one can see in the following
examples (taking from [1], p. 357):

Ex. 9 (type c): sinyy x x
x
′

′′ − =

Ex. 10 (type c): 2'y y x y′′ ′′= +

Jose-Luis Fuster presents another result. So
I´d like to double check the solution. I define
a function y_(x) and substitute in example
10.

This solution seems to be correct.

D-N-L#20

J.-L. Fuster: Improvements on the Resolution of ODEs

p19

Ex. 11 (type c): 2 1/ 2' (1)y y y′′ ′= +

Ex. 12 (type a): 2 1y y′′ ′− =

Ex. 13 (type c): 2(1) 2 0x y x y′′ ′− − − =

Ex. 14 (type a): 21 0y y′′ ′+ − =

Ex. 15 (type d): 3y y y′′ ′=

Ex. 16 (type d): 2y y y′ ′′=

Ex. 17 (type d): 3 3 0y y y y′′ ′ ′− + =

Ex. 18 (type d): 3 lny y y′′ ′=

p20

J.-L. Fuster: Improvements on the Resolution of ODEs

D-N-L#20

Ex. 19 (type a): 22 1y y y′ ′′ ′= +

Ex. 20 (type b): 1y
y

′′ =

Ex. 21 (type b): 9y y′′ =

As the illustration shows, the differential equation in the next example can also be
solved taking into account that it is a linear equation. The next example corresponds to a not-
incomplete linear equation (although y’ does not appear):

Ex. 22: cos 2 2sin 2y y x x′′ − = −

The two final examples show some limitations. In the first, the expression of the ob-
tained solution seems not to be very satisfying. In the second (taking from [2], p. 261) we do
not obtain a solution. In both cases the problem is caused by the resolution of the first order
equations, i.e. from DSOLVE1_GEN.

Ex. 23 (type d): 21 y y y′ ′′+ =

D-N-L#20

Comments on the Differential Equations

p21

Ex. 24 (type d): 21 0y y y′′ ′+ + =

References

[1] Llorens Fuster, J.L.: “Aplicaciones de DERIVE: Análisis Matemático-I (Cálculo)”
 Servicio de Public. de la Universidad Politécnica de Valencia, 1993

[2] Soft Warehouse “DERIVE User Manual, Version 3“, Honolulu, 1994.

Some comments for the revised version

I´d like to show how DERIVE 6 and the TIs are treating the ODEs of 2nd order. First of all I´ll
solve one or the other of the presented differential equations in the traditional way. This
might support the students´ understanding of the implemented CAS procedures.

Let´s start with Ex. 9 (type c):

(1) 1 siny y x x
x

′′ ′− =

We substitute y’ = v and y’’ = v’ in order to reduce the given DE to a linear DE:

(2) 1 sin .v v x x
x

′ − =

The standard technique for solving linear DEs of the form () ()y p x y q x′ + = is to find an inte-

grating factor ρ(x) and then multiply both sides of the equation by this factor:

(3)

1
ln

2

2

1() .

1 1 sin

1 sin | Integrate wrt

1 cos

cos cos sin cos
2

dx xxx e e
x

v v x
x x

v x x
x

v x k
x

k xv x x k x y x x k x y x x x c

ρ
− −∫= = =

′⋅ − ⋅ =

′ ⋅ = 
 

⋅ = − +

′= − + → = − + → = − − + +

The last step is easy work: We can integrate directly applying integration by parts.

p22

Comments on the Differential Equations

D-N-L#20

I proceed with Ex. 12 (type a):

(1) 2 1y y′′ ′= +

I found in my (old) textbooks that substituting v for y’ might be successful. So let me try:

(2)

d dd
d

d dthen
d d

y yy v x
x v

v v vy
x y

′ = = → =

⋅′′ = =

I perform the substitution in (1) and integrate the 1st order DE by separation of variables:

(3)

2
2

2

d d1 d | Integrate
d 1

ln(1)
2

v v v vv y
y v

vy k

= + → =
+

+
= +

(4)
2

2

1

d d1 d | Integrate
d 1

tan

v vv x
x v

x v c−

= + → =
+

= +

This is the parameter representation which is given as result of example 9. Finally we can try
to have an explicit form of the solution:

From (4): tan()v x c= − and substituting in (3):
2

2

ln(tan () 1) 1 1ln ln cos()
2 2 cos ()
x cy k k x c k

x c
 − +

= + = + = − − + − 
.

But I can also try solving the DE directly by integrating twice:

2
2

1

d d1 d | Integrate
d 1

tan () tan()
d tan() | Integrate
d

ln cos()

v vv x
x v

x c v v y x c
y x c
x

y x c k

−

= + → =
+

′+ = → = = +

= +

= − + +

Let´s have a type b) example: Ex. 21: (I don´t recognize the DE as a differential equation
with constant coefficients and apply again an appropriate substitution for reducing the order
of the equation.

2 2

2 2 2
1 2

d d dand 9
d d d

9 d d | Integrate
9

2 2
9 9

v v v v vv y y y
x y y

y y v v
y vk

y k v v y k

⋅ ⋅′ ′′= = = → =

=

+ =

+ = → = +

2
2 2

2

2
2

d d9 d | Integrate
d 9

ln(9 3)
3

y yy k x
x y k

y k y
x c

= + → =
+

+ +
= +

I am trying to bring the solution in its explicit
form.

 D-N-L#20

Comments on the Differential Equations

 p23

2 3 3

2

2 3 3 2 6 6 3 3 2
2

3 3 6 6
2

3 33 3
3 32

1 2

9 3

9 (3) 6 9

6

.
6 6

x c

x c x c x c

x c x c

x cx c
x x

y k y e

y k e y e y e y

y e e k

k eey c e c e

−

− − −

− −

− +−
−

+ + =

+ = − = − ⋅ +

⋅ = −

⋅
= − = +

As you can see now we obtained finally the solution in the form how it is given by solving the
DE as a homogeneous DE with constant coefficients (using the characteristic equation).

Of course, one can do all the symbolic manipulation supported by CAS, too. But sometimes
it´s nice to do it manually, isn´t it?

We miss an example of type d), so let me choose Ex. 16:

1

2

2d d dand | Separation of variables
d d d

d d | Integrate

dln ln ln | Separate variables again
d

d d | Integrate

ln ln

x
k xk

y y y
v v v v vv y y v y
x y y

y v
y v

yy v k y k v k
x

x y
k y
x c y
k

y c e c e ⋅

′ ′′= ⋅
⋅ ⋅′ ′′= = = → = ⋅

=

= + → = ⋅ = ⋅

=

+ =

= ⋅ = ⋅

I would leave it to the students to compare this solution with the solution given on page 19 as
the result of Llorens Fuster´s function. You can also double check the solution by substituting
into the given DE.

I must say that I enjoyed comparing the traditional way resolving the equation(s) and their
outcomes with the CAS results.

How does DERIVE 6 perform?

DSOLVE2(p,q,r,x,c1,c2) simplifies to an explicit gen-
eral solution of the linear second order ordinary dif-
ferential equation

y" + p(x)·y' + q(x)·y = r(x)

in terms of arbitrary constants c1 and c2. Note that
the last two arguments can be omitted if they are vari-
ables and you are satisfied with the names c1 and c2.

If no method applies or the equation cannot be con-
verted to an equivalent one having a p and a q that are
independent of x, DSOLVE2 returns the word "inapplica-
ble".(Online Help)

p24

Comments on the Differential Equations

D-N-L#20

As you can see, DSOLVE2 does not apply, one has to perform the reduction of the order.

AUTONOMOUS(r, v) simplifies an expression for dv/dy,
given an autonomous equation y" = r(y, v) with v repre-
senting y'.

Example 21 is given in Fuster´s paper.

