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Learning Mathematics through the TI-92 
J.S. Berry, E.Graham, A.J. Watkins 
This book develops the foundation mathematics 
needed by scientists and engineers through the use of 
the Texas Instruments TI-92. The authors emphasise 
its use as an investigative tool to introduce, and help 
students to understand, basic concepts in mathema-
tics, and as a problem solving tool for solving real 
problems from the world of science and engineering. 
The book is written primarily for students who have 
not studied mathematics in depth at school, and will 
prepare them for a foundation course in science or 
engineering. However, the book also provides an 
introduction to the use of the TI-92 for those students 
who are already familiar with scientific functions and 
calculus. 
L.M. provides an exciting and unique opportunity for 
students to learn and use mathematics in a refreshing 
way. The experience of the authors in teaching engi-
neering students at Plymouth shows how their ap-
proach provides the understanding and confidence to 
succeed in learning mathematics. 
ISBN 0-86238-489-3, 367 pages, Chartwell-Bratt 
 

 
 

Great TI-92 Programs - Vol 1 
Bernhard Kutzler & David R. Stoutemyer 
Includes Version 2.0 diskette covering: 
Interactive lessons for learning how to operate the  
TI-92, Useful online help with instructive examples. 

Solving ODEs and systems of (non-) linear 
equations, 
Implicit plotting, 
Turtle Graphics, 
Unit Conversion, 
PreCalculus Mathematics, 
Integration Applications, 
and more. 

You need Graph LINK to use this book. 
ISBN 3-901769-00-5, 64 pages, bk teachware 
 
Nonlinear Physics with MAPLE 
R.H.Enns & G.C.McGuire 
Nonlinear Physics is at the cutting edge of research 
and applications in fields as diverse as medicine, 
mathematics, biology and chemistry, computer sci-
ence, engineering, electronics, and physics, to name 
just several. 
The text represents an introductory survey of the 
basic concepts and applied mathematical methods of 
nonlinear science. It is accompanied by a laboratory 
manual containing 28 activities from Spin Toy Pen-
dulum to Mapping a forced nonlinear oscillator. 
Extensive use is made of a CAS (MAPLE V). For an 
experienced DERIVE user it should not be too diffi-
cult to adjust the proposed techniques. 
ISBN 3-7643-3977-2, Birkhäuser 
 

A Bundle of TI-92 books:   orders to: jglynn@mathware.com 
Discovering Math on the TI-92 Ch. Brueningsen and others 
Geometric Explorations with the TI-92 M. Keyton 
Geometric Investigations for the Classroom Ch. Von der Embse, A. Engebretsen 
Graphing Calculators: Quick & Easy for the TI-92 D. Lawrence 
Introduction to the TI-92: 37 Experiments E. Andersen, Ch. Lund 
Investigating Advanced Algebra with the TI-92 Dr. Brendan Kelly 
Investigating Calculus with the TI-92 Dr. Brendan Kelly 
Investigating Statistics with the TI-92 Dr. Brendan Kelly 
Learning Programming with the TI-92 W.Ellis, E.Lodi, St. Blasberg 
Skill & Practice Masters in Algebra TI-92 D.Lawrence 
 
The Second US DERIVE User Group Meeting will take place in the frame of the ICTCM ´97 
Chicago on Sunday, November 9 morning. Details will be announced during the Conference. 
I am looking forward to meeting some of you. 
  
Visit the Mickey Mouse DERIVE pal on page 21! 
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A DERIVE-party - from my point of view 
 
My parents were the local organisers of the DERIVE Symposium ´97, 
which took place in the beginning of August in Sweden. Even though 
I´m a non-DERIVER, I had great fun all the time. In fact, I think eve-
ryone enjoyed themselves, even between and after the lectures. When 
the day´s work was finished, the party began. One evening, there was 
a party with loads of rules. One rule was that at least someone from 
each country had to make a speech during the dinner. Another was 
that it was absolutely forbidden to sit next to your husband or wife. 
And if you didn´t want to make a speech, you had to sing a song. It 
seemed like Bernhard Kutzler knew the Swedish law extremely well... 
 

The last evening was maybe the nicest of them all. All the delegates came to our home for one 
last party, to celebrate the successful symposium. We had a nice dinner in our garden, with 
Swedish meatballs and potato-salad, and after the meal, we enjoyed some wonderful songs. 
Bernhard Kutzler and Helmut Heugl performed a great DERIVE-version of Frank Sinatra´s "My 
Way", and then, Josef Böhm, sang some kind of Austrian song, with help from Helmut. Bernhard 
translated the verses into English, and the rest of us tried to join in when that was possible. 
After that, Sergey Biryukov sang two Russian songs, and Tomass Romanovskiss was persuaded to 
sing something in Latvian, and that was so nice to hear. The German and Austrian gang sang a few 
lovely songs like a professional choir. When it was time to say goodbye, goodnight and "see you in 
Gettysburg...", we all went out in the garden again, took each others hands and another beautiful 
song was performed. Then it was over, and everyone was gone. 
This were, from my point of view, the best days of the summer. Thank you so much for coming, 
and making this symposium a party. At last, here are the words to one of the two great DERIVE-
songs that Bernhard Kutzler wrote. If you wish to know the music to it or complain in any other 
way, you have to contact him. 
 

The DERIVE-party, the DERIVE-party 
Is now over, is now over 
It was successful, it was successful 
Thanks to David and Yvonne 

 
Even though everything was great during the DERIVE-week, the sight of Terence Etchells in my 
dad´s red swimming trunks, was absolutely the best ever... 
Josefine Sjöstrand, Onsala, Sweden 
 
Find here the scientific program - in order of appearence. I´ll try to produce one special DNL contain-
ing some lectures of the DERIVE Symposium 1997, FUN in Teaching Mathematics. 
 
David R.Stoutemyer (USA) A brief history of portable computer algebra 
Terence Etchells (UK) To Booleanly go where no Math has gone before! 
Tomass Romanovskis (LAT) Kepler´s Equation? Why not? With DERIVE! 
Wolfgang Pröpper (GER) The TI-92 as a Medium in Math Classes 
Otto Wurnig (AUT) Normal distributions with CAS 
Tatyana Oleinik (UKR) A mathematical course with DERIVE on economical problems 
Helmut Heugl (AUT) The influence of the CAS on the path of the students "into" trigonometry 
Barbara Leitherer (USA) More exciting Trig with the TI-92 
David Sjöstrand (SWE) Computer Geometry and Computer Algebra 
Vladimir Rovenskiy (RUS) Teaching Geometry of Curves and Surfaces with CAS 
Johann Wiesenbauer (AUT) On the Fascination of Primes and its Use in Classroom Teaching 
Carl Leinbach (USA) Why hold Back the Good Stuff? 
Sergey Biryukow (RUS) FROM FUN TO JOY 
Bernhard Kutzler (AUT) Teaching Maths in the Computer Age 
Halvor Devold (NOR) The changing Face of Mathematics 
Matthias Kawski (USA) CAS in Vector Calculus: A radically new approach based on visualization 
Detlev Kirmse (GER) A holistic experimental approach to classic functions in middle schools 
Robert Hill (USA) Mathematical encounters of the everyday kind 
Josef Böhm (AUT) From hard work to much FUN & Optimization - A Window Shuttle 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE User Group. It is pub-
lished at least four times a year with a con-
tents of 40 pages minimum. The goals of 
the DNL are to enable the exchange of ex-
periences made with DERIVE as well as to 
create a group to discuss the possibilities 
of new methodical and didactical manners 
in teaching mathematics. 
We include now a section dealing with the 
use of the TI-92 and we try to combine 
these modern technologies.  

Editor: Mag. Josef Böhm 
A-3042 Würmla 
D´Lust 1 
Austria 
Phone/FAX: 43-(0)660 3136 365 
e-mail: nojo.boehm@pgv.at 

 
Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English 
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but 
not assessed. By submitting articles the 
author gives his consent for reprinting it in 
the DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE Newsletter will be. 
 
 
Next issue: December 1997 
Deadline: 15 November 1997 
 

 
Preview:  Contributions for the next issues  
 3D-Geometry, Reichel, AUT 
 Algebra at A-Level, Goldstein, UK 
 Graphic Integration, Linear Programming, Various Projections. Böhm, AUT 
 A Utility file for complex dynamic systems, Lechner, AUT 
 Examples for Statistics, Roeloffs, NL 
 Solving Word problems (Textaufgaben) with DERIVE, Böhm, AUT 
 About the "Cesaro Glove-Osculant", Halprin, AUS 
 Hidden lines, Weller, GER 
 Fractals and other Graphics, Koth, AUT 
 Experimenting with GRAM-SCHMIDT, Schonefeld, USA 
 Implicit Multivalue Bivariate Function 3D Plots, Biryukov, RUS 
 Parallel Curves, Wunderling, GER 
 Quaternion Algebra, Sirota, RUS 
 150 Years of π´s 250 decimal places, Romanovskis, LAT 
 
 The TI-92 Section, Waits a.o. 
 
 and 
 Setif, FRA; Vermeylen, BEL; Leinbach, USA; Halprin, AUS; Speck, NZL; 
 Weth, GER; Wiesenbauer, AUT; Aue, GER; Pröpper, GER; Koller, AUT; 

Mitic, UK; Tortosa, ESP; Santonja, ESP;Schorn, GER and ....... 
  

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag.Josef Böhm 
Herstellung: Selbstverlag 
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Mag. Martin Mayr, Innsbruck, AUT 
 
Working with DERIVE (DOS version 2.57 and DfW 4.02) I came across the following bug: 
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DNL:  
 
If you decompose the result you will obtain: 
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This is the DERIVE 6 result: 
 

 

It is a good experience for students that sometimes the DERIVE- or TI-expressions will not meet their 
expectations. Then they have to check the equivalence of their "handmade" results with the CAS-
results. 
Calculating the defined integral you will find the constant C reduced and the correct result.: 

                         (1 - v)/2       
ˆ  - (v + 1)/2       2·(z          - 1)  
‰ z            dz = ———————————————————— 
                            1 - v        
 
 b                        (1 - v)/2    (1 - v)/2   
ˆ   - (1 + v)/2       2·(a          - b         )  
‰  z            dz = ————————————————————————————— 
 a                               v - 1             

 
 
 

As you can see the TI-92 shows the result in the expected 
form. (But here also the "average" student will not see the 
equivalence at his first view). 

 
 
 
Troels Ring, Denmark ring@post1.tele.dk 
 
Dear friends of DERIVE. I´m struggling with expressions towards the mean and was reading the paper by Davis 
(AM J Epidemiol 1976; 104:493-98) and trying to reproduce the theoretical results in DERIVE. 
 
First the variables are declared: 
 
#1:  "NORMDIST.MTH"                                                    User 
 
#2:  σ :ε Real (0, ∞)                                                  User 
 
#3:  µ :ε Real                                                         User 
 
#4:  a :ε Real                                                         User 
 
Then the normal distribution is defined 
 
      ∞                                     
     ⌠                                 2    
     │        1       - 1/2·((x - µ)/σ)     
#5:  │   ───────────·ê                   dx                            User 
     │           2                          
     ⌡    √(2·π·σ )                         
      -∞                                    
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and its integrated probability is estimated correctly: 
 
#6:  1                                                             Simp(#5) 
 
and so is its mean expectation: 
 
      ∞                                         
     ⌠                                 2        
     │       x·1      - 1/2·((x - µ)/σ)         
#7:  │   ───────────·ê                   dx = µ             User=Simp(User) 
     │           2                              
     ⌡    √(2·π·σ )                             
      -∞                                        
 
Then I tried to substitute for µ = 70:  
      ∞                                           
     ⌠                                  2         
     │       x·1      - 1/2·((x - 70)/σ)          
#8:  │   ───────────·ê                    dx = 70           User=Simp(User) 
     │           2                                
     ⌡    √(2·π·σ )                               
      -∞                                          
 
and got µ = 70 back as expected mean without, of course, the need for knowing σ. But when I happened to 
know σ - and substituted it: 
 
      ∞                                      
     ⌠                                  2    
     │       x·1      - 1/2·((x - 70)/5)     
#9:  │   ───────────·ê                    dx                           User 
     │           2                           
     ⌡    √(2·π·5 )                          
      -∞                                     
 
I got an improper estimate of the expected mean: 
 
#10: 3.78815                                                   Approx(User) 
 
which depended on σ: 
 
      ∞                                        
     ⌠                                    2    
     │        x·1      - 1/2·((x - 70)/10)     
#11: │   ────────────·ê                     dx = 12.775   User=Approx(User) 
     │            2                            
     ⌡    √(2·π·10 )                           
      -∞                                       
 
Because of this deficiency it was not possible to estimate the expectations for truncated normal variates. How 
comes that expectation which doesn´t need to know σ is affected by it anyway?  Troels Ring 
 
DNL: See the following DERIVE results: 
 
      ∞                                           
     ⌠                                  2         
     │       x·1      - 1/2·((x - 70)/5)          
#14: │   ───────────·ê                    dx = 70           User=Simp(User) 
     │           2                                
     ⌡    √(2·π·5 )                               
      -∞                                          
µ      ∞                                             
     ⌠                                    2         
     │        x·1      - 1/2·((x - 70)/10)          
#15: │   ────────────·ê                     dx = 70         User=Simp(User) 
     │            2                                 
     ⌡    √(2·π·10 )                                
      -∞                                            
 
and read Terence Etchells´ answer. (He is our specialist for numerical affairs). At this occasion: Our 
best congratulations to Terence for extending his familiy with a second daughter Suzanne. 
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Terence Etchells, Liverpool, UK T.A.ETCHELLS@livjm.ac.uk 

Hi All 
The Normal distribution problem posted by Troels Ring can be explained thus. 