Example 16 is the last in my row:

 D-N-L#20

Comments on the Differential Equations

 p25

In my opinion José-Luis’ tools are a great support even in times of DERIVE 6. Referring to
the original DERIVE tools requires a lot of more knowledge (which is not so bad) and of more
manipulating.

I wanted to compare DERIVE with the TIs and tried to solve Examples 9 through 24 using
TI-NspireCAS (and the TI-92+ and Voyage 200):

As there is the same CAS implemented it is no surprise that NSpire and the handhelds are
behaving pretty the same (Examples 9, 10, 17 and 18):

p26

Comments on the Differential Equations

D-N-L#20

This is the rest of the list done with TI-NspireCAS:

 D-N-L#20

Comments on the Differential Equations

 p27

You can see that the TIs are well prepared to solve 2nd order ODEs of this kind which are
appearing in Llorens Fuster´s selection.

I felt challenged to check my freshly acquired (and remembered) knowledge in solving 2nd
order ODEs applying my “skills” on examples 23 and 24.

2

2

2

2 2

2 2

2

Example 23:

1

d d dand 1
d d d

d d | Integrate
1

1 1ln ln(1) ln (1)
2 2

| olve for

d | I take the positive root and separate the variables
d

d

y y y

v v v y v vv y y v
x y y

y v v
y v

y v c y c v

y c c v S v y

y y cv
x c

y c

′ ′′+ = ⋅

⋅ ⋅ ⋅′ ′′= = = → + =

⋅
=

+

= + + → = ⋅ +

′= + ⋅ =

−
= = ±

⋅
2

2

2 2

2

2 () ()

2

d | Integrate again

c ln() | Solve for

1| Substitute
2 2

2

x k x k
c c x k x k

c c

c x k c x k

x
y c

y c y x k y

e e c
e c ey c

c

c e ey
c

− − +

+ − −

+ − −

=
−

⋅ − + = +

 
⋅ +   + ⋅ = = →

⋅ +
=

The reader is friendly invited to double check the solution.

2

2

2

2
2

Example 24:

1 0

d d dand 1 0
d d d

d d | Integrate
1

1 1ln ln(1) ln
2 2 1

y y y

v v v y v vv y y v
x y y

y v v
y v

cy v c y
v

′′ ′⋅ + + =

⋅ ⋅ ⋅′ ′′= = = → + + =

⋅
= −

+

= − + + → =
+

p28

Comments on the Differential Equations

D-N-L#20

2
2

2

2

2

2

2

| olve for
1

d 1 | I take the positive root and separate the variables
d

d d | Integrate again

| Solve for

()

cy S v y
v

c yy cv
x y y

y y x
c y

c y x k y

y c x k

′= =
+

−
= = ± − = ±

⋅
=

−

− − = +

= ± − +

I asked MATHEMATICA to do the job:

Fortunately my result from above was confirmed.

The next contribution causes problems. George Douros wrote his package for DERIVE 3 and
it does not run with DERIVE 6 (solve – solutions and incompatibilities with the then used
characters). I found George Douros email-address in the Internet and asked if there is a re-
cent version available. I received an answer the following morning:

Hello Josef Boehm!
I am glad to hear from you... and sorry that I cannot be of help.
I had written a much more powerful ODE package (at the same time with the Special Functions pack-
age) for Derive 6. Some novelties in the simplification machine of Derive (I then had a few arguments
with Albert Rich) prevented my new package from becoming functional. I have since (the end of 2003)
stopped working on the package.
Feel free to do whatever you think useful with the article or the package itself. My new demanding
interests (ancient scripts...) do not allow me to make even a vague promise that I will be of some help
to you.
George Douros

You can download the files and maybe that somebody can adapt the huge package – at
least partially – for the recent DERIVE versions?

I recommend the website demonstrating George´s field of interest (ancient scripts).

http://users.teilar.gr/~g1951d/

 D-N-L#20

George Douros: Differential Equations with Derive

 p29

Differential Equations with Derive®

George Douros
Technological Education Institute of Larissa

Larissa 41110, Greece

Abstract

 This is a presentation of a new Derive package for solving Differential Equa-
tions: ODE.MTH. The aim is to show how to use it and to explain some of the
mathematics behind it, so that users can expand it, or use it as an educational aid.
The package currently covers 1st and 2nd order Ordinary Differential Equations,
both linear with variable coefficients and nonlinear.

1. Introduction

 The first version of ODE.MTH appeared about a year ago and was written for Derive 2.5. Soft
Warehouse found it extremely useful and encouraged the author to publicize and make it available to
Derive users. In the mean time Derive 3 appeared, with new programming functions, and ODE.MTH
grew into an entirely new package. Nonlinear equations are now covered almost exhaustively, singular
solutions are found together with primitives, and a wide class of nonhomogeneous 2nd order linear
equations with variable coefficients that lead to solutions in terms of Bessel, Kummer and Hyper-
geometric functions is treated in detail.

 The package, as well as this article, is based on Derive 3. The ‘User Manual, DERIVE Version
3’ is the main reference. Other useful sources are listed in the Additional Resources appendix on pages
331-340 of the Manual.

2. The General Purpose Function: ODE(w,x,y,y1,y2)

 There are over 280 new functions defined in the package. Most of these are auxiliary, local
functions. Some can be used independently. All are, however, auxiliaries to a single function, which
solves ODEs of the 1st and 2nd order. This function, in terms of the default variables, is:

 ODE(w,x,y,y1,y2)

where, w is any equation (or function) involving the independent variable x, the unknown dependent
variable y=y(x) and its derivatives y1=y'(x) and y2=y"(x). For example, to solve the equation
′′ + ′ − = −y x y x y x x x() () () cos3 2 2 , enter

 ODE(y2+y1-3*y=2*x^2-COS(x))

or,

 ODE(y2+y1-3*y-2*x^2+COS(x))

p30

George Douros: Differential Equations with Derive

D-N-L#20

 To override the default variables in ODE all arguments must be entered explicitly. For exam-
ple, to solve the equation ′ + = −u t u t t() () 2 3, enter

 ODE(y1+u=t^2-3,t,u,y1)

or,

 ODE(u_+u=t^2-3,t,u,u_)

 Many of the methods in the package, use solutions of algebraic and/or transcendental equa-
tions. It is, therefore, strongly recommended that the command: Manage-Branch-Any (this is actually
the default DERIVE.INI setting) be issued before attempting to solve most ODEs which contain
symbolic parameters. Exponents of symbolic powers xn of the independent variable x, appearing in
the coefficients of y, y' and y", in linear 2nd order ODEs must be declared either positive or negative,
since ODE needs to test the behaviour of the equation at its singular points.

2.1. Solutions in terms of Special Functions

 Many 2nd order ODEs will lead to solutions involving Special Mathematical Functions. These
functions (Bessel, Kummer, Hypergeometric) are defined as arbitrary in the package and will not sim-
plify. They can be simplified by loading the additional package FUN.MTH, after ODE.MTH.

 Loading both ODE and FUN in one session, will use up most of the available system memory
in a plain 640K Derive session. In such cases the user can save the solutions, returned by ODE, and
simplify them by loading FUN.MTH in a new session. No such problems occur with DeriveXM.