Troels uses Approx to evaluate an integral with parameters. DERIVE´s integral appoximator can only 
work on definite integrals of a single variable i.e. INT(x^2,x,0,1) not integrals with parameters like 
INT(a*x^2,x,0,1). So DERIVE sees that there is more than one variable in the expression and works 
exactly (i.e. attempts to find the integrand symbolically) even though the user has specified Approx 
(i.e. use the methods of Gauss, Romberg etc.). 

In the last example given by Troels, there are no parameters in the integrand hence the quadrature 
methods coded into DERIVE snap into action. I used DERIVE for Windows Version 4.05 and got a 
Dubious Accuracy message and no result. Clearly, the limits -inf and inf have posed a problem for the 
quadrature methods in DERIVE for this integral; it realises (what ever that means!) that the accuracy 
of the result cannot be relied on. Earlier DOS versions have bleeped Dubious Accuracy warnings but 
have still given a result or certain problematic integrals. The answer, as in the case of Troels´ example, 
is not to be relied on! I suspect that Dubious Accuracy warnings were being bleeped as DERIVE ap-
proximated the integral. I am right??? 

Cheers 

Bengt Mansson, Sweden 
 
Does anyone know of DERIVE packages (.MTH - files) for calculation of Galois Groups? 
================ 
bengtmn@algonet.se 
http://www.algonet.se/rbengtmn/www/www.htm 

Howard Whitson, USA WHITSTON@ltu.edu 
 
As I was working on examples of Floyd´s Algorithm for my Data Structures Class (Floyd´s Algorithm 
deals with the shortes path between two given vertices using matrices), I got wondering if I could 
make DERIVE do the individual matrices for the algorithm. Now my programming with DERIVE is a 
bit weak (read -- next to non-existing), but i am willing to try if someone can point the way for me (or 
better yet, someone has already done it and one of you could point me in the direction of the source). 
Thank you for your assistance in this matter. 
H.W. Lawrence Tech. University 

 
DNL: Leonardo Volpi gave an answer in the DERIVE News Group. He also sent a DOC-file 
with an extended explanation. Many thanks. If anyone is interested then please contact Leo-
nardo or me. 
 
 
 
Leonardo Volpi, Firenze, Italy  VOLPI_LEONARDO@mailbox.enel.it 
 
A graph comprises a set of vertices V1, V2 ...... Vn and a set of edges connecting vertices. It can be 
modeled as an adjacency matrix A, in which each element Aij is the length connect from i to j vertices. 
Floyd´s algorithm takes as input a (n × n) matrix A, modeling a given graph, and computes an (n × n) 
matrix S with Sij the length of the shortest path from Vi to Vj or an infinite value ∞ if there is no path. 
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The sequential Floyd´s procedure is: 

 S

A A

A i j

A i j
i j

i j i j

i j

i j

( )0

0

0 0

0

=

≠

= =

∞ = ≠










if

if and

if and

 

 for k = 1..n 

  for i = 1 .. n, j .. n 

 S k S k S k S ki j i j i k k j( ) min( ( ), ( ) ( ))+ = +1  

 

This algorithm derives the matrix S in n steps. At each step k, it constructs an intermediate matrix S(k) 
containing the best known shortest distance between each pair of nodes. Note that, generally speaking, 
the distance between i and j may be different from the one between j and i (non symmetrical graph). 

In DERIVE I have developed and tested the following function: 

 

FLOYD_INIT produces the Sij(0) matrix 

 

FLOYD_STEP produces the intermediate matrix at step k from the intermedediate k–1 matrix A 

 
Finally FLOYD_SEQ automates the whole process and gives the final result matrix from the initial 
graph matrix A. 

Repeating the test with larger matrices (on Pentium 75 and DERIVE edu version) we get the following 
results: 

Matrix  Average Computation Time 
15 × 15  1.6 sec 
18 × 18  3.0 sec 
20 × 20  3.6 sec 
25 × 25  7.2 sec 
 
 
DNL: Leonardo adds an example with a given matrix A. I try to illustrate this matrix with the 
graph belonging to that matrix. (I do that on the TI-92, of course). 
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It is easy to verify the solution. 
 

 
 
 
Klaus Herdt, Osnabrück, Germany  herdt@fem04.mb.fh-osnabrueck.de 
 
Does anybody know a possibility to compute within a DERIVE program an eigenvector of a matrix A 
when the eigenvalue r is given? 
EXACT_EIGENVECTOR(..) - from the Utility file VECTORS.MTH - does not solve the problem 
because it leads (mathematically correct) to a subspace of A with respect to r. 
Also EXACT_EIGENVECTOR(..)/ABS(EXACT_EIGENVECTOR(..)) does not help because it con-
tains a system variable @nn, which always changes. 
 
DNL: As I am only a Secondary School teacher I have no problems with eigenvectors - be-
cause I don´t need them, I hardly remember what they might be good for. So I intended to 
ask “eigenvalue specialists” among the DERIVE family – Carl Leinbach and Robert Hill – for 
help. But then I faced the challenge and tried to find a solution for the problem: 
 
Load first the Utility file VECTORS.MTH 
 
"SPEIV.MTH" 
 
a:=[[-1,-3,-3],[0,2,-1],[2,2,5]] 
 
EIGENVALUES(a)=[w=1,w=2,w=3] 
 
EXACT_EIGENVECTOR(a,3)=[[x1=0,x2=@1,x3=-@1]] 
 
AUX(a,e):=VECTOR(RHS((EXACT_EIGENVECTOR(a,e)) SUB [1,i]),i,1,DIMENSION(a)) 
 
COEFF(u_):=IF(DIMENSION(u_)>1,u_ SUB 2*z_,IF(u_>=0,u_ SUB 1,u_ SUB 1,z_)) 
 
SPEIV(a,e,z):=LIM(VECTOR(COEFF((FACTORS(AUX(a,e))) SUB i_),i_,1, 
              DIMENSION(a)),z_,z) 
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AUX(a,3)=[0,@11,-@12] 
 
SPEIV(a,3,2)=[0,2,-2] 
 
SPEIV(a,3,-0.5)=[0,-1/2,1/2] 
 
EXACT_EIGENVECTOR(a,1)=[[x1=@31,x2=-@31/3,x3=-@31/3]] 
 
SPEIV(a,1,4)=[4,-4/3,-4/3] 
 
EXACT_EIGENVECTOR(a,2)=[[x1=@41,x2=-@41,x3=0]] 
 
SPEIV(a,2,10)=[10,-10,0] 
 
The trick is first to apply AUX() producing a vector consisting of the eigenvector´s compo-
nents. These components are factorized with FACTORS. 
 
Try FACTORS(AUX(a,3))!! 
 
The components of FACTORS()can appear in three different forms: [@n], [Number] or  
[@n, Number]. COEFF(u_) converts [@n] to z_, [Number] to Number and [@n,Number] to 
Number * z_. So COEFF( [0]) → 0, COEFF([@10]) → z_ and COEFF([@10,1/3]) gives z_/3. 
Finally using SPEIV(..) the variable z_ in [ 0,z_,1/3*z_ ], will be substituted by z. 
 
 
Things have changed since 1997:The result of EIGENVALUES is a vector of the values and 
EXACT_EIGENVECTOR gives a vector.  
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Reinhard Schaeck, Berlin, Germany  schaeck@ibm.net 
 
I am used to write programs in several languages (PASCAL, JAVA, ReXX, C etc.) and I have prob-
lems to write a simple function with DERIVE´s capabilities, for example: 
 

Let n be an integer and s(n) the sum of its digits 
 
Is there any book about DERIVE focussing on defining similar functions? 
 
 
Terence Etchells, Liverpool, UK T.A.ETCHELLS@livjm.ac.uk 
 
I am not aware of a book that discusses this. You may try Bernhard Kutzler´s book Improving Mathe-
matics Teaching with DERIVE. Contact Philip Yorke at Chartwell Bratt for info: 
philip@chartwel.demon.co.uk 

However, I have a solution for this problem. I enjoyed solving it. We use the ITERATES function to 
construct a vector of digits of n and sum them. The first thing we need is how many digits there are. 

 FLOOR(LOG(n,10)) 

will do this. 

An efficient method of extracting the units digits is divide by 10; find the FLOOR, multiply by 10 and 
subtract this from the original number e.g. 1243 / 10 = 123.4, the FLOOR is 123, multiply by 10 = 
1230, substract it from the original 1234 – 1230 = 4. This is automated with 

 n - 10 * FLOOR(n/10) 

We now iterate this procedure using a 2-dimensioned vector of extracted units and the number with 
the unit extracted e.g. 
 [[1234,1234],[123,4],[12,3],[1,2],[0,1]] 

 ITERATES([FLOOR(p/10),p*10*FLOOR(p/10)],[p,q],[n,n],FLOOR(LOG(n,10))+1) 

putting 1234 into this function for n gives 
     ┌ 1234  1234 ┐ 
     │            │ 
     │  123    4  │ 
     │            │ 
     │  12     3  │ 
     │            │ 
     │   1     2  │ 
     │            │ 
     └   0     1  ┘ 

To extract the second column transpose the matrix (using `) and extract the second row with SUB 2 (or 
ELEMENT( ) for very old version DERIVE users). 

Use the SUM function to add the elements of this vector and subtract the original number. There you 
have it: 

S(n):=SUM(ITERATES([FLOOR(p/10),p-10*FLOOR(p/10)],[p,q],[n,n], 
      FLOOR(LOG(n,10))+1)` SUB 2)-n 
S(1234) 
10 

Good Luck! 
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Reinhard Schaeck 
 
First of all thanks for your answer an solution. It gave me some ideas for testing and the chance to 
plunge a little deeper into the ITERATES function. I found another solution, and just in case you´re 
still interested I append it here: 

S1(n):=SUM(VECTOR(FLOOR(n/10^j)-10*FLOOR(n/10^(j+1)),j,0, 
       FLOOR(LOG(n,10))+1)) 
S1(1234)=10 
 
This one (if right) works without the ITERATES function and therefore seems to be a little bit easier. 
For a "conventional" programmer functions like ITERATE are really overwhelming. 

 
Terence Etchells 
 
It is right and is a much more elegant solution than mine. 

However, if you use your function to evaluate S1(9^9^3) it takes 29.2 seonds to compute the answer 
of 3249. 

My function takes 0.6 seconds to compute the same answer (using DERIVE for Windows, Win95, 
Pentium 75mhz, 16MB RAM) 

Quite a speed up in performance, wouldn´t you say! Although the ITERATE function is a little daunt-
ing it is a vehicle for minimising repetition of calculation. Basically your function keeps working on 
the large number 9^9^3 whereas the ITERATES function works on successively smaller numbers 
(divisions of 10 each time). 
 
See some tests done by the editor: 
 
9^(9^3)=43932850369646432982977478265707271205801030817712671062167669775046634474
4764029773301412612482563729435064854354299095570379503452515853238520182740967398
7465035323244000006595051260239559131429681769983648776990896661712972759562454074
5303319016864489485057634649269145869517428178955799492360778346148642644861766707
6393901104477324982631297641034277093818692823488603426279473674368943609268871793
4672066772856884784584982350028592567063890430308479455065770806234300662835043975
8378904424542958598296457177460586846616037956743272570412126094093934321790597584
7365096315872153240969882363435363449775254393010368267343970426230801390250903399
147001650831878665172798468587509747439118815689 
 
S(9^(9^3)) 
 
"Memory full with Classic DERIVE 3.* (for DOS)" 
 
S(9^(9^3))=3249 
 
"0.3 sec with DERIVE XM" 
 
S1(9^(9^3))=3249 
 
"27.5 sec with Classic DERIVE 3.*" 
 
These times are from 1997. S needs 0.031 sec and S1 needs now 0.84 sec. 
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Wim de Jong, London, UK W.Dejong@uel..ac.uk 
 
I found Terence´s DERIVE programme for the sum of the digits in a nonnegative integer interesting and amus-
ing. For teaching purposes it may be a little too complicated. The following variation on Terence´s theme is less 
concise, but perhaps somewhat easier to follow. For an integer a, it produces the number N(a) of digits in a, the 
digit D(a,k) corresponding to 10^(k-1) and the sum S2(a) of the digits. 
 
V(a):=ITERATES(FLOOR(x/10),x,a) 
 
N(a):=DIMENSION(V(a))-2 
 
D(a,k):=ELEMENT(V(a),k)-10*ELEMENT(V(a),k+1) 
 
S2(a):=SUM(D(a,k),k,1,N(a)) 
 
S2(1234)=10 
 
S2(9^(9^3))=3249 
 

S2 needs now 0.064 sec. With DERIVE 6 we have one more – very fast - way to find the 
sum of the digits applying a string operation: 

 
SD needs 0.000 sec. 
 
 
Christof Scheper  earl@wohnheim.wad.org 
 
I have to find out the inverse of a matrix but I need the steps between (similar to the method when 
calculating without the computer) e.g: 
 

2 3 1 1 0 0 1 2 1 0 1 0
1 2 1 0 1 0 to (step one) 0 1 3 1 2 0
2 1 2 0 0 1 0 3 4 0 2 1

−   
   − − −
   − −   

 

 
I know it can be done with a combination of SCALE_ELEMENT() and FORCE() from 
VECTOR.MTH but that is not very fast and easy. The command PIVOT() is no great help, too. I 
could do it manually in the same time .... Any comments welcome. Regards Christof 
 
 
 
 
 
Wim de Jong, London, UK W.Dejong@uel..ac.uk 
 
Christof, the quick way for your example: 
 
(i) enter the expression a:=[2,3,1;1,2,-1;2,1,2] 
(ii) enter ROW_REDUCE(a,identity_matrix(3)) = (include the equality operator = if you want the  
 answer [id(3),a^-1] directly 
 
                                         ┌ 1  0  0  -1     1      1   ┐ 
                                         │                            │ 
                                         │           4      2      3  │ 
                                         │ 0  1  0  ───  - ───  - ─── │ 
#3:  ROW_REDUCE(a, IDENTITY_MATRIX(3)) = │           5      5      5  │ 
                                         │                            │ 
                                         │           3      4      1  │ 
                                         │ 0  0  1  ───  - ───  - ─── │ 
                                         └           5      5      5  ┘ 
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The following is the slow method. It is educationally preferable if you want students to practise ele-
mentary row operations in an interactive way: 
 
(i) load the Utility file VECTOR.MTH  (not necessary with recent DERIVE Versions!) 
(ii) enter the augmented matrix [[2,3,1,1,0,0], [1,2,-1,0,1,0], [2,1,2,0,0,1]] as #1, say 
(iii) enter SWAP_ELEMENTS(#1,1,2) and Simplify to obtain the resulting matrix as #3 
(iv) enter SUBTRACT_ELEMENTS(#3,2,1,2) and Simplify to obtain the resulting matrix as #5 
(v) enter SUBTRACT_ELEMENTS(#5,3,1,2) and Simplify to obtain what you have got in your  
 note (as #7) 
(vi) enter and Simplify SCALE_ELEMENT(#7,2,-1) 
 
and so on......  
Your next two steps being SUBTRACT_ELEMENTS(#9,1,2,2) and 
SUBTRACT_ELEMENTS(#11,3,2,-3).  
After that at most three more steps elementary row operations will be needed to get the required result. 
 
 
                      ┌┌ 1  0  5   2    -3      0   ┐         ┐ 
                      ││                            │         │ 
                      ││           4      2      3  │         │ 
                      ││ 0  1  0  ───  - ───  - ─── │         │ 
     SUBTRACT_ELEMENTS││           5      5      5  │, 1, 3, 5│ 
                      ││                            │         │ 
                      ││           3      4      1  │         │ 
                      ││ 0  0  1  ───  - ───  - ─── │         │ 
                      └└           5      5      5  ┘         ┘ 
 
     ┌ 1  0  0  -1     1      1   ┐ 
     │                            │ 
     │           4      2      3  │ 
     │ 0  1  0  ───  - ───  - ─── │ 
     │           5      5      5  │ 
     │                            │ 
     │           3      4      1  │ 
     │ 0  0  1  ───  - ───  - ─── │ 
     └           5      5      5  ┘ 
 
DNL: See another application of SUBTRACT_ELEMENTS in DNL#25, page 43. 
 
 
Please excuse a mistake. In the last DNL I had a certain Barbara 
Vincent in the listing of the Gettysburg Conference Committee. 
It should read Barbara Victor.      I am sorry and I hope that you will 
forgive me. Please take a symbolical flower from me. Josef 
 

At the occasion of a Conference held in Münster, Germany, 20 - 23 May we met Guido 
Pinkernell from the University Münster who showed us a very strange operator - : = =, which 
helped him using the random numbers generator. You might know that unfortunately 
RANDOM() used in function generates new random numbers at each call of the function. So 
if one wants to work with a list of random numbers he has to store that list under a variable´s 
name in an additional assignation. 
Guido overcame that disadvantage. Heinz-Rainer Geyer listened - like me - fascinated 
Guido´s explanations and some weeks later I received an email-contribution  from Heinz-
Rainer and then another one from Guido Pinkernell - both dealing with : = = , which Heinz-
Rainer calls "delayed assignment". 
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The Delayed Assigment 
Heinz Rainer Geyer, St. Katharinen, Germany; HeinzRainer@t-online.de 

04 June 1997 
Hallo Josef, 
It is night and I am working on a strange thing. I am sure you are remembering Guido Pinkernell´s  

: = = . 

Try the following: 

 
The first component is variable, the second one constant!?!?  I intended to produce the value for a 
once in each "multiplication" and use it twice. Do you have an idea?? 
 
I had no idea. But as time goes by: some days later 

10 June 1997 
Hallo Josef, 
some reasoning helped to get on the track of this mystery. You are not allowed to have the variable 
among the function´s parameters. So I could finish my DERIVE - program for Mental Arithmetic. The 
"delayed assignment" was a valueable support. 
 
So I tried MAL() once more: 
 

 

Load MENTAL.MTH as Utility file, then use the functions: PLUSS, MINUSS, MULTS, MIS, DIS, 
DIVIS, SQUARED and MIXED. CHECK and CHECK2 are functions to check the results. Look at 
the examples below: 
 
#1:  "MENTAL.MTH 
 
#2:  TEST(g):=IF(RHS(g)=LHS(g),"right","wrong","?????????") 
 
#3:  CHECK(v):=VECTOR([v SUB i,TEST(v SUB i)],i,1,DIMENSION(v)) 
 
#4:  CHECK2(v):=[VECTOR([v SUB i,TEST(v SUB i)]  
     SUB 2,i,1,DIMENSION(v))]` 
 
#5:  op:=["+","-","*"] 
 
#6:  PROB(s,a_):=[[RANDOM(s+1),a_,RANDOM(s+1)]] 
 
#7:  PROBS(n,s,a_):=VECTOR([RANDOM(s+1),a_,RANDOM(s+1)]`,i,1,n) 
 
#8:  PLUS(s):=PROB(s,op SUB 1) 
 
#9:  PLUSS(n,s):=PROBS(n,s,op SUB 1) 
 
#10: MINUS(s):=PROB(s,op SUB 2) 
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#11: MINUSS(n,s):=PROBS(n,s,op SUB 2) 
 
#12: MULT(s):=PROB(s,op SUB 3) 
 
#13: MULTS(n,s):=PROBS(n,s,op SUB 3) 
 
#14: MI(s):=[b_:==RANDOM(s+1),"-",IF(b_<2,0,RANDOM(b_),RANDOM(b_))] 
 
#15: MIS(n,s):=VECTOR(MI(s),i,1,n) 
 
#16: DI(s):=[(c_:==RANDOM(s+1)+1)*RANDOM(s+1),":",c_] 
 
#17: DIS(n,s):=VECTOR(DI(s),i,1,n) 
 
#18: TEILER(s):=VECTOR(IF(s/i=FLOOR(s/i),i,0),i,1, 
     FLOOR(SQRT(s)+0.5)) 
 
#19: TEIL(s):=SELECT(k/=0,k,TEILER(s)) 
 
#20: TEIL1(s):=VECTOR(s/k,k,REVERSE_VECTOR(TEIL(s))) 
 
#21: TM(s):=APPEND(TEIL(s),TEIL1(s)) 
 
#22: T(s):=IF(SQRT(s)/=FLOOR(SQRT(s)),TM(s),DELETE_ELEMENT(TM(s), 
     DIMENSION(TM(s))/2)) 
 
#23: DIVI(s):=[[d_:==RANDOM(s)+2,":",IF(PRIME(d_),2,(T(d_)) SUB  
              (RANDOM(DIMENSION(T(d_))-1)+2))]] 
 
#24: DIVIS(n,s):=VECTOR(ELEMENT(DIVI(s),1)`,i_,1,n) 
 
#25: SQUARE(s):=[[RANDOM(s+1),"^",2]] 
 
#26: SQUARES(n,s):=VECTOR(ELEMENT(SQUARE(s),1)`,i_,1,n) 
 
#27: MIX(n,s):=VECTOR([o_:==RANDOM(4)+1,IF(o_<4,PROB(s,op SUB o_), 
               [DI(s)])],i_,1,n) 
 
#28: MIXED(n,s):=VECTOR((DELETE_ELEMENT((MIX(n,s)) SUB j_,1))  
     SUB [1,1], j_,1,n) 
 
Various examples: 
 
               ┌ 11  "+"   4 ┐ 
               │             │ 
PLUSS(3, 50) = │  9  "+"   4 │ 
               │             │ 
               └ 45  "+"  27 ┘ 
 
                ┌  0  "*"  72 ┐ 
                │             │ 
                │ 74  "*"  93 │ 
MULTS(4, 100) = │             │ 
                │ 65  "*"  24 │ 
                │             │ 
                └ 69  "*"  96 ┘ 
 

             ┌ 18   ":"  18 ┐ 
             │              │ 
             │ 400  ":"  20 │ 
             │              │ 
DIS(5, 20) = │ 272  ":"  17 │ 
             │              │ 
             │ 56   ":"   4 │ 
             │              │ 
             └ 45   ":"   5 ┘ 
 
 

If you would try MENTAL.MTH with later versions of DERIVE, it would not work because of 
several reasons: first of all the “Delayed Assignment” is not accepted by DERIVE. You may 
enter it but is will be shown and treated as an ordinary assignment  :=. 

                ┌ 68  "-"  81 ┐
                 │             │ 
MINUSS(3, 100) = │ 11  "-"  40 │ 
                 │             │ 
                └ 51  "-"  60 ┘

                   ┌  2  ":"   2 ┐
                    │             │ 
                    │  4  ":"   4 │ 
                    │             │ 
     DIVIS(5, 20) = │ 20  ":"   2 │ 
                    │             │ 
                    │ 20  ":"   5 │ 
                    │             │ 
                   └ 10  ":"  10 ┘

             ┌  8  "-"   5 ┐
              │             │ 
MIS(3, 100) = │ 96  "-"  85 │ 
              │             │ 
             └ 70  "-"  27 ┘
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Operation(n,s) gives a list of n operations z1 op z2 with s = max(z1,z2). In MIS() you never obtain a 
negative result. In DIS() s = max(divisor,quotient). 
 