2.2. Local Variables and Functions

 I know of no way to introduce local variables or functions in a Derive package. I have there-
fore used its ability to ‘understand’ almost all ASCII characters in order to ‘imitate’ protected local
variables and functions. This is done in the file ODE.ASC, where all variables are translated to ASCII
characters above 180. The default variables (x,y,y1,y2) are left unchanged only in the ‘global
functions’: ELIMINATE, RICCATI, GENERAL, ODE and the TRANSFORM_ utilities, to reduce typ-
ing. If one uses only the default variables, it suffices, for example, to enter

 ODE((y1-y/x)^2-x*y2)

instead of

 ODE((y1-y/x)^2-x*y2,x,y,y1,y2)

3. Equations of the 1st Order

3.1. Equations linear in y'(x)

 The package uses the ‘standard’ techniques, but also looks for symmetries that allow simplify-

ing transformations. For example, the equation f xy
x

y
xn n

′ =,e j 0 is invariant under the

 D-N-L#20

George Douros: Differential Equations with Derive

 p31

transformation [], , nx y x yα α →   . This suggests that the transformation y x Yn→ will simplify the

original DE. If we transform the solved form of the above equation n n

x y yf
x x
′  =  

 
, we get

#1: TRANSFORM_Y(x*y1/x^n=ƒ(y/x^n),x^n*y)

#2: y1*x+n*y=ƒ(y)

which is a simple separable equation. ODE finds the appropriate n by computing n x

y

df
dx
df
dy

= − . This is all

done automatically without user intervention. Take, for example, the DE 1
2
yy
xy x

′ = +
+

#3: ODE(y1=1/(y+√(x))+y/(2*x))

 2
 y/√x + y /(2·x)
#4: ê
 ────────────────── = c1_
 x

 Extensive search for integrating factors, of various forms, is performed to make equations
exact. Take for example the equation x y x y y2 3 21 0+ + ′ =() , which is not exact

#5: EXACT_1ST(x^2*y^3+x*(1+y^2)*y1)

#6: ¿

ODE however, finds an integrating factor 3

1(,)x y
x y

µ = (try it) and solves the equation

#7: ODE(x^2*y^3+x*(1+y^2)*y1)

 2
 x 1
#8: LN(y) + ──── - ────── = c1_
 2 2
 2 y

3.2. Equations of degree higher than one in y'(x)

 For equations of degree higher than one in y'(x) ODE tries to solve for one of the variables x, y,
y' and proceed from there. The equation y y xy y2 2 3′ + ′ = has the solution

#9: ODE(y^2*y1^2+3*x*y1=y)

 ┌ 4·c1_ 2·c1_ ┐
 │ ê 3·x·ê 2 3 │
#10: │──────── + ──────────── - y = 0, 9·x + 4·y = 0│
 │ 2 2 │
 └ y y ┘

p32

George Douros: Differential Equations with Derive

D-N-L#20

or equivalently,

 ┌ 3 2 2 3 ┐
#11: └3·c1_·x - y + c1_ = 0, 9·x + 4·y = 0┘

which was actually obtained by choosing to solve the original equation for x (this is simpler than solv-
ing for y or y'). This can be seen by issuing the command

#11: X_SOLVABLE(y^2*y1^2+3*x*y1-y)

Note that ODE also appends the singular solution, when it can be found, to the primitive. In this case
9 4 02 3x y+ = is the singular solution of y y xy y2 2 3′ + ′ = .

 The solution of higher degree equations is usually found in parametric form. ODE does not
automatically attempt to eliminate the parameter, because, in its present form, it may lose parts of the
solution. The user can in such cases use ELIMINATE to simplify the solution.

#12: ODE(2*y1*x-y*y1^2-y)

 ┌┌ 2 ┐ ┐
 ││ c1_·(α + 1) 2·c1_ │ 3 2 │
#13: ││x = ──────────────, y = ───────│, y - x ·y = 0│
 ││ 2 α │ │
 └└ α ┘ ┘

#14: ELIMINATE(#13,α)

 ┌ 2 2 ┐
 │ y + 4·c1_ 3 2 │
#15: │x = ─────────────, y - x ·y = 0│
 └ 4·c1_ ┘

4. Equations of the 2nd Order

 With second order equations of some complexity, ODE starts by assuming that the equation is
given in an unnatural form; a simple DE has undergone transformations in both the dependent and
independent variables resulting in the given complicated equation. A search is initiated for the reverse
transformations that will recover the original simple DE. Three major methods are used: changing the
independent variable x, reducing the equation to its canonical form, and scaling transformations (sym-
metries) in the variables x, y, y', y".

4.1. Changing the Independent Variable x

 Asking ODE to solve the equation sin () sin()cos()2 4 0x y x x y y′′ + ′ + = , we get

#16: equ_1:=SIN(x)^2*y2+SIN(x)*COS(x)*y1+4*y

#17: ODE(equ_1=0)

 ┌ ┌ ┌ x ┐┐┐ ┌ ┌ ┌ x ┐┐┐
#18: y = c1_·COS│2·LN│TAN│───│││ + c2_·SIN│2·LN│TAN│───│││
 └ └ └ 2 ┘┘┘ └ └ └ 2 ┘┘┘

 D-N-L#20

George Douros: Differential Equations with Derive

 p33

How did ODE proceed? When the solution algorithm reached the internal function CHANGE_X,

equ_1 was transformed by letting x e
x

→ 2 2arctan (computed from the coefficients of y and y"),

#19: INVERSE(INT(√(DIF(equ_1,y)/DIF(equ_1,y2)),x),x)

 x/2
#20: 2·ATAN(ê)

#21: TRANSFORM_X(equ_1,#20)

#22: 4·(y + y2)

which is a simple equation to solve.

4.2. Reducing an Equation to its Canonical Form

 The canonical form, ′′ + ′ − ′ + − =y qp pq pr q y

p
1

4
2

2 2 2 4 0e j , of the differential equation

equ py qy ry1 0:= ′′ + ′ + = is obtained by letting y ye→ φ , where φ = − 1
2

q
p dxv .

 It can easily be shown that equation equ p f y q f y r f y2 0:= ′′ + ′ + ={ } { } has exactly the same
canonical form as equ1 and that its solution is a multiple of the solution of equ1.

 This fact is used by ODE to solve equations like equ2, by reducing them to their canonical
form and proceed from that point by pattern matching with canonical forms of equations with known
solutions.

 Equation hyp_ode is a simple case of a hypergeometric differential equation and is directly
solved by ODE.

#22: hyp_:=2*x^2*(1-x)*y2-x*(2*x+3)*y1+(2*x+3)*y

#23: ODE(hyp_)

 ┌ ┌ 5 1 3 ┐ ┌ 1 ┐┐
#24: y = x·│c1_·√x·F21│───,───,───,x│ + c2_·F21│2,0,───,x││
 └ └ 2 2 2 ┘ └ 2 ┘┘

 Suppose we transform hyp_ by first letting x xk→ and then
()
yy
xΩ

→ . The resulting equa-

tion looks awesome. This is what we previously characterized as an unnatural form. By reducing this
equation to its canonical form, however, ODE can solve it in a natural way, as if only by making sub-
stitutions in #24.

#25: k^2*TRANSFORM_X(hyp_,x^k)

 2 k k 2 k
#26: 2·x ·(1 - x)·y2 - x·(2·x + 5·k - 2)·y1 + k ·(2·x + 3)·y

#27: Ω(x)^3*TRANSFORM_Y(#26,y/Ω(x))

p34

George Douros: Differential Equations with Derive

D-N-L#20

 2 k 2
#28: 2x (1-x)Ω(x) y2+

 ┌ k┌ d ┐ d ┐
 xΩ(x)│2x │2x──Ω(x)-Ω(x)│-4x──Ω(x)+(2-5k)Ω(x)│y1+
 └ └ dx ┘ dx ┘

 ┌ k┌ 2 ┌d ┐2 2┌d ┐2 d 2 2┐
 │2x │x Ω(x)│──│ Ω(x)-2x │──Ω(x)│ +xΩ(x)──Ω(x)+k Ω(x) │-
 └ └ └dx┘ └dx ┘ dx ┘

 2 ┌d ┐2 2┌d ┐2 d 2 2┐
 2x Ω(x)│──│ Ω(x)+4x │──Ω(x)│ +x(5k-2)Ω(x)──Ω(x)+3k Ω(x) │y
 └dx┘ └dx ┘ dx ┘

 Before solving the above equation, k must be declared positive (or negative) because ODE
needs to test the behaviour of the equation at its singular points, and Derive is ‘reluctant’ to perform
certain simplifications without this assumption for k. We also (optionally) declare x to be positive so
that the solution #31 be fully simplified to look exactly like #24.

#29: [x:εReal (0,∞),k:εReal (0,∞)]

#30: ODE(#28)

 k ┌ k/2 ┌ 5 1 3 k┐ ┌ 1 k┐┐
#31: y = x Ω(x)│c1_ x F21│───,───,───,x │+c2_ F21│2,0,───,x ││
 └ └ 2 2 2 ┘ └ 2 ┘┘

4.3. Searching for Symmetries

 The other major method used to bring an equation to its natural form is the search for symme-
tries in the dependent and independent variables. Consider, for example, the readily integrable equa-
tion #32, where Ω()t is an arbitrary function. If #32 is subjected to the transformations #33–#37,
the resulting equation #38 is in what we called an unnatural form. ODE can be impressive in solving
it, only because it ‘realizes’ that #38 is invariant under the transformations (,) (,)x y x yα β→ and
automatically reverses #33–#37, to recover the original natural form.

#32: y2-Ω(y1)

#33: TRANSFORM_X(y2-Ω(y1),LN(x))

 2
#34: - Ω(y1·x) + y2·x + y1·x

#35: TRANSFORM_Y(#34,LN(y))

 ┌ 2 ┐
 ┌ y1·x ┐ 2 │ y2 y1 │ y1·x
#36: - Ω│──────│ + x ·│──── - ─────│ + ──────
 └ y ┘ │ y 2 │ y
 └ y ┘

 D-N-L#20

George Douros: Differential Equations with Derive

 p35

#37: NUMERATOR(FACTOR(#36,Trivial))

 2 2 ┌ y1·x ┐
#38: x·(x·(y2·y - y1) + y1·y) - y ·Ω│──────│
 └ y ┘

#39: ODE(#38)

 ┌┌ ⌠ 1 ┐ ┌ ⌠ ┐ ┐
#40: ││ lim │──── du│-x=c1_, LN(y)=│ lim ⌡ƒ(t) dt│+c2_│
 └└u->ƒ(x)⌡Ω(u) ┘ └t->LN(x) ┘ ┘

5. Additional Utilities

 The package makes internal use of some utilities that the end user may find useful. These utili-
ties are:

• ELIMINATE(v,α) tries to eliminate α from a parametric set v v v= 1 2(,), (,),α α… … … . To sim-

plify, for example, the solution of the equation xy x yy′ + = ′2 4 2 , which, as given by ODE, is:

()2 2 21
1 12, 2 , 4 0x c y c y xα α  = = + − =   , enter

 ELIMINATE([[x=α*c1_,y=c1_*(α^2+4)/2],y^2-4*x^2=0],α)

• TRANSFORM_X(w,t(x),x,y,y1,y2) will transform the equation w, when x t x→ () . To

transform, for example, the equation ′′ + ′ + =y x y x ycot() csc ()4 02 , by letting x x→ arccos() , enter

 TRANSFORM_X(y2+COT(x)*y1+4*CSC(x)^2*y,ACOS(x))

• TRANSFORM_Y(w,Ω(x,y),x,y,y1,y2) will transform the differential equation w, when

y x x Y x() (, ())→Ω . To transform, for example, the equation ′′ − + =y x y()2 1 0, by letting

y e Y xx→
1
2

2
(), enter

 TRANSFORM_Y(y2-(x^2+1)*y,y*ê^(x^2/2))

• TRANSFORM_P(w,x,y,y1,Θ,r,r1) will transform the 1st order differential equation w, when

x y x r, () () cos ,sinb g b g→ ⋅θ θ θ . To transform, for example, the differential equation

() () ()′ + ⋅ − = + ′y x y x yy2 2 21 , enter

 TRANSFORM_P((y1^2+1)*(x-y)^2=(x+y*y1)^2)

• RICCATI(w,s(x),x,y,y1) will return a solution of the Riccati DE w, which is more general

than a known particular solution, s(x). For example, if y x= 1 is a known solution of the Riccati e-

quation ′ + + =y y
x

y
x

1 2
2 , to find a more general one, enter

 RICCATI(y1+1/x^2+y/x=y^2,1/x)

p36

George Douros: Differential Equations with Derive

D-N-L#20

• GENERAL(w,[1st(x),2nd(x)],x,y,y1,y2) will return the general solution of

w = ′′ + ′ + + =p x y q x y r x y f x() () () () 0 , if one or two solutions of the homogeneous equation are
known. If two solutions are known, they must be entered as a vector [1st(x),2nd(x)]. If one
solution is known, it may be entered as [1st(x),0], or simply 1st(x). For example, to find
the general solution of xy x xy x y x x′′ + ′ = +() () () , if y=x is a known homogeneous solution, enter

 GENERAL(x*y2+x*y1=y+x,[x,0])

6. Conclusion

 ODE.MTH is more a mathematics than a programming package. I am a mathematician, not a
programmer. I have tested it against similar packages in other symbolic mathematics programs and
found it competitive. I will not make any further claims on its speed and efficiency and leave its eva-
luation to those who will use it. This not simple modesty; it is the fear and dread of the easy counter-
example to any of my claims. I have been faced with many of those in writing this package. With all
due respect to the power given by the programming functions in the symbolic mathematics programs, I
have been taught, once more, that a mathematical problem can be solved only by mathematics and not
by programming functions. The latter are assistants; and Derive is A Mathematical Assistant par excel-
lence!

 The hints, given here, on how ODE.MTH works are obviously not enough to help a user ex-
pand, improve, or fully exploit it in a Differential Equations course, but they have made this … a long
article.

 ODE.MTH, together with its accompanying files, is available via the Derive Internet Mailing
List. See the Additional Resources appendix of the Derive Manual.

Office: Home:
Prof. George Douros George Douros
T.E.I. of Larissa Kolokotroni 3
Larissa 41110 Larissa 41223
GREECE GREECE

Tel: 041-611-061 … 72 Tel: 041-234-866
Fax: 041-610-803

 D-N-L#20

A. Kozubík: Asymptotically stable Solutions

 p37

Asymptotically stable Solutions of the Systems
of Ordinary Differential Equations

A. Kozubík, Bratislava, Slovakia

 A given system of ordinary differential equations of the first order can be a mathematical
model for a number of mechanic, biologic, economic etc. systems. The behaviour of this system is
described by the solution of the respective system. For most of the systems we require that their be-
haviour will be “similar” to the behaviour of some given system. This requirement is described exactly
by the stability of the solution.

 Any system

 (,)y g t y′ = (1)

can be reduced by the transformation y = x + v where v is any solution of (1) into the system

 (,), (,)x f t x f t o o′ = = (2)

where

 (,) (,) (,).f t x g t x v g t v= + −

System (2) has the trivial solution, which is the transform of the solution v of system (1). So, we can
deal with the stability of the trivial solution of system (2).

 The trivial solution of system (2) is said to be stable iff for any τ and any ε there exists
δ = δ(τ,ε) such that for all initial values ξ satisfying ξ < δ and for all t ≥ τ the solution u(t;τ,ξ) of

the initial problem

 (,), ()x f t x x′ = τ = ξ

satisfies the inequality

 (; ,) .u t τ ξ < ε

The trivial solution of system (2) is said to be uniformly stable if number δ does not depend on the
initial point τ. Moreover, the trivial solution is said to be uniformly asymptotically stable, if there ex-
ists a number ∆ > 0 such that for all ξ; ξ < ∆ the condition

 lim (; ,) 0
t

u t
→∞

τ ξ = uniformly for all τ

holds.