                    ┌  8  "+"  20 ┐ 
                    │             │ 
#50: MIXED(3, 20) = │ 17  "*"   1 │ 
                    │             │ 
                    └ 42  ":"   7 ┘ 
 
                                                ┌ 28 = 28  "right" ┐ 
           ┌                         42     ┐   │                  │ 
#51: CHECK │8 + 20 = 28, 17·1 = 17, ──── = 8│ = │ 17 = 17  "right" │ 
           └                          7     ┘   │                  │ 
                                                └  6 = 8   "wrong" ┘ 
 
                                                 ┌ "right" ┐ 
            ┌                         42     ┐   │         │ 
#52: CHECK2 │8 + 20 = 28, 17·1 = 17, ──── = 8│ = │ "right" │ 
            └                          7     ┘   │         │ 
                                                 └ "wrong" ┘ 
 
I was not able to reproduce an output similar to #51 because recent versions of DERIVE 
don’t show the unsimplified calculation – at the moment when presenting 25 + 15 it will be 
simplified to 40. But there are also some improvements. My adapted version for DERIVE 6 is 
following working with short programs instead of the Delayed Assigment. Josef 

mental_new.mth 
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Now the examples (do you see the difference?): 
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The next contribution is only of of nostalgic – historic interest. As I noted above this assignment 
is  no more existing in later versions of DERIVE. As you can read Albert Rich was not very 
happy with it – and so it was and remained undocumented. 
 
The email contact between Guido Pinkernell and Al Rich should introduce Guido´s contribu-
tion. Josef 
 

AN UNKNOWN ASSIGMENT OPERATOR OF DERIVE 
Guido Pinkernell, Münster, Germany 

 
Tuesday, 08. July 1997 13:04:46 
Message 
From: guido.pinkernell@uni-muenster.de,BBG 
Subject: [Fwd: Derive assignment operators] 
To: Josef Boehm 
 
Lieber Josef, 
 
auf meine Anfrage an die DERIVE Hersteller habe ich gerade folgende Antwort erhalten. Eine Kopie 
ging laut Mail-Kopf auch an David Stoutemyer. Ich denke, ich werde jetzt selbst einen Arbeitsbegriff 
erfinden und wie gehabt verfahren. 
 
Herzliche Gruesse  
 
Guido 
 
Albert Rich wrote: 
 
Hello Guido Pinkernell 
Westfaelische Wilhelms-Universitaet, Einsteinstrasse 62 
Institut fuer Didaktik der Mathematik 48149 Muenster 
fon:+49 251 83-33769 fax:-38350 email:guido.pinkernell@uni-muenster.de 
 
On Wed, 02 Jul 1997 09:58:46 +0200, you wrote: 
 

Could you please give me the English expressions for the assigment operators 
 
      :=    and     := = 
 
Among, at least German colleagues of mine, the latter seems to be widely unknown so that I 
have been asked to give a short introduction. However, further inquiries showed that there 
seems to be uncertainty about the correct English terms so that I would like to have DERIVEs 
official expressions for distinguishing those two operators. 

 

I have not documented or named the :== operator primarily because I am not happy with having to 
confuse users with two different assignment operators. 
 
However, if I have to distinguish between the := and the :== assignment operators, I usually just say 
"the colon equal operator" for the former and "the colon equal equal operator" for the latter. 
 
My goal in the next version of Derive is to support multi-line function definitions with the ability to 
assign values to local variables.  Obviously, this will require the := = type of assignment where the 
result of simplifying  the right side is assigned to the variable on the left.  Thus, I am considering mak-
ing the := operator function the same as the current := = operator, and then eliminating the := = opera-
tor. 
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I would greatly appreciate knowing if you or any of your colleagues foresee any conceptual problems 
with making the above change to Derive. 
 
Aloha, 
Albert D. Rich, 
Applied Logician 
Soft Warehouse, Inc. 
 
1 Prelimimaries 

Some time ago in a private communication, one of the creators of DERIVE, Albert D. Rich, men-
tioned an assignment operator that helped with problems I had while programming stochastic experi-
ments. This operator, :==, seems to be widely unknown so that it should be a good idea to give a 
short introduction at this place. However, Albert said that the effect of the assignment operator in the 
next version of DERIVE may change slightly. So the discussion of the assignment operators in this note 
may only be relevant to version 4 of DERIVE. But it still describes an interesting phenomenon in pro-
gramming with DERIVE that seems to have gone unnoticed for a considerable while. 

2 Some effects of DERIVE´s assigment operator := 

With f := 1 every simplification of f gives 1 
as output, as expected (Figure 1). To reflect on the 
functional programming principle of DERIVE, g has 
not been assigned the number 0 but a function with 
the constant value 0. In the daily work with DERIVE, 
though, this detail seems of no great importance. 
 

                       Figure 1: 

But when working with DERIVE´s random number generator it does make a difference. Having 
defined g := RANDOM(2), the subsequent simplifications of g result in different numbers (Figure 
2) which, at least to those who are used to procedural languages like BASIC, indeed must come unex-
pected. This phenomenon is easily explained by recalling the idea of functional programming: g has 
not been assigned a number that has been computed by RANDOM(2). g stands for the function 
RANDOM(2) itself, and to simplify g means to call a random number generator which every time pro-
duces a new random number. 

 
 

 
 
 
 
 
 
                  Figure 2: 

In some cases it is necessary to be able to recall random numbers that have been generated at an 
earlier stage of work. Maybe the best example is the empirical law of large numbers. Here one con-
stantly observes the relative frequency of some random event, e.g "toss a fair coin and it shows ". 
For this its present value is based upon all results that the coin has shown up to now.  

#1:  f := 1      User 
 
#2:  f           User 
 
#3:  1           Simp(#2) 
 
#4:  1           Simp(#2) 
 
#5:  1           Simp(#2) 

#1:  g := RANDOM(2)      User 
 
#2:  g                   User 
 
#3:  0                   Simp(#2) 
 
#4:  0                   Simp(#2) 
 
#5:  1                   Simp(#2) 
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A simulation with DERIVE is not easy for the reasons said above. Or how could our "coin" h := 
RANDOM(2) recall the number it has produced in the fourth round, say, when every time it will be 
asked it produces a new number? 
 This touches the general problem of applying concepts of procedural programming like indices and 
loops to functional programming languages which in their purest form do not provide commands for 
such ideas. In DERIVE, some authors manage with generating a list L of random numbers as a database 
from which they are now able to pick the numbers as elements L sub i for evaluation (Figure 3, cf. 
[1]). But such a list, once created, is necessarily finite, while the idea of the law of large numbers re-
quires the experiment to be repeated as often as it is needed. One can solve this problem by various 
means, e.g. by computing another list M of random numbers and appending this to L. This requires 
some extra programming which can easily be avoided by means of the assignment operator :==. 
 

#1:  h := RANDOM(2)                           User 
 
#2:  VECTOR(h, i, 1, 10)                      User 
 
#3:  [0, 1, 1, 0, 0, 1, 0, 1, 1, 1]           Simp(#2) 
 
#4:  L := [0, 1, 1, 0, 0, 1, 0, 1, 1, 1]      User 
 
#5:  L SUB 5                                  User 
 
#6:  0                                        Simp(#5) 
 
#7:  0                                        Simp(#5) 
 
#8:  0                                        Simp(#5) 

Figure 3: 

3 "Early evaluation" with := = 

The existence of the assignment operator 
:== in DERIVE seems to be widely unknown. All 
textbooks on DERIVE which I was able to check 
do not mention it, and in a survey of the assign-
ment operators of different computer algebra 
systems a similar operator has been said to exist 
for MATHEMATICA though not for DERIVE [2]. In 
lack of an official term by DERIVE to distinguish 
:== from := I will use "early evaluation" in 
contrast to the term "lazy evaluation", wellknown in a different context, which describes the non-
evaluating effect of :=. In the following we will give a short demonstration on how our early evalua-
tion operator works and how it helps with demonstrating of the law of great numbers. 

While in g:=RANDOM(2) the variable g has been assigned the function RANDOM(2), simpli-
fying g:==RANDOM(2) will lead to evaluating RANDOM(2)before the resulting random number will 
be assigned to g. Every subsequent simplification of g repeats this random number (Figure 4), which 
now is the result that we had expected earlier in Figure 2. Now, for a demonstration of the law of great 
numbers we therefore can program DERIVE as shown in the next DERIVE - listing TOSSES.MTH. 

#1:  g :== RANDOM(2)         User 
 
#2:  0                       Simp(#1) 
 
#3:  g                       User 
 
#4:  0                       Simp(#3) 
 
#5:  0                       Simp(#3) 
 
#6:  0                       Simp(#3) 

            Figure 4: 
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#1:  coin := RANDOM(2)                                                 User 
 
#2:  TOSS(series,n):=(series:==VECTOR(coin,i,1,n))                     User 
 
#3:  ACTUALIZE(series1,series2,newseries):=(newseries:==               User 
     APPEND(series1,series2)) 
 
#4:  EVALUATE(series):= AVERAGE(series)                                User 
 
#5:  TOSS(v, 10)=[0,0,1,0,1,1,0,0,1,0]                      User=Simp(User) 
 
#6:  v=[0,0,1,0,1,1,0,0,1,0]                                User=Simp(User) 
 
                    2  
#7:  EVALUATE(v) = ───                                      User=Simp(User) 
                    5  
 
#8:  TOSS(w,10)=[1,1,1,1,0,1,0,0,0,0]                       User=Simp(User) 
 
#9:  v=[0,0,1,0,1,1,0,0,1,0]                                User=Simp(User) 
 
#10: w=[1,1,1,1,0,1,0,0,0,0]                                User=Simp(User) 
 
#11: ACTUALIZE(v,w,z)                                                  User 
 
#12: z=[0,0,1,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]            User=Simp(User) 
 
                     9  
#13: EVALUATE(z) = ────                                     User=Simp(User) 
                    20  
 
#14: TOSS(u,10)=[0,0,1,0,1,1,1,1,1,0]                       User=Simp(User) 
 
#15: z=[0,0,1,0,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]            User=Simp(User) 
 
#16: u=[0,0,1,0,1,1,1,1,1,0]                                User=Simp(User) 
 
#17: ACTUALIZE(u,z,y)=[0,0,1,0,1,1,1,1,1,0,0,0,1,0,1,       User=Simp(User) 
     1,0,0,1,0,1,1,1,1,0,1,0,0,0,0] 
 
#18: y=[0,0,1,0,1,1,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,        User=Simp(User) 
     1,1,0,1,0,0,0,0] 
 
                    1  
#19: EVALUATE(y) = ───                                      User=Simp(User) 
                    2  
 

Figure 5: 

The underlying idea of the program is to define functions that reflect the real actions of exploring 
random experiments, which here are: (a) toss a coin [n] times and denote the results in a list, (b) 
evaluate the list by computing the relative frequency of a chosen event, here "the coin shows ", and 
(c) if thought necessary, continue tossing the coin and add results to the preceeding list to create a new 
actual list for evaluation. 

The application of early evaluation here is twofold. In line #2 it causes the coin to be thrown be-
fore the results are assigned to a list named [series]. In line #3 it causes the new list [series2] 
to be appended to the preceeding list [series1] before the result is named [newseries]. Line 
#4 defines a fairly simple function for evaluating the list. There are easy modifications for evaluating 
different events within the same or even different stochastic experiments. 

This note was intended to give a short introduction to what we have called "early evaluation" in 
DERIVE. Stochastics seems to be the main field for applying :== though we can expect early evalua-
tion to enhance programming DERIVE in other fields as well. 
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Visit my TI-92 pal on the Information page, 
Mickey. 
 
 
Mickey Mouse was presented by Sergey 
Biryukow on the International DERIVE Sympo-
sium 1997 FUN in Teaching Mathematics. 
 
 
I believe that this could be a nice problem 
for students applying implicit, explicit and 
parameter form of conics, Josef 

This is the DERIVE 6 Mickey Mouse 
 

 

   



 
 
 p22   

 
Neil Stahl: Opportunities of 3d Graphing   

 
 D-N-L#27  

 

SOME OPPORTUNITIES IN 3D GRAPHING 
USING DERIVE 

Neil Stahl, Wisconsin, USA 

For years I felt computer graphics would be of benefit in demonstrating important concepts in calcu-
lus, such as tangent lines and tangent planes as well as direction fields. When I obtained DERIVE  
I developed a few programs to enable me to do that. The programs give one the abi- 
lity to demonstrate these concepts in class, and explaining the programs to interested students gives an 
opportunity to introduce some additional concepts about transformations and computer graphics. 

I am pleased at the opportunity you are offering me to distribute this work more widely. 

 

 

 
 
You should remember that in 1997 we had no 3D-Plot Window available. We needed projec-
tions of 3D-objects on the xy-plane. ISOMETRIC(…) gives an isometric mapping. 
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SHOWALL transforms each of a ´vector´ (list) of 3D objects isometrically. 

SHOW transforms one 3D object OR a list of them. 

ROTX, ROTY, ROTZ apply a rotation matrix to each element in a list of 3D objects. 