 In this paper we deal with the linear system with constant coefficients in the form

 x A x′ = (3)

where A is a real constant (n,n)-matrix. In this case we can apply the following assertions:

p38

A. Kozubík: Asymptotically stable Solutions

D-N-L#20

 Theorem 1. The trivial solution of system (3) is uniformly asymptotically stable iff the real

parts of all eigenvalues of matrix A are negative.

Let

 1
0 1 1 0() ... 1, 0, 0n n

n n nP x a a x a x a x n a a−
−= + + + + ≥ > ≠ (4)

is a given polynomial with real coefficients.

The matrix

1 2

3 2 1 0

2 1 2 2 2 3

0 0 0 ... 0
0 ... 0

...
...n n n n

a a
a a a a

a a a a− − −

 
 
 
 
 
 

 is said to be the Hurwitz matrix of polynomial (4).

 Theorem 2. (Hurwitz Criterion) Real parts of all roots of the polynomial (4) are nega-
tive iff all main diagonal minors of the Hurwitz matrix are positive. It means that

1 1

1 0
2

3 2

1 0

3 3 2 1

5 4 3

1

0

0

0
0

....................................

0n n n

D a

a a
D

a a

a a
D a a a

a a a

D a D −

= >

= >

= >

= ⋅ >

The following sequence is the Hurwitz criterion realised with DERIVE.

 D-N-L#20

A. Kozubík: Asymptotically stable Solutions

 p39

p40

G P Speck: Müller´s Method

D-N-L#20

Müller´s Method for Solving

a Univariate Equation
G P Speck, Wanganui, New Zealand

(A short background information [Numerical Analysis with DERIVE, St. Schonefeld,
p 53 – 70] : Müller´s method is an extension of the secant method. The secant method
approximates F(x) by a straight line (first degree polynomial) in order to find an approxi-
mation to a root of a function. With Müller´s method F(x) is approximated by a quadratic
polynomial. Josef)

 Müller´s Method (see the Reference at the end of this note) for solving univariate equations has
some very significant advantages over many numerical methods available. In particular, the often
troublesome problem of finding a guess reasonably “close” to a solution sought, especially in the
complex number case, is not a critical issue in using Müller´s Method. One (possible) objection to the
method is that convergence can be relatively slow compared to some other numerical methods – how-
ever, in many problems where this is an issue, Müller´s Method can be used with a small number of
iterations to produce quite adequate initial guesses for solutions which can be found using one of the
fast methods for which reasonable initial guesses are required.

 In the DERIVE program for Müller´s Method which follows, the example x3 – 1000 = 0 is given
as an illustration and solved in detail to show exactly how the program is used. The exact solutions to
x3 – 1000 = 0 are easily computed to be 10, –5 + 5i√3, and –5 – 5i√3, so that the three solutions found
in succession using Müller´s Method can be compared with these exact solutions. As a more realistic,
non-trivial example, the reader could try the problem on page 192 of the DERIVE manual (for version
2.60: ez – z2 = 0) after viewing Müller´s Method applied to x3 – 1000 = 0 on the program following.
The advantages of Müller`s Method over the classical Newton-Raphson Method as employed in the
manual would then be apparent.

 The brief Müller program that follows could be made even more compact, but there are advan-
tages in a more lengthy display in terms of converting formulas in Müller´s Method literature to a
DERIVE program.

 D-N-L#20

G P Speck: Müller´s Method

 p41

p42

G P Speck: Müller´s Method

D-N-L#20

References

[1] Samuel D. Conte and Carl deBoor, Elementary Numerical Analysis, An Algorithmic Approach,

McGraw-Hill Kogakusha, Ltd, Auckland, 1980, pp 120 – 127

[2] Steven Schonefeld, Numerical Analysis via DERIVE, MathWare, Urbana, 1994, pp 53 – 70.

Some ideas for the revised Version of this DNL:

(1) G P Speck writes about a “program” for demonstrating and performing Müller´s Method.

In 1995 it was a huge progress to have a list of functions – calling each other – working
in the sense of a program. Now we can write real programs as a whole. I´ll collect all
procedures in one program without loosing the insight into the single steps. Application
of ITERATES has an advantage in demonstrating the iterative nature of the process but
the disadvantage that its syntax is sometimes difficult for students to understand. A sim-
ple loop might be easier to follow. This realized in my program version.

 D-N-L#20

Additional Comments on Müller´s Method

 p43

The next equation has only complex zeros. See the first steps

Neglect the tiny real part, then the solutions are {-i√2, i√2, -i√5, i√5}.

In the next example the imaginary part can be taken as zero.

p44

Additional Comments on Müller´s Method

D-N-L#20

(2) I wanted to illustrate the process by deriving the quadratic functions and plotting them

together with the newly found approximation.

 D-N-L#20

Additional Comments on Müller´s Method

 p45

The next figure shows the function together with the first three parabolas:

(3) Finally I´d like to work with the TI-Nspire using the spread sheet and the slider:

 p46

Additional Comments on Müller´s Method

 D-N-L#20

The “undefined – messages” starting in row 14 are caused by the restricted accuracy. The
values of x2 and x3 are so close that their difference is internally rounded to zero and then the
division in column F gives an undefined result. All other error-messages are the conse-
quence.
However, we have result in the last complete row#13.

I recommend the Document Settings as
shown on the right:

The entries for the cells are:

C1: =b1 G2: =(f(d1)-f(c1))/(d1-c1)
D1: =b2 H2: =(f2-g2)/(e1-c1)
E1: =b3 I2: =f2+h2*(e1-d1)
C2: =d1 J2: =√(i2^2–4*h2*f(e1))
D2: =e1 K2: when(abs(i2+j2) ≥ abs(i2-j2),i2+j2,i2–j2)
F2: =(f(e1)-f(d1))/(e1-d1) E2: =e1–2*f(e1)/k2

I try to perform the next step according to G P Speck´s DERIVE routine in order to find the
next (complex) root:

I recommend deleting some rows in the table before changing the function and/or the initial
guesses. The expressions in the cells might become too bulky and the system might hang
up. (See below the complete entry of cell D6 – in grey.)

It is better to start with less rows and then proceed by copying down row for row. Don´t forget
to save between the steps.

 D-N-L#20

Additional Comments on Müller´s Method

 p47

Finally I´d like to visualize the single steps of the algorithm by plotting the approximating pa-
rabolas supported by a slider in the Graphs & Geometry Application. For this purpose I calcu-
late the parabolas passing the three points using my polreg-program which is part of my per-
sonal statistics library, called statistik (see DNL#...).

I introduce a slider and visualize the approximating parabolas step by step. This works pretty
well until the accuracy of the system has reached its limit.

This is a 2nd example (the equation mentioned by GP Speck on page 40).

 p48

Thomas Weth: A Lexicon of Curves (7)

 D-N-L#20

Ebene Algebraische und

Transzendente Kurven (7)
Thomas Weth, Würzburg, Germany

Die Kardiode – The Cardiod

Legt man einen zylindrischen Ring auf eine ebene
Tischfläche, so werden einfallende Sonnenstrah-
len am Inneren des Rings reflektiert. Die reflek-
tierten Strahlen hüllen näherungsweise eine
„Brennkurve“ ein, die wegen ihres Aussehens
unter dem Namen Kardioide oder Herzkurve (vom
griechischen καρδια) bekannt ist. Dieselbe Kurve
lässt sich auch als helle Linie in einer mit Tee
gefüllten Tasse beobachten. Genau genommen
handelt es sich bei diesen Kurven um (halbe)
Nephroiden.
Ozanam erwähnt die Kardioide in seinem „ma-
thematischen Wörterbuch“ (Dictionnaire mathe-
matique, Amsterdam, 1691); die heute noch gülti-
ge Namensgebung geht allerdings auf Castillon
zurück (De curva cardioide, 1741). Die Kardioi-
de ist mit der „fraktalen Geometrie“ zu neuer
Aktualität und Popularität gelangt - sie bildet (in
grober Näherung) die Umrandung der "Ikone" der
Chaostheoretiker, nämlich der Mandelbrotmenge
(volkstümlich „Apfelmännchen“).