RX, RY, RZ apply a rotation matrix to one element OR each in a list. 

SLICES evaluates v3 for variable u taking m values from a to b. 

GRID generates a lattice of 2D points for a ≤ x ≤ b and c ≤ y ≤ d. 

VFIELD can be used to plot elements of the 2D vector field v2 at points indicated as in  

      GRID. 

DFIELD plots the direction field u (probably depending on x and/or y) at points indicated as  

     in GRID. 

 

   
Simplify and Plot #25, #29 and #31 SHOW(SLICES([x ,y,2*ê^(-(x^2+y^2))] ,x ,0 ,2 ,8))  
 SHOW(SLICES([x,y,2*ê^(-(x^2+y^2))] ,y , -2 ,2 ,8))  

  

SHOW(R(π /2 ,2 .5)+t*DRDZ(π /2 ,2 .5))  
SHOW(R(π /2 ,2 .5)+t*DRDθ (π /2 ,2 .5))  

SHOW(R(π /2 ,2 .5)+t*CROSS(DRDθ (π /2 ,2 .5) ,DRDZ(π /2 ,2 .5)) )  
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Neil Stahl, Professor, Math 
University of Wisconsin Center-Fox Valley 
Midway Road, Menasha, Wisconsin, USA 54952-8002 
email: nstahl@uwcmail.uwc.edu 
 
It might be nice to compare with the 3D-plots produced with DERIVE 6. 
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A CAS Competition 
presented by 

David R. Stoutemyer, Honolulu, Hawaii 
 

The TI-92 tied for first place over MATHEMATICA in a problem-solving competition at the 1997 
International Conference on Computer Algebra (ISAAC 97). 

The competition was announced about three weeks before the meeting, then the five systems 
that accepted the challenge (Mathematica, Macsyma, Reduce, muPad and the TI-92) were sent ten 
very difficult problems. Team members were not allowed to tell people outside their team their solu-
tions before the presentation at the meeting. (with Al Rich away traveling and David Stoutemyer al-
ready working with the TI-92 team, this precluded a DERIVE team. Otherwise the DERIVE solutions 
would be similar to the TI-92 solutions.) 

The results demonstrate that the TI-92 is appropriate for industrial-strength research problems 
as well as education. 
 
The Problems 
 
1. What is the 4 significant digit approximation to the condition number of the 256 by 256 

Hilbert matrix? 
Notes: The n by n Hilbert matrix has entries hi,j = 1/(i + j - 1)  for 1 ≤ i ≤ n, 1 ≤ j ≤ n. The 
condition number of a non-singular matrix A is defined to be Norm2 (A) Norm2 (A-1), where 
Norm2 is the vector induced matrix norm defined by Norm2 (A) = max(norm2(Ax)/norm2(x)) 
over all non-zero vectors x ∈ Rn, and where the norm2 is the Euclidean vector norm de-

fined by norm2(x) = xi
i

n
2

1=
∑ . 

2. What is the value of  P x dx
x

x= ∫1
6

  to 7 significant digits? 

3. What is   ( ) /n n n
n

π + + + −

=

∞

∑ 2 2 1 3

1
1   to 14 significant digits? 

4. What is the coefficient of x3000 in the expansion of the polynomial 

  ( ) ( ) ( )x x x x x x x+ + + + + + +1 1 12000 2 1000 4 3 2 500  

  to 13 significant digits? 

5. What is the largest zero of the 1000th Laguerre polynomial to 12 significant digits? 
 Note: The Laguerre Polynomials satisfy the following recurrence relation: 

   
L x L x x

L x n x
n

L x n
n

L x nn n n

0 1

1 2

1 1
2 1 1 1

( ) , ( )

( ) ( ) ( ) .

= = − +

=
− −

−
−

>− − for
 

6. Find a lexicographic groebner basis for the (four) polynomial system: 

8 5 4 2 3 5 2 7 7 7 8 7 7 8 8

3 5 3 6 9 4 2 2 7 9 6 5 7 7 5

2 9 9 7 4 8 9 3 8 6 7 4 6 8 2

7 5 3 5 5 2 9 7 4 4 5

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

w wz wy wz w x xy xz x y yz y z z

w wx wy wz w x xy xz x y yz y z z

w wx wy wz w x xy xz x y yz y z z

w wx wy wz w x xy xz x y

+ − + + + + − − + − − + − +

− − − + + + − + + + + + + +

− + + − − + + − + + − + − + +

+ + − − + + − + − −

;

;

;

yz y z z+ − − +6 4 9 22 .
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7. What is  x Li
x

dx2

0

1

3
1

1∫ +






 where  Li zn ( )  is the polylogarithm function   
z
k

k

n
k=

∞

∑
1

 ? 

 
7. Let   f(x) =   tan(tanh(sin(x))) 
          + tanh(sin(tan(x))) 
          + sin(tan(tanh(x))) 
          − tan(sin(tanh(x))) 

   − sin(tanh(tan(x))) 
   − tanh(tan(sin(x))) 

− tan(sinh(tanh(x))) 
− sinh(tanh(tan(x))) 
− tanh(tan(sinh(x))) 
+ tan(tanh(sinh(x))) 
+ tanh(sinh(tan(x))) 
+ sinh(tan(tanh(x))) 

 g(x) =  sinh(tanh(sin(x))) 
         + tanh(sin(sinh(x))) 
         + sin(sinh(tanh(x))) 
         − sinh(sin(tanh(x))) 
         − sin(tanh(sinh(x))) 
         − tanh(sinh(sin(x))) 
         − tan(sinh(sin(x))) 
         − sinh(sin(tan(x))) 
         − sin(tan(sinh(x))) 
         + tan(sin(sinh(x))) 
         + sin(sinh(tan(x))) 
         + sinh(tan(sin(x))) 

 

 What is   lim
( ( ))
( ( ))x

f g x
g f x→0

  to 9 significant digits. 

9. Find the largest eigenvalue λ to 13 significant digits for the integral equation 

 exp( ) ( ) ( )x y x xy y x y f y dy f x+ + + + + =∫ 2 2 2 2
0

1
λ  

10.Consider the following initial value problem: 

 
d y
dx

x y dy
dx

y y
2

2
3 3

3
0 0 0 0= + + = ′ =, ( ) , ( ) .  

 Find the smallest positive number r such that the solution has a derivative singularity at 
 x = r. Calculate r to 13 significant digits. Is y(r) infinite or finite? If y(r) is finite then com 
 pute it to 13 significant digits. 

David Stoutemyer presented the problems and his way to solve them at the DERIVE Sympo-
sium ´97 at Särö, Sweden. It is obvious that all the problems cannot be solved by editing 
them and then pressing the ENTER-key. An excellent tool needs an excellent master to 
show its full capabilities. It might be a challenge for some of you trying to solve the problems 
using the TI, DERIVE or any other CA-systems. I´ll present some other problem´s solutions 
in the next DNLs. Josef 
 

A TI-92 Solution to the ISSAC ’97 Challenge Problem 3 
David R. Stoutemyer, July 1997 

 
Let f(n) denote the summand and m denote an integer ≥ 1.  Summing the first m−1 terms then 

applying the Euler-Maclaurin formula to the remaining terms gives: 

f n f n f n dn
f m f m f m f m

n

m

m

( ) ( ) ( )
( ) ' ( ) ' ' ' ( ) ( )

...
( )

= + + − + − +
=

∞ − ∞

∑ ∑ ∫
1 1

1 5

2 12 720 30240
 

The integral will be done by the built-in nInt() function.  However, for an infinite upper limit 
it replaces the integration variable with its reciprocal, which doesn’t work well for this integrand.  
Therefore, the built-in nSolve() function was used to determine that 1 + b√2  < 5e-14⋅(b2 + bπ)  for b > 
5e7, where 5e-14 is float_epsilon for the TI-92.  The integral was then split into a numeric integration 
from m to b, together with an exact symbolic integral from b to ∞ of a truncated power series for 
(nπ + n2)-1/3.  Derived with the assistance of the TI-92, this tail integral is 
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−
−
− + −

− + −

=
∑ C j b

j

j

j

k ( / , )
/ ( )

/ ( )1 3
1 3 2

1 3 2

0

π π

π π
 

 
where C(i,j) is the number of combinations of i things taken j at a time.  Substituting the above value 
of b reveals that the third term is less than float_epsilon times the sum of the first two terms. 
 
 Initial experiments suggested that the sum was approximately 21. Then, 
 

 nSolve (-f’(m)/12 = 21*float_epsilon, m) 
and 

 nSolve(f’’´(m)/720 = 21*float_epsilon, m) 
 
suggested that it might be necessary to include the derivative terms through f’’’(m)/720 to achieve a 
practically small value of m.  Moreover, that derivative is already complicated enough to discourage 
also including the next derivative term to further reduce m. 
 
 To reduce cumulative rounding error, the miscellaneous terms were added in order of increasing 
magnitude and the partial sum was done in reverse order.  
 

For every m the two terms of the symbolic integral contribute about -2e-10 and 9.2. Here is a 
table showing the other contributions and total value together with the computing time as a function of 
m:  
 

m f(m)/2 -f’(m)/12 f’’’(m)/720 integral partial sum total sec 
1 3e-1 3e-2 -8e-5 11.7 0 21.193365806583 109 
2 2e-1 1e-2 -2e-4 11.2 0.63 21.193236374751 105 
4 1e-1 4e-3 -2e-5 10.6 1.3 21.193239967167 97 
8 5e-2 1e-3 -2e-6 10.0 2.0 21.193240366886 92 

16 3e-2 3e-4 -1e-7 9.4 2.6 21.193240377510 85 
32 1e-2 7e-5 -7e-9 8.1 3.2 21.193240377708 78 
64 6e-3 2e-5 -4e-10 8.2 3.8 21.193240377711 73 

128 3e-3 4e-6 -3e-11 7.7 4.3 21.193240377711 68 
256 2e-3 1e-6 -2e-12 7.1 4.9 “ 82 
512 7e-4 2e-7 -1e-13 6.6 5.4 “ 94 

1024 4e-4 6e-8 -6e-15 6.1 5.9 “ 143 
 

 The initial decline in computing time is because the more difficult quadratures dominate the 
increasing partial-sum times for small m. 
 

The third derivative term becomes neglibible for m ≥ 256, so we didn’t need it after all, but 
without it we wouldn’t have a good idea of the error due to truncating the derivative terms. 
 

The least accurate component is almost certainly the numeric integration, which contributes a 
significant portion to the result. nInt() typically returns about 12 significant digits for well-behaved 
problems (sometimes more), and nInt() issues a warning if it seems likely that there are less than 6 
significant digits.  Therefore, the above converged value is probably not correct to more than about 12 
digits – perhaps less.  The totals might begin to increase in accuracy for much higher m as the quadra-
ture contribution becomes less significant, but I don’t have the patience to check that. 
 

 Although the requested 14 significant digits is impractical with this 14-digit arithmetic, it ap-
pears that this technique would permit the requested accuracy with IEEE 16-digit floating-point arith-
metic and a correspondingly more ambitious numeric integrator. 

 
email: swh@aloha.com 
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Complex Numbers - Fundamental Operations 
and their Representation 

Bernhard Wadsack, Vienna, Austria 
 
Using COMPLEX.MTH enables the students to represent the four fundamental operations, exponen-
tiating and taking roots with complex numbers in the complex plane.  

For plotting the vector representation it is recommended to set Options - State - Mode: CONNECTED 
and Size: SMALL (for the .....A - functions) and Size: LARGE otherwise. 