If you put a cylindrical ring on a plane table then
the falling in sun rays will be reflected and they
form approximately a "focal curve" which is called
cardiod or heart curve. One can observe this curve
in a cup filled with tee or coffee. Actually the car-
diod consists of two (half) nephriods. In a rough
approximation this curve forms the border of the
chaos theorists´ "icon" - the Mandelbrot set.

Konstruktion der Kurve und Herleitung ihrer Gleichung
Construction of the curve and derivation of its equation

Eine genaue Konstruktion ergibt sich mit fol-
gender Vorschrift:
Konstruktion der Kardioide als katakaustische
Linie – als Einhüllende einer Geradenschar:
Gehen von einem Punkt auf dem Umfang eines
Kreises Strahlen aus, die an der Kreislinie re-
flektiert werden, so umhüllen die reflektierten
Strahlen die Kardioide.

This is the instruction to find the cardiod as
a catacaustic line:

A point on the perimeter of a circle is the
initial point of rays which are reflected at the
perimeter. The family of the reflected rays
form the cardiod as their envelope (see the
sketch).

 D-N-L#20

Thomas Weth: A Lexicon of Curves (7)

 p49

Now in 2009 we can produce the locus of the reflected segments on the graph screen of the
TIs working with the Cabri-application. (TI-Nspire offers the same occasion.)

The right graph shows the cardiod on the
TI-NSpire´s Graphs & Geometry Screen.

We proceed with Thomas Weth´s text from 1995:

Zunächst soll nun eine kartesische Koordinatendarstellung der Kurvenpunkte hergeleitet werden.
Dabei ist zu beachten, dass die Kurvenpunkte genau die Berührpunkte mit den Kurventangenten sind.
P sei der Punkt, von dem die Strahlen ausgehen. In obiger Figur wird der Strahl in Q reflektiert. Dann

gilt für die Steigung des Strahls QT: 3tan .
2

m α
=

Außerdem gilt nach dem Sinussatz im Dreieck OQT und unter Berücksichtigung des Vorzeichens für

den Achsenabschnitt n der Geraden QT:
sin

2 ,
3sin

2 2

n
r

α

=
π α − 

 

 also
sin

2 .3cos
2

r
n

α

= −
α

Für die Kurventangente QT lautet also die Geradengleichung:
sin3 2tan .32 cos

2

r
y x

α
α

= −
α

 Die partielle

Ableitung nach dem Parameter führt zur Gleichung der Hüllkurve. (Siehe Erklärung im Anhang.)

The family of rays with their initial point on a fixed point on a circle form if they reflected at
this circle the cardiod. Pay attention to the fact that the points of the curve are exactly the
osculation points of the tangents. Let P the fixed point on the circle (the origin of the rays),
Q is the intersection point of the ray and the circle. Then QT is the reflected ray with slope m.
In triangle OQT we apply the sine rule to obtain the y-intercept n of the reflected ray. Using
DERIVE we find the equation of the family of lines (I) with angle α as parameter. Partial dif-
ferentiation wrt to the parameter (II) leads to the equation of the envelope. (See appendix
and the accompanying file).

 p50

Thomas Weth: A Lexicon of Curves (7)

 D-N-L#20

Formt man nun mit DERIVE um, so liefert die Multiplikation mit 3cos :
2
α

 (I) 3 3(, ,) cos sin sin 0.
2 2 2

F x y y x rα α α
α = − + =

 (II) 3 33 sin 3 sin cos 0.
2 2 2

f y x r∂ α α α
= − − + =

∂α

Löst man diese Gleichungen nach x und y auf, so erhält man (nach mehreren Versuchen für die Ein-
stellungen des Simplification Mode für Trigonometry und TrigPowers die Koordinaten der Kurven-
punkte als:

(2 cos cos 2) (2 sin sin 2).
3 3
r rx und y= α − α = α − α

Damit liefert DERIVE aus der Parameterdarstellung die gesuchte Kurve.

With DERIVE 6 we can improve the representation by introducing slider bars for the radius of
the circle and for the angle which is formed by the ray PQ and the x-axis.

 D-N-L#20

Thomas Weth: A Lexicon of Curves (7)

 p51

Zur Herleitung der Polardarstellung der Kurve bedarf es zunächst einiger Theorie:

Gegeben sei eine Kurve (x(t), y(t)) mit dem Kurvenparameter t. Gesucht ist zu jedem
Kurvenpunkt P der Abstand ρ zum Ursprung des Koordinatensystems und der Win-
kel ϕ, den die Halbgerade OP mit der x-Achse einschließt (vgl. Skizze).

Zu jedem ϕ benötigt man also zunächst den zugehörigen
Parameterwert t. Erhält man zwischen t und ϕ eine um-
kehrbar eindeutige Beziehung (mit gewissen Differen-
zierbarkeitseigenschaften), kann man t als Funktion von
ϕ darstellen („t = t(ϕ)“) und kann die Kurve umparamet-
risieren. Man erhält dann (x(t(ϕ)), y(t(ϕ))) oder kürzer
(x(ϕ), y(ϕ)).

Prinzipiell kann man folgendermaßen vorgehen:
Für den Winkel ϕ gilt:

() ()arctan oder tan .
() ()

y t y t
x t x t

= =ϕ ϕ

Diese Gleichung löst man – falls es gelingt – nach t auf und erhält t in Abhängigkeit von ϕ, also eine
Funktion ϕ → t(ϕ). Einsetzen liefert dann (x(t(ϕ)), y(t(ϕ))). Bildet man noch den Betrag ρ = |(x(t(ϕ)),
y(t(ϕ)))|, so kann man mit DERIVE die Kurve in Polarform (ρ(ϕ),ϕ) zeichnen.

Wendet man dieses Verfahren nun auf die oben hergeleitete Parameterdarstellung der Kardiode

(2 cos cos 2), (2 sin sin 2)
3 3
r r α − α α − α 

 
 an, erhält man nach mehreren Umformungen eine Glei-

chung 4. Grades mit der „Variablen“ cos (α), die DERIVE nicht lösen kann.

Verschiebt man allerdings die gesamte Kurve so, dass ihre Spitze in den Koordinatenursprung fällt,

(2 cos cos 2) , (2 sin sin 2)
3 3 3
r r r α − α − α − α 

 
 und schlägt den oben angedeuteten Weg ein, erhält

man: sin sintan .
cos cos

= =
ϕ αϕ
ϕ α

 Um den Radius für die Polarform zu erhalten, kann man also bei dieser

speziellen Lage der Kurve direkt den Betrag der ursprünglichen Parameterdarstellung verwenden und
erhält (wieder nach einigen Umformungen mit DERIVE) die einfache Polardarstellung der Kardiode:

 (III) 2(2 cos cos 2) , (2 sin sin ... (1 cos).
3 3 3 3
r r r r

= − − − 2) = = −ρ α α α α α

Next we will find the polar form of this curve. We need for each point P(t) ∈ curve its dis-
tance ρ from the origin and the angle ϕ (see the sketch above). If there exists a reversible
unique relation between t and ϕ then t can be presented as a function of ϕ: t = t(ϕ) which

leads to (x(t(ϕ)),y(t(ϕ))) or (x(ϕ), y(ϕ)) with ϕ ϕy t y t
x t x t
() ()= arctan or tan = .
() ()

If it is possible then we solve this equation for t and substitute t(ϕ) for t. With ρ = |(x(t(ϕ)),
y(t(ϕ)))| we are able to plot this curve with DERIVE in polar form.

 p52

Thomas Weth: A Lexicon of Curves (7)

 D-N-L#20

Performing this procedure with the given parameter form we obtain a quartic with the “vari-
able” cos α which even DERIVE is unable to solve. But after performing a translation of the
curve such that its vertex is laying in the origin the next attempt turns out to be successful
and we can plot the cardiod in polar form (see below).