Having loaded the utility file COMPLEX.MTH you have the following functions at your disposal: 

 
PIC(z) represents the complex number z = x + i y   as the point Z(x,y) 
 
LOC(z) position vector OZ 
 
ARROW(z,sc) position vector OZ with an arrow head (sc = scale) 
 
ADD(z1,z2) position vectors of z1, z2 and z1 + z2 
 
ADDA(z1,z2,sc) position vectors of z1, z2 and z1 + z2 with arrow heads 
 
SUBTR(z1,z2)  and  SUBTRA(z1,z2,sc) difference 
 
MULT(z1,z2)  and  MULTA(z1,z2,sc)  product 
 
DIVI(z1,z2)  and  DIVIA(z1,z2,sc)  quotient 
 
POT(z,n)  and  POTA(z,n,sc) all powers of z with n = 1(1)n 
 
POT1(z1,n,inc) and POT1A(z,n,inc,sc) all powers of z with n = 1(inc)n 
 
RADIX(z1,n)  and  RADIXA(z,n,sc) all nth roots of z 
 
Some examples: 
 

   
  
  
 
z1=3 + 4i; z2 = 2 + i POTA(0.5+#i,18,2) 
 PIC((0.5+#1)^n) Plot with 0≤n≤18 
position vector of z1/z2 = (2,1) 
 RADIXA(#i,20,0.5) 
position vector of z2/z1--> graph PIC(#i^n) Plot with 0≤n≤2π 
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These are the plots in DERIVE 6: 
 

 

 
 
 
 

 
 

 

 

  
 

The “Complex Spiral” 
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Darstellung von Polyedern - 

Platonische und archimedische Körper im Mittelpunkt 
Huber Weller, Vogelsang, Germany 

In einem Kurs Lineare Algebra wird u.a. auch die Darstellung, Beschreibung und Untersuchung von 
räumlichen Objekten angestrebt. Dabei geht es "um eine psychologische Auffrischung und Ausfor-
mung grundlegender Raumvorstellungen, wie sie jeder normale Mensch von Kindheit an über seine 
Handlungen an räumlichen Gebilden aufbaut und im Laufe seiner geistigen Entwicklung immer klarer 
prägt, ausdifferenziert und miteinander verzahnt." (Wittmann, Elementargeometrie und Wirklichkeit, 
S.50). 

Im Unterricht der Oberstufe habe ich immer wieder festgestellt, daß Schüler wissen wollten, wie 
Computergraphiken entstehen und wie man so etwas macht. Deshalb habe ich mich entschlossen, in 
einem Kurs DERIVE einzusetzen, um den mathematischen Hintergrund der Bewegungen bzw. der 
Abbildungen näher zu untersuchen. Durch die mögliche Verbindung der drei Werkzeugebenen (nume-
rische, symbolische und grafische) wird eine Integration des raumgeometrischen Wissens unterstützt, 
wobei insbesondere die Window-Shuttle-Technik extensiv genutzt wird. Während des ganzen Lehr-
gangs haben uns die besonders schönen Körper (die platonischen und archimedischen) begleitet. Sie 
werden zunächst als Kantenmodelle hergestellt, danach zeichnerisch und schließlich mit DERIVE auf 
dem Bildschirm dargestellt. 

Für diese Arbeit am Computer habe ich versucht zwei Prinzipien zu verfolgen: 

 1. Die Notation soll möglichst dicht an der üblichen Notation bleiben. 

 2. Die Darstellung der Körper auf dem Bildschirm sollte sich an der Tätigkeit des 
 Zeichnens orientieren (Punkte werden miteinander verbunden). 

Wegen der einfacheren Eingabe in DERIVE werden Punkte und Vektoren als ZEILENvektoren be-
schrieben.  

 
In a Linear Algebra course usually representation, description and investigation of 3D-objects 
are included. We try to refresh basic skills in spatial imagination. Teaching in upper secon-
dary schools since long I could notice that students are interested in creating computer 
graphics - "How is this possible?". So I used DERIVE to investigate the mathematical back-
ground of mappings and motions. Using the connection of three levels of tools - a Window 
Shuttle between numerical, symbolical and graphical techniques - I could support an integra-
tion of spatial-geometric knowledge. We specially dealt with the Platonic and the Archime-
dian Solids. Having produced models we drawed the solids by hand and then we repre-
sented them on the screen. Working with DERIVE I tried to follow two principles: 

 1. Keep the notation as close as possible to the common one. 

 2. Presentation on the screen should be very similar to the drawing activity, 
i.e. points are connected. 

Points and vectors are written as ROW vectors. 
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2D-Abbildungen - 2D Mappings 
 
Zunächst werden ebene Figuren als Punktfolgen im 2D-Grafikfenster gezeichnet (Connected- Modus). 
Daran schließt sich die Untersuchung von 2D-Abbildungen an. Da die Figuren durch Punktfolgen 
(d.h. durch eine Matrix) repräsentiert werden, kann das Bild der gesamten Figur durch eine einzige 
Matrizen-multiplikation berechnet werden. Dieser eher statische Vorgang kann mit dem VECTOR-
Befehl dynamisiert werden, indem eine Bildfolge erzeugt wird, wobei die Einheitsmatrix schrittweise 
in die gegebene Matrix verändert wird:  

Z.B. soll die durch die Matrix 
1 2
2 1−









 beschriebene Abbildung visualisiert werden: 

First of all plane figures are drawn as sequences (lists) of points (= matrices) in the  
2D graphic window. Then we continue with investigations of 2D mappings, which can be de-
scribed by a multiplication of matrices. This more static process will become dynamically 
producing a sequence of mappings using the VECTOR command. The unity matrix will be 
changed step by step to the given one. 

For example lets visualize the mapping given by 
1 2
2 1−









 : 

 
 
 
 
"Drehstreckung " 
 
"Die Kirche : " 
 
kirche:=[[3,0],[3,3],[5,4],[7,3],[7,5], 
        [8,7],[9,5], [9,0],[3,0]] 
 
VECTOR(kirche*[[1,k],[-k,1]],k,0,2,0.2) 
 
Am Ende dieses Abschnitts müssen die Schüler auf jeden Fall wissen: 

 1. Eine Abbildung wird durch eine MATRIX beschrieben. 
 2. Die Hintereinanderausführung von Abbildungen wird  

beschrieben durch die Multiplikation der entsprechenden Matrizen.  
 3. Die Bilder der EINHEITSVEKTOREN stehen in den ZEILEN der Matrix. 
 
At the end of this section the students should know: 

 1. A mapping is decribed by a MATRIX. 
 2. An execution of a sequence of mappings is decribed by a product of the respective 

matrices. 
 3. The pictures of the UNITY VECTORS can be found in the ROWS of the matrices. 
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3D-Abbildungen - 3DMappings 
 
Zur grafischen Darstellung der dreidimensionalen Objekte werden die Erkenntnisse über lineare Ab-
bil-dungen und Matrizen genutzt. Die Tätigkeit des Zeichnens wird als Abbildung des dreidimensiona-
len Raums in die Ebene aufgefaßt, d.h. nur durch die Bilder der Einheitsvektoren ist die Projektions-
matrix bestimmt. Bei der grafischen Darstellung müssen 3D-Koordinaten in 2D-Koordinaten trans-
formiert werden. Wir benutzen eine Form der Darstellung, die wir auch schon beim Anfertigen der 
Bilder mit Papier und Bleistift benutzt haben: 
 
[ 1 , 0 , 0 ] ==> [-0.5 , -0.25 ] 
[ 0 , 1 , 0 ] ==> [ 1 , 0 ] 
[ 0 , 0 , 1 ] ==> [ 0 , 1 ] 
 
Der Name Kavalierprojektion für diese Art der Darstellung ent-
stammt dem mittelalterlichen Militärwesen. Kavaliere (Reiter) sind 
Teile der Festungsaufbauten gewesen, deren Seitenansicht so un-
verzerrt dargestellt wurde. Will man den Grundriß unverzerrt dar-
stellen, so benutzt man die Militärprojektion, bei der die 3.Achse 
verkürzt dargestellt wird. Diese Form der Darstellung wird heute 
oft in der Architektur und bei anschaulichen Stadtplänen benutzt.  
Daneben werden Isometrie  (eine Kugel wird als Kreis dargestellt)  
und Dimetrie verwendet.  Siehe hierzu auch El-
schenbroich/Meiners S.26 ff. 
 
The name cavalier projection has its origin in the medieval military affairs. Cavaliers were 
parts of fortifications. In this projection their sideviews could be presented free from distor-
tion. If you want to have an undistorted topview then you should use military projection with 
a shortened 3rd axis. This form of representation is still used in architecture and for vivid 
town maps. We also use isometric projection (a sphere´s picture is a circle) and dimetric 
projection [1]. 
 

 

"3DKIRCHE.MTH 
"Various views of the church - The house´s vertices" 
 
[a:=[4,0,0],b:=[4,5,0],c:=[0,5,0],d:=[0,0,0],e:=[4,0,3],f:=[4,5,3]] 
 
 [g:=[0,5,3],h:=[0,0,3],i:=[2,0,4],j:=[2,5,4]] 
 
"Die Eckpunkte des Turms - The tower´s vertices" 
 
[k:=[3,5,0],l:=[3,7,0],m:=[1,7,0],n:=[1,5,0],o:=[3,5,6]] 
 
[p:=[3,7,6],q:=[1,7,6],r:=[1,5,6],s:=[2,6,9]] 
 
"The points connected show the whole solids." 
 
kirche:=[a,b,f,e,a,d,h,i,e,f,j,i,h,g,j,g,c,d,c,b] 
 
turm:=[k,l,p,o,k,n,r,o,s,r,q,s,p,q,m,l,m,n] 

z

x

y
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"Kavalierprojektion - Cavalier projection" 
 
kav:=[[-0.5,-0.25],[1,0],[0,1]] 
 
[kirche*kav,turm*kav] 
 
"Militärprojektionen - Military projections" 
 
mil1:=[[-COS(30*deg),-SIN(30*deg)],[COS(60*deg), 
      -SIN(60*deg)],[0,0.2]] 
 
mil2:=[[-COS(30*deg),-SIN(30*deg)],[COS(60*deg), 
      -SIN(60*deg)],[0,0.5]] 
 
[kirche*mil1,turm*mil1] 
 
[kirche*mil2,turm*mil2] 
 
"Isometrie - Isometric projection" 
 
iso:=[[-COS(30*deg),-SIN(30*deg)],[COS(30*deg),-SIN(30*deg)],[0,1]] 
 
[kirche*iso,turm*iso] 
 
"Dimetrie - Dimetric projection" 
 
dim:=[[-0.5*COS(41.41*deg),-0.5*SIN(41.41*deg)],[COS(7.18*deg), 
     -SIN(7.18*deg)],[0,1]] 
 
[kirche*dim,turm*dim] 
 

  
Schräge Parallelprojektionen 

 

 
 

 Vorsicht ! Optische Täuschungen ! KAVALIERPROJEKTION 

 

  
 MILITÄRPROJEKTION 1 MILITÄRPROJEKTION 2 

 

  
 ISOMETRIE DIMETRIE 
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From Linear Inequalities to 
Linear Programming (2) 

Josef Böhm, Würmla, Austria 

In DNL#26 I presented the visualization of linear inequalities and systems of linear inequali-
ties. You know that a linear programming problem consists of a linear function which should 
obtain a maximum or minimum value under consideration of a system of linear constraints. 
 
Let´s have an easy example: 
 

Find the maximum value of  z  =  x + 2y 
 
under the constraints   x + 4y ≤ 24 
      2x + 3y ≤ 23 
      3x + 2y ≤ 27 
 
and usually    x ≥ 0, y ≥ 0 

 
The following functions are provided: 
 

z := goal function 
rm := [constraint1, constraint2, ........] 

L(n) gives the boundary line of constraint #n in list rm 

ALL_INT_SECT returns the segments of the restriction lines in the 1st quadrant 
SIMPLEX plots the feasible region 
S_PKT(i,j) intersection point of restriction line i with restriction line j 
ISO(x,y) line parallel to the goal function passing the point P(x,y) 
ZIEL(x,y) value of the goal function in the point P(x,y) 
KNOTEN all existing intersection points (nodes) of the restriction lines  
 including the axes) among one another 
BEREICH(xm,ym) shows the feasible region for rm with 0 ≤ x ≤ xm and 0 ≤ y ≤ ym 

BER_INT(xm,ym) shows only the points with integer coordinates within BEREICH 

TOTAL returns a list of all nodes together with the value of the goal func- 
 tion in this point + comment whether feasible or not 
TOTZUL returns a list of all feasible nodes + value of the goal function 
maxloes, minloes gives the maximum (minimum) solution 

All constraints – except the nonnegativity conditions – must be collected in the list (vector) 
rm, the goal function must be defined as z:= 
 
 

 
In 1997 we could not represent inequalities graphically, so I produced some functions for 
shading the respective half planes (see DNL#26). Here we use the functionality of DERIVE 6 
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We represent the feasible region  

 

or simply plot SIMPLEX: 

 

 

If you would like to see all boundary lines then: 

 

 

We can calculate the intersection points of the lines (vertices of the feasible region): 

 

Function KNOTEN returns a list containing all ( )5
2  possible intersection points. The solution 

must be found among these points 
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Let us plot isogoal lines passing the intersection points of contraints (#1,#2) and (#2,#3). 
(The isogoal lines are the sets of points giving the same function value for the goal function, 
eg x + 2y = 10, x + 2y = 20, …) 
 

 

 
 

We can observe that the line passing (4,5) (maximum distance from the origin but containing 
at least one point of the feasible region) gives the maximum value. We need only calculate 
this maximum value: 4 + 2⋅5 = 14. Or: 
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TOTAL returns a list of all nodes (= KNOTEN) together with the respective function values 
and a comment if feasible or not. TOTZUL selects the feasible solutions. 