Der zugehörige DERIVE-Polar-Plot is in nebenstehender Abbil-
dung dargestellt.

Im Nachhinein ist man immer schlauer:

Wenn man nun beachtet, dass allgemein für die kartesische und die Polardarstellung immer gilt:

(x(ϕ), y(ϕ)) = (ρ cos ϕ, ρ sin ϕ), erhält man durch Vergleich 2 (1 cos).
3
rρ α= −

Afterwards it looks so easy to obtain the parameter form. We should know the general rela-
tion between the rectangular and the polar form: (x(ϕ), y(ϕ)) = (ρ cos ϕ, ρ sin ϕ) and then find

by comparison 2 (1).
3

ρ α= −
r cos

Da die Kurve sicher eine algebraische ist – sie wurde elementar mit Zirkel und Lineal punktweise er-
zeugt – ermitteln wir ihre algebraische Gleichung.

Der Einfachheit halber verzichten wir auf den Streckfaktor 1
3

 in der Parameterdarstellung und ver-

wenden (,) (2 cos (1 cos), 2 sin (1 cos)).x y r rα α α α= − −

Nun ist ein Polynom F(x, y, r) mit F(x, y, r) = 0 zu erstellen. Wie man sofort sieht, gilt:

Zur Elimination von α aus dieser Gleichung löst man noch die in cos α quadratische Gleichung
x = r cos α (1 – cos α) nach cos α auf und setzt ein. DERIVE liefert bei diesem Vorgehen die algebrai-
sche Kurvengleichung der Kardiode:

Die entsprechende Polarform lautet:

We found all representation forms for the Cardioid. You may follow the calculation in the re-
spective DERIVE-file.

 D-N-L#20

Thomas Weth: A Lexicon of Curves (7)

 p53

Calculating the length of the curve and the
enclosed area gives interesting results. An
interpretation of these results can be found
investigating the cardiod as a special epi-
cycloid.

Merkwürdige Ergebnisse ergeben sich beim Berechnen der Länge der Kurve und des von ihr einge-
schlossenen Flächeninhalts. Mit dem CAS berechnet man:

2 2 2

0
() () d 16 .l x y r

π
α α α= + =∫ � � Damit ist die Länge der Kurve ein ganzzahliges Vielfaches des zu

ihrer Erzeugung verwendeten Kreises.
2 2 2

0

1 () d 6 ,
2

A r
π
ρ α α π= =∫ also wieder ein ganzzahliges Vielfaches der Fläche des Kreises. Eine voll-

ständige Interpretation dieser Ergebnisse erhalten wir, wenn wir die Kardiode als eine spezielle Epi-
zykloide, eine Kreisrollkurve betrachten.

Anhang – Appendix

Definition von Hüllkurven – Definition of envelopes

Sei F(x,y,α) eine Funktion, so dass F(x,y,α) = 0 für
jedes α eine Kurve beschreibt. F(x,y,α) bestimmt dann
eine Kurvenschar mit dem Scharparameter α. (Im obi-
gen Fall sind die F(x,y,α) die algebraischen Gleichun-
gen von Geraden). Die Koordinaten der Schnittpunkte
P zweier „benachbarter“ Kurven erfüllen dann die Glei-
chung

(, ,) (, ,) 0F x y F x yα α α+ ∆ − = und speziell auch

(, ,) (, ,) 0.F x y F x yα α α
α

+ ∆ −
=

∆

Für α∆ →0 geht die Gleichung über in: (, ,) 0.F x y α
α

∂
=

∂
 Erhält man nun durch Elimination von α

aus den Gleichungen (, ,)(, ,) 0 und 0F x yF x y
a

αα ∂
= =

∂
 wieder die Gleichung f(x,y) = 0 einer Kurve,

so nennt man diese die Hüllkurve der Kurvenschar F(x,y,α).

If F(x,y,α) is a family of curves with parameter α then we can find the envelope of these
curves by eliminating the parameter from the two equations

(, ,)(, ,) 0 0.αα
α

∂
= =

∂
F x yF x y and If this procedure gives an equation f(x,y) of a curve then

this curve is the envelope.

 p54

Jan Vermeylen & Josef Böhm: Vieta at Random

 D-N-L#20

I had the intention to place here a short Utility provided by Sergey Biryukov. As I have the strong
impression that the contents of this issue has become “heavy enough”, I will do this in DNL#21. In-
stead of this I reprint an international product: Belgian & Austrian. When I was in Belgium Jan Ver-
meylen gave me a lot of work sheets and DERIVE files. Among them were some very interesting at-
tempts to use the random number generator for creating exercise examples. These files were (be pa-
tient, you will find them in one of the next year ´s DNL):

 poly_frac.mth to practise factoring polynomials
 rekrij.mth to solve problems with arithmetic series
 quadr_eq.mth to create various quadratics

At the DERIVE conference in Honolulu our working group had the idea to produce a “How it could
look” work sheet for quadratics and factoring polynomials. We decided that I should add a demo file
in combination with some exercises. I remembered Jan´s quadr_eq.mth and this is the result:

First load VIETAUTI.MTH as Utility file:

(Some details of the 1995 version for DERIVE 3 have been changed to make the file suitable for
DERIVE 6.10.)

Then produce the following VIETADEM.DMO demo file. You can do it with any text editor or using
the Edit > Annotation facility of the recent DERIVE versions. (More details can be found in DNL#4.)

The comments are the lines with the leading semi-colon. The must be entered as Annotation (without
the semi-colon) together with the respective DERIVE commands:

;This initializes the random number generator. Press ENTER.
RANDOM(0)

;Try to solve the equations. Continue with ENTER.
task:=VIE(3,x)

;Congratulations if you are right. Press ENTER for the next bundle.
SOLU(task)

 D-N-L#20

Jan Vermeylen & Josef Böhm: Vieta at Random

 p55

;Check your solutions pressing ENTER.
task:=VIE(5,a)

;Let’s finish this sequence with a package of 10.
SOLU(task)

;ENTER will present all solutions.
task:=VIETA(10)

;If more than two answers are wrong, go on practising. You can then run the
DEMO-file again.
SOLU(task)

;Interrupt the demo and check the solution using the SOLVE-command.
VIETA(3)

VIETA(5)

;After checking the results, you may run the DEMO again.
VIETA(10)

If you are doing in with DERIVE 6 you might face problems saving the file as a “demo” file (with
extensions .dmo only). I´d like to remind you that you have to save it as “vietadmo.dmo” – including
the quotes!!

Is it a feature or is it a bug?

The function works – but if by chance – we have two solu-
tions with z1 = -z2 then DERIVE automatically solves the
equation instead of only expanding the product of the two
respective polynomials.

DERIVE 5 & 6 allow programming. So we can collect the single procedures in a compact program
which excludes the special cases z1 = – z2 and z1 or z2 = 0:

 p56

Johann Wiesenbauer: Titbits 6

 D-N-L#20

Titbits from Algebra and Number Theory (6)

by Johann Wiesenbauer, Vienna

This time I would like to deal with a purely algebraic problem to make up for the fact that we have
concerned mostly with number theoretic issues so far. And what could be more algebraic – at least
from the historical point of view – than the solution of polynomial equations! As you all know
DERIVE can easily cope with polynomial equations in one variable up to degree 4. Therefore to be a
real challenge for DERIVE the degree of the polynomial in question has to be greater than 4. What
about the polynomial equation

17 1 0− =z

which was solved by Gauß when he was only 19 years old? (Actually Gauß started his famous diary
on March 30, 1796, with the following entry: “Principia quibus innititur section circuli, ac divisibili-
tas eiusdem geometrica in septemdecim partes etc.” cf. [1]). Of course the application of the built-in
SOLVE to this equation is definitely out of question. But what we could do is to follow the thoughts
of genius Gauß and enjoy their originality and elegance leaving all the drudgery to DERIVE. Are you
ready for it? Then here we go.

To begin with, it suffices to determine the solution
2cos sin with :
17

ϕ πϕ ϕ ϕ= = +iz e i

of the equation above since all other solutions are merely powers of it. In the outline of the solution
given by Gauß in his letter to Gerling he actually determined cos ϕ which amounts to the same thing.
To do so he first introduces the notations

: cos cos4
: cos2 cos8
: cos3 cos5
: cos6 cos7

ϕ ϕ
ϕ ϕ
ϕ ϕ
ϕ ϕ

= +
= +
= +
= +

a
b
c
d

as well as e := a + b and f := c + d.

Then he states that “according to a wellkown theorem” the equality

1
2

+ = −e f

holds. Using

() ()171 1cos
2 2

ϕ − −= + = +k k k kk z z z z

this can be derived (without DERIVE!) in the following way:
178 16

1 1

1 1 1 1cos .
2 2 1 2

ϕ
= =

−
+ = = = = −

−∑ ∑ k

k k

ze f k z
z

Gauß continues by claiming that
e f = –1.

Again we could calculate

() ()16 2 15 4 13 8 9 3 14 5 12 6 11 7 10

(cos cos2 cos4 cos8)(cos3 cos5 cos6 cos7)
1 1
2 2

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + + + + =

= + + + + + + + + + + + + + +

e f

z z z z z z z z z z z z z z z z

 D-N-L#20

Johann Wiesenbauer: Titbits 6

 p57

and using z17 = 1 as well as

16

1
1 ()

=

= − ∗∑ k

k
z

after a lot of tedious computations we could finally arrive at the desired result. (Try it out by yourself!)
Is there a way to make DERIVE do these calculations for us? You won´t be taken by surprise if I tell
you there is actually one. The following utility function can be used quite generally to reduce a poly-
nomial expression u in one variable modulo an equation v, which amounts to adding the rule v to the
other rules for the handling of polynomials.

By setting u := e f and taking (∗) for v
we get:

Therefore e and f are both roots of the quadratic equation

2 2 1() 1 0
2

− + + = + − =x e f x e f x x

which has the solutions

1,2
1 17 .

4
− ±

=x

Now we have come across a small problem, namely is

1 2, ()= = ∗∗e x f x

or vice versa?

Again DERIVE can be of help in showing that the first alternative (∗∗) is valid:

Do you see the achievement? The polynomial equation (∗) of degree 16 has been broken up into two
polynomial equations (∗∗) with fewer terms! It takes no Gauß to have the idea of trying the same trick
once more:

Therefore a and b are both roots of the quadratic equation 2 2 1() 0.
4

− + + = − − =x a b x ab x e x

 p58

Johann Wiesenbauer: Titbits 6

 D-N-L#20

Again we leave it to DERIVE to calculate its solutions:

By applying APPROXIMATE one finds out that the first solution is a and the second one is b:

In analogous manner the values of c and d are calculated:

The rest is a piece of cake. Because of

() () ()

() ()

16 4 13 5 14 20 29

3 14 5 12

1 1 1cos cos4
2 2 4
1 1 cos3 cos5
4 2 2

z z z z z z z z

cz z z z

ϕ ϕ

ϕ ϕ

= + + = + + + =

= + + + = + =

we have
2

2

(cos)(cos4) (cos cos4) cos cos 4

0.
2

x x x x
cx a x

ϕ ϕ ϕ ϕ ϕ ϕ− − = − + + =

= − + =

We let DERIVE put the finishing touches:

 D-N-L#20

Johann Wiesenbauer: Titbits 6

 p59

That´s it! There is only one thing that is slightly disturbing, namely that DERIVE didn´t return the
term for cos ϕ in its most beautiful form which is according to Gauß:

1 1 1 1cos 17 34 2 17 17 3 17 34 2 17 2 34 2 17 .
16 16 16 8

ϕ = − + + − + + − − − +

But isn´t this a bit of a tall order in view of this huge formula?

Far more important is the fact that both forms of cos ϕ show that apart from the basic operations only
square roots are used for its calculation. From this follows easily the stunning fact that the regular
polygon with 17 edges can be constructed by using compass and straight-edge only! (cf [2] for the
details!) As Gauß was able to show this in his “Disqusitiones Arithmeticae” (1801) this is possible for
a regular polygon with n edges if and only if n is of the form

1 22 ... , 0, 0,r
sn f f f r s= ≥ ≥

where f1, f2, …fs are pairwise distinct Fermat primes! Thus we’ve returned happily to number theory
where we will continue next time!

References

[1] Wußing H. Mathematisches Tagebuch 1796-1814 von Carl Friedrich Gauß, Akedemische Ver-
lagsgesellschaft, Leipzig 1981

[2] Strubecker K., Carl Friedrich Gauß – Princeps Mathematicorum, Bild der Wissenschaft 5, 1977
(118 – 126)

Three additional comments from the editor:

 The file TITIBITS6.MTH is among the accompanying files and it contains the DERIVE
functions and the complete calculation.

 p60

Johann Wiesenbauer: Titbits 6

 D-N-L#20

 Some time ago a DUG member sent a DERIVE file calculating the 17 roots of the equation.

He refers to an article written by Friedrich Freytag, DdM 3, 1992 (pp 188 – 213). I recom-
mend reading this article. There one can find a description how to construct the side of a
regular 17-edge. I intend incuding this construction in DNL#21.

 Johann Wiesenbauer has invented a remarkable function RED(u,v). We compute a poly-
nomial expression under consideration of an additional condition (which is in my opinion a
kind of special substitution). Johannes told me that he had thought that this would be an
advantage of other CAS packages, and he wanted to make this possible with DERIVE, too.

Three easy to follow examples for applying RED(u,v):

We would like to rewrite x + y = 3a2 + 3b2 + 2c under consideration that a – 2b = 5. Let´s reproduce
Johann Wiesenbauer´s RED-function step by step (= iteration by iteration):

1st step: Long division and its consequence
2 2

2 2 2 2
5

2

(3 3 2) : (2) 3 6
3 3 2 5(3 6) 15 2 15 15 30 2

remainder : 15 2

a b c a b a b
a b c a b b c a b b c

b c

+ + − = +
 + + = + + + = + + +
+ 

��	�

2nd step: We can perform the long division of the polynomials again:
2

2 2 2 2
5

2

(15 15 30 2) : (2) 15
15 15 30 2 3 3 2 15 5 15 60 2

Rem :15 60 2

a b b c a b
a b b c a b c b b c

b b c

+ + + − =
 + + + = + + = ⋅ + + +
+ + 

��	�

No more division is possible, the next quotient would be zero and the result of the procedure remains
the same 75 + 15b2 + 60b + 2c. The iteration process has come to an end. Compare with the result of
the RED-function from above! Things will change if we change the variable order:

(Who can write a respective function/program for the TI´s?)