 

Maximum and Minumum are given directly 
by: 
 

 
 

 
Just as a reminder on DOS times (from the DNL #27/1997) 
 

  

 Figure 1 Figure 2 

  

 Figure 3 Figure 4 
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A Mixed Problem containing more constraints (and not all of the kind ≤)!! 

Goal function: z = 150 x + 180 y 

Constraints:      x – 2y ≤ 6 
        x + y ≤ 16 
              y ≤ 7 
      x + 3y ≤ 27 
  10x + 3y ≥ 30 
      x + 7y ≥ 14 
      x + 2y ≥ 8 
Find the feasible region. 
Find maximum and minimum value of z. 
Find maximum and minimum for integer solutions. 
 

 
 

 
 

 
We identify the constraints and label them in the plot 
window. 
 
Then we draw a iso line through the origin and try to 
find Maximum and Minimum by inspection.  
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It seems to be that the maximum is reached in the interestion point of (2) and (4), the mini-
mum in (7) ∩ (5). Hence we add the iso lines first and then calculate their intersection points: 
 

 
 

 
The maximum = 2565 is given for (x = 21/2, y = 11/2). 
The minimum = 14400/17 is geven for (x = 36/17, y = 50/17). 
 
Very often only integer solutions are wanted. So one has to inspect the integer grid points in 
order to find the right iso lines. 
 

  
 
The plot should explain the procedure. 
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Polar Coordinates 
 
To work with the exercises in this section set up your screen to look like the one below (DERIVE for 
DOS = DfD or DERIVE for Windows = DfW). 

When you are in the right 2D-window - the large one = window 3 - choose Options and switch the 
Coordinates to Polar and make the aXes labels blank for this window. In the smaller 2D-window - = 
window 2 - let the Coordinates Rectangular and set the aXes labels to θ for the horizontal and r for 
the vertical axes. For further advise use your manual and/or the Help function. 

    

 

Author in the Algebra Window      r = θ 

 

In window 2 plot this equation in rectangular co-
ordinates. In window 3 plot in polar coordinates. 
Note that when you plot in polar coordinates, you 
must specify a Min and Max value. Choose 0 for 
the Min and 2π for the Max. Turn on the Trace 
and follow the cursor. Note in the lower left corner 
that DERIVE tells you the r and θ setting. Also 
note that it gives you a value for a parameter, t. 
How do t and θ differ? When do they agree? 

 

Return to window 1 and repeat the above exercise for the expression 
r = 2 sin(θ) 

What curve does this generate? Can you use the Polar Transformations 
x = r cos(θ)  and  y = r sin(θ) 

to transform this curve to rectangular coordinates? 
Hint: multiply both sides of the original equation by r. 
 A more interesting curve can be generated by the expression 

r = 2 sin (3θ) 
Author this expression and also Author an expression to limit the plot in window 2 from 0 to 2π 

r = CHI (0, θ, 2π) 2 sin (3θ). 
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Plot this expression in window 2. Return to the 
Algebra window and highlight the expression 
without the CHI function. Plot this expression in 
window 3 with θ going from 0 to π3 . 

Trace this curve. 

What is the location of the point corresponding to 
r = 0.6 and θ = 0.92? 

Plot this curve again for θ going from 0 to 2π. 

As exercises we suggest you plot the curves r = 2  sin(k θ) for k = 2, 3, 4, 5. What observations can 
you make about this family of curves? What is the result of changing sin to cos? 

 We can use the identities x y r2 2 2+ =    and   θ = 



atan x

y  

to convert a polar expression to an expression in rectangular coordinates. Above you converted  

r  =  2 sin (θ)   to   x y y2 2 2+ = . 
What does r  =  2 cos (θ) become? 
 We can use these identities in DERIVE together with the Manage/Substitute option to convert 
expressions from polar form to an equation in x and y. Let´s look at 

r = 2 sin (3θ). 
Before we do any conversion let´s first expand sin(3θ) in terms of sin(θ) and cos(θ). Under the Man-
age menu, choose Trigonometry. Set the Direction to Expand. 
Now highlight the right side of the polar expression and choose Expand. The expression becomes 

r sin= −2 4 2( ( ) ( ) ( ))sin cosθ θ θ . 
With this expression highlighted choose Manage/Substitute and replace r with r x y= +2 2 and θ 

with ( )atan x
y . Simplify the result. 

 There will be an extraneous SIGN(x) in the 
expression and you may want to make the expression a 
little more palatable by multiplying both sides with 

( )x y2 2 3 2
+

/
. 

Plot the final result in the two dimensional plot win-
dow with the Coordinates set to Rectangular. Even 
with a 486 machine this takes a while. Note that 
DERIVE has some problems in this plot with the points 
near the origin. 

As a parting exercise try this one. It combines a polar plot, and a rectangular plot all on the same 
screen. 

Dorothy and Toto are in the Land of Oz at the origin. They followed the polar curve r = θ from θ = 0 
to θ = 4π radians. They were joined by the Tinman and followed a parametric plot [t, 4 sin t] from t = 
4π to t = 10π. At this point they were joined by the Cowardly Lion and Scare Crow and followed a 
curve y = (x - 10π)2 and followed it until they entered the Emerald City at x = 12π. Plot the path of 
their trip in one window. Is the path continuous? What is the distance that each member of the group 
traveled? 
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Titbits from Algebra and Number Theory 
by Johann Wiesenbauer, Vienna 

Back again! Today I couldn't be better in a better mood. As you may remember, things were quite 
different when I wrote the last column in this series. At that time, I was really up in arms complaining 
about the state of the utility file NUMBER.MTH which, in my opinion, left a lot to be desired. Well, 
things have changed dramatically since.  Today a new version of DfW has become available and when 
Al Rich announced it to some members of the DERIVE-community in an e-mail communication, he 
wrote that "the utility file NUMBER.MTH included with DfW version 4.06 has been extensively re-
vised. These enhancements are primarily due to suggestions and contributions made by Johann 
Wiesenbauer... " Now I am in a dilemma.  Normally, I would have said that those enhancements are 
the best thing since sliced bread (many thanks to Carl Leinbach for telling me this idiom and others at 
the DERIVE-conference in Sweden!) but since I am more or less responsible for them this might be 
inappropriate. Therefore my only comment on the new update of NUMBER.MTH is (quoting Al from 
the e-mail again): "If you are at all interested in number theory, check it out!" 

Anyway, may I offer you my help in doing so? After all, the corresponding parts of the help file have 
not yet been updated and some of you might not even have the new update of NUMBER.MTH. 
Ready? Let´s start then with the first new function 

EXTENDED_GCD(a,b):=ITERATE([v_ SUB 2,[v_ SUB 4,v_ SUB 6]],v_, 
ITERATE(IF(MOD(v_ SUB 1,v_ SUB 2)=0,v_,[v_ SUB 2,MOD(v_ SUB 1, 
v_ SUB 2),v_ SUB 4,v_ SUB 3-FLOOR(v_ SUB 1,v_ SUB 2)*v_ SUB 4, 
v_ SUB 6,v_ SUB 5-FLOOR(v_ SUB 1,v_ SUB 2)*v_ SUB 6]),v_,[a,b,1,0,0,1]),1) 

Its output is a vector [d,[x,y]], where d = gcd(a,b) and x,y are integers such that 1=xa+yb. This is 
essentially a revised version of EEA(a,b) in DNL#13, p27, based on the Extended Euclidean Algo-
rithm, where I used the ITERATE(...,1)-trick to select the three numbers above from an 6-element 
vector. You will encounter this programming trick a number of times subsequently. As sure as eggs is 
eggs, most programmers would have used one of those ugly _AUX-functions instead. If you belong to 
them then I strongly urge you to rethink your policy. Believe me, your functions will become shorter, 
more self-contained and also more beautiful (though, admittedly, beauty is in the eye of the beholder!) 
without detracting from speed and readability! 

What is this function actually good for? Well primarily you could use it to solve Diophantine equa-
tions of the form ax + by = c. This could be done in two steps: 

Step 1: Assuming that EXTENDED_GCD(a,b) = [d,[u,v]] check whether d is a divisor of c. If not, 
then obviously the given Diophantine equation has no solutions. Otherwise continue with 

Step 2: Multiply the equation au + bv = d with c/d to see that x = cu/d, y = cv/d or more generally x = 
(cu+bt)/d, y=(cv–at)/d is a solution of the original equation for any integer t. 

The following routine will do this automatically for you: 

LIN_DIOPHANT(a,b,c):=ITERATE(IF(MOD(c,e_ SUB 1)=0, 
e_ SUB 2*c/e_ SUB 1+[b*@,-a*@]),e_,EXTENDED_GCD(a,b),1) 

(Herein I used @ instead of t to avoid any conflict with previously defined variables.) 

For instance, you could use it to solve tasks of the following sort (cf. [1], p25), 

A woman has two egg timers due to two previous relationships. The first can time an interval of ex-
actly 5 minutes and the second an interval of exactly 11 minutes. Unfortunately, her current lover in-
sists on having a 3-minute egg for breakfast. Can you help her? 

Of course, we can. All we have to do is to compute 

LIN_DIOPHANT(5,11,3)=[11*@-6,3-5*@] 
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Setting e.g. @=0 we get the solution x = – 6, y = 3 of 5x + 11y = 3, which leads to the equation 
3⋅11 – 6⋅5=3. Therefore she could solve the problem by starting both egg timers at the same time, put-
ting in the egg after 6 cycles of the 5-minute timer and removing it after 3 cycles of the 11-minute 
timer. This means that the whole procedure will last 33 minutes. Is this the best possible solution, what 
do you think? (Check other values of @!) 

Of course, there are more serious "applications" of EXTENDED_GCD(a,b) than the previous one. In 
particular, if (a,m)=1 then ax+ym=1 means that x is an inverse of a mod m. Since the value of y was 
actually calculated to no purpose here, an own routine for the computation of the inverse of a mod m 
was included in NUMBER.MTH that makes no use of EXTENDED_GCD(a,b). If you are a regular 
reader of this column, you will know it by now (apart from the use of indexed variables): 

INVERSE_MOD(a,m):=IF(GCD(a,m)=1,MOD((ITERATE(IF(MOD(v_ SUB 1, 
v_ SUB 2)=0,v_,[v_ SUB 2,MOD(v_ SUB 1,v_ SUB 2),v_ SUB 4,v_ SUB 3– 
FLOOR(v_ SUB 1,v_ SUB 2)*v_ SUB 4]),v_,[a,m,1,0])) SUB 4,m)) [1] 

I don´t think that it is possible to overestimate the importance of this very function. Whenever linear 
congruences must be solved it comes into play and mathematics abounds of applications. For instance, 
it is needed in the well-known RSA-cryptosystem to calculate the decoding key (cf.[4]). The next 
three functions can also be viewed as applications of INVERSE_MOD(a,m). The first is our good old 
powermod-function 

POWER_MOD(a,n,m):=MOD(IF(n>=0,n,INVERSE_MOD(a,m))^ABS(n),m) 
that can compute an mod m now even if a < 0 (of course, the latter only on condition that (a,m) = 1, 
otherwise the output will be a question mark!). Also the other two functions 

SOLVE_MOD(u,x,m):=ITERATE(IF(MOD(LIM(RHS(u)-LHS(u),x,0),t_)=0, 
ITERATES(s_+m/t_,s_,MOD(INVERSE_MOD(DIF(LHS(u),x)/t_,m/t_)* 
LIM(RHS(u)-LHS(u),x,0)/t_,m/t_),t_-1),[]),t_,GCD(DIF(LHS(u),x),m),1) 

and 

CRT(a,m):=ITERATE(MOD(a*VECTOR(p_/m_*INVERSE_MOD(p_/m_,m_), 
m_,m),p_),p_,PRODUCT(m_,m_,m),1) 

have already been introduced, namely in DNL#26, p26, and in DNL#24, p40 respectively. To see 
these routines at work we will show as an example how they can be used to solve algebraic congru-
ences, i.e. congruences of the form f(x) = 0 mod m, where f(x) is a polynomial with integer coeffi-
cients. 

To do this we need two propositions from number theory (cf. [3]). 

Proposition 1: If u is any solution of f(x) ≡ 0 mod pe–1 for an e>1, then u + v pe–1, where v is any solu-
tion of the linear congruence 

′ ≡ − −f u y f u
p

pe( ) ( ) mod1  

will be a solution of f(x) ≡ 0 mod pe and all solutions of f(x) ≡ 0 mod pe can be obtained in this way. 

Proposition 2: If f(x) ≡ 0 mod m1m2 ….. mr is an algebraic congruence where m1, m2, …., mr are pair-
wise coprime, then all its solutions can be obtained by solving the congruence systems 

x ≡ a1 mod m1 

x ≡ a2 mod m2 

          ⋅⋅⋅ 
x ≡ ar mod mr 

 
[1] The red printed functions have been implemented in DERIVE in the meanwhile. 
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for all r-tuples (a1, a2, ..., ar), where f(ai) ≡ 0 mod mi, i = 1,2,...., r. 

As an example we will try to find all solutions of 

x3 + 5x2
 – 11x + 3  mod  106121003. 

We start by setting 

F(x):=x^3+5*x^2-11*x+3 
m:=106121003 
DIF(F(x),x)=3*x^2+10*x-11 
FF(x):=3*x^2+10*x-11 

and notice that 

FACTOR(m)=101^3*103 
In view of Proposition 1 we first determine the solution of the given congruence mod 101 and 
mod 103, respectively 

SELECT(MOD(F(x_),101)=0,x_,0,100)=[11,93] 
SELECT(MOD(F(x_),103)=0,x_,0,102)=[4] 

Because of the equations 

SOLVE_MOD(FF(11)*y=-F(11)/101,y,101)=[38] 
11+101*38=3849 
SOLVE_MOD(FF(3849)*y=-F(3849)/101^2,y,101)=[47] 
3849+47*101^2=483296 

we see that the first solution 11 mod 101 leads to the solution 483296 mod 1013 of the given congru-
ence, whereas the second branch starting with the solution 93 mod 101 "dies out" because of 

SOLVE_MOD(FF(93)*y=-F(93)/101,y,101)=[] 
Finally, we put together our solutions mod 1013 and mod 103 by means of Proposition 2 and get 

CRT([483296,4],[101^3,103])=2543898 
i.e. the given congruence has the unique solution 2543898 mod m. (Check it!) If you are a very ambi-
tious programmer, you could try to write a program that solves a given algebraic congruence by carry-
ing out all the steps above automatically. (Good luck!) 

Let´s turn to the next new routine (again not really new to regular readers of this column!), which is 

SORT(v):=REVERSE_VECTOR(LIM(TERMS(v*VECTOR(x_^k_,k_,v)),x_,1)) 
Believe it or not, this very short routine can sort any list of different (!) rational numbers in ascending 
order and is lightning fast into the bargain. (If you want to sort in descending order it becomes even 
shorter: Simply leave out REVERSE_VECTOR!) 

How is this possible? Well, if you take the trouble of looking into the code you will surely discover 
that I have simply stolen the internal sort-routine of DERIVE. This is really an exception of the rule, 
you see. Usually you have no access to all the hidden treasures that are used by DERIVE internally 
which can be quite annoying at times. 

By the way, if the rational numbers in the list which you want to sort are not necessarily distinct there 
is no need to despair. In this case you should use the slightly more complicated routine 

SORT2(v):=REVERSE_VECTOR(LIM(TERMS(EXPAND(VECTOR(k_*x_^APPROX(k_), 
k_,v)*VECTOR(y_^k_,k_,DIMENSION(v)))),[x_,y_],[1,1])) 
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Usually this routine will sort even a list of real numbers, but in contrast to what I said in DNL#23, 
p39, there may be exceptions for a rather strange reason. For some real numbers c DERIVE doesn´t 
recognize that x c is a polynomial! You can test this for a given real number c by checking whether it 
simplifies x c to c x or not! In this sense you shouldn´t include in your list real numbers like 
eπ, πe, ......etc, but simple numbers like e, π, 2 , ... don´t cause problems. 

A good old acquaintance is also the next routine 

FAREY(n):=SORT((ITERATE(IF(v_ SUB 1=v_ SUB 2 AND v_ SUB 2=n, 
v_,[IF(v_ SUB 1=v_ SUB 2,1,v_ SUB 1+1),IF(v_ SUB 1=v_ SUB 2, 
v_ SUB 2+1,v_ SUB 2),IF(GCD(v_ SUB 1,v_ SUB 2)=1,APPEND( 
v_ SUB 3,[v_ SUB 1/v_ SUB 2]),v_ SUB 3)]),v_,[1,1,[]])) SUB 3) 

which computes the Farey-fractions of order n, i.e. the fractions in the interval (0,1] (some authors 
include 0, mind you!) whose denominator doesn´t exceed n ordered by size. If you are not yet familiar 
with them, you should check the following simple example: 

FAREY(6)=[1/6,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6,1] 
Farey-fractions have a lot of intriguing properties (cf. [2]). For instance, every fraction in this series 
with two neighbours a/b and c/d can be computed by the easy formula (a+c)/(b+d). This works also 
for the first one, if you consider the fraction 0/1 as its left neighbour. Actually this property can be 
used to construct the Farey fractions of order n+1 from those of order n by inserting a new fraction 
between two "old" ones using the formula above whenever the denominator of the resulting fraction 
doesn´t exceed n+1. In the example above this leads to 

FAREY(7)=[1/7,1/6,1/5,1/4,2/7,1/3,2/5,3/7,1/2,4/7,3/5,2/3,5/7,3/4,4/5,5/6,6/7,1] 
(Check it!) Another interesting property of Farey-fractions is the fact that the equation 
bc – ad = 1 holds for two neighbouring Farey-fractions a/b < c/d. This could be used (at least in 
theory) to solve linear Diophantine equations of the form bx – ay = 1 (a ≤ b) in natural numbers which 
do not exceed b. Just take x=c, y=d, where c/d is the Farey-fraction following immediately after a/b in 
the series of Farey-fractions of order b! 

There are a lot of interesting conjectures dealing with Farey-fractions. Let me just mention one of 
them. Take FAREY(6) from above which has 12 elements. A priori, the "most regular" selection of an 
ordered 12-element subset of (0,1] would certainly be 

 [1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12, 1] 
where all points have the same distance 1/12 from each other. To measure the deviation of the actual 
arrangement in FAREY(6) from the one above, we could sum up the absolute differences of corre-
sponding elements. In our example this yields 

SUM(ABS(v_),v_,FAREY(6) – [1,2,...,12]/12)=4/15 
More generally, one could define a function 

DISCREPANCY(n):=ITERATE(SUM(ABS(v_),v_, 
s_– [1,2,...,DIMENSION(s_)]/DIMENSION(s_)),s_,FAREY(n),1) 

that measures the deviation of FAREY(n) from the most regular arrangement of an equally sized or-
dered subset of (0,1]. Here are the first 10 values of this function 

VECTOR(DISCREPANCY(n_),n_,1,10)=[0,0,1/6,1/6,11/30,4/15,43/90,61/110,173/315,187/360] 
which seem to indicate that the function doesn´t grow very fast. Actually, the conjecture I was talking 
about claims that its growth is so slow that for every r > 1/2 there exists a real constant C > 0 such that 
DISCREPANCY(n) < Cnr for all n. Just in case you want to get your teeth into it, be warned: Surpris-
ingly enough, this conjecture is equivalent to Riemann´s hypothesis (RH for short), one of the most 
outstanding conjectures in mathematics and therefore it isn´t exactly a pushover! 

In its original formulation, RH deals with the zeros of the so-called Riemann´s ζ-function, For 
Re(z)>1 it can be defined by 
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ζ( ) / ( )z p z

p

= − −∏1 1  

where p runs through all prime numbers. If you replace 1 / (1 – p – z) in this formula by the correspond-
ing geometric series  1 + 1/p + 1/p2 + ..... then by expanding it and using the fundamental theorem of 
number theory about prime factorizations you get another well-known formula for ζ(z), namely 

ζ( )z n z

n

= −

=

∞

∑
1

   (Re(z) > 1 

By a well-known method called "analytic continuation" it is possible to define ζ(z) for all complex 
numbers z and the resulting function has no singularities except for a pole of order 1 at z = 1. Now RH 
claims that all zeros of ζ(z) in the so-called "critical strip" 0≤Re(z)≤1 lie on the "critical line" 
Re(z) = 1/2. Just to get an impression what this means you could draw 

ABS(ZETA(a + #i x)) 
in the range 0 ≤ x ≤ 100 for various values of a in [0,1] e.g. a = 0.3, 0.5, 0.8 (unfortunately, this 
doesn´t work in DfW, so you have to use the DOS-version of DERIVE.) The truth of RH would have 
many important implications in number theory. 

What else is new in NUMBER.MTH? Above all, a bunch of functions that should cover most prob-
lems dealing with divisibility. Again they are from my e-mail correspondence with Al Rich based in 
most cases on functions published in previous "Titbits". (Look there for the definition of these func-
tions and examples.) The only exception is DIVISOR_SIGMA(k,n) which is now defined more gener-
ally to be the sum of k-th powers of all positive divisors of n, where k is a nonnegative integer. Fur-
thermore, some notations have been changed slightly. 

PRIME_FACTORIZATION(n):=VECTOR(ITERATE(IF(PRIME(p_),[p_,k_], 
[p_^(k_/(k_+1)),k_+1],[p_^(k_/(k_+1)),k_+1]),[p_,k_],[f_,1]),f_,FACTORS(FACTOR(n))) 

 
DIVISORS(n):=SORT((ITERATE(IF(DIMENSION(v_)=0,[u_,v_],[APPEND([u_]`* 

[ITERATES(v_ SUB 1 SUB 1*b_,b_,1,v_ SUB 1 SUB 2)]),DELETE_ELEMENT(v_)]), 
[u_,v_],[[1],PRIME_FACTORIZATION(n)])) SUB 1) 

 
DIVISOR_SIGMA(k,n):=PRODUCT(SUM(v_ SUB 1^(k*j_),j_,0,v_ SUB 2),v_, 

PRIME_FACTORIZATION(n)) 
 
DIVISOR_TAU(n):=PRODUCT(v_ SUB 2+1,v_,PRIME_FACTORIZATION(n)) 
 
EULER_PHI(n):=n*PRODUCT(1-1/v_ SUB 1,v_,PRIME_FACTORIZATION(n)) 
 
MOEBIUS_MU(n):=PRODUCT(IF(PRIME(k_),-1,0),k_,FACTORS(FACTOR(n))) 
 
SQUAREFREE(n):=IF(MOEBIUS_MU(n)=0,false,true) 
 
CYCLOTOMIC(n,x):=PRODUCT((x^(n/d_)-1)^MOEBIUS_MU(d_),d_,DIVISORS(n)) 
As you might remember, the absence of those functions was the main point of criticism in the last 
issue. At last they are available now! Unfortunately, space is running out and so I have to continue 
with the introduction of the new functions the next time. What do you think of them.? E-mail me, if 
you know of any numbertheoretic function that might be of general interest but is still missing! 
(j.wiesenbauer@tuwien.ac.at) 

[1] Adler A.-Coury J.E., The Theory of Numbers, Jones and Barlett Publishers, 1995 

[2] Hardy G.H.-Wright E.M., The Theory of Numbers, Oxford University Press, 4 ed., 1965 
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End Point vs. Interior Extrema 
Edward T. White, Frostburg, MD 

presented by and with TI-92 version by 
Carl Leinbach, Gettyburg, PA 

In this paper we examine the problem of finding the lateral surface area of a frustrum of 
a cone having its bottom radius fixed as 1 unit, its top radius r and a fixed height h, as r varies 
from 0 to 1. 

  
For what value of r is the surface area a maximum? 
 

We proceed in the usual way and define a function of r and h which we call Fr, for frus-
trum 

Fr(r, h) (r 1) h2 (r 1)2= + + −π  

The following screen shows the well known process for solving the problem as posed. We 
differentiate Fr with respect to r, set the result equalt to zero and solve for r. (To overcome dif-
ficulties with the error message "Circular definition" later on I use rθ and hθ as variable names in the 
function definition. JB) 

 

It is apparent that of the two solutions shown in the figure, the first is less than the second. 

Further investigation shows that when h ≤ 1
2

the interior maximum value of Fr(r,h) lies to 

the left of its interior minimum value. In the figures shown below rad[1] is the value to the 
left and rad[2] ist the value to the right. 
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Given the restrictions on h, it is obvious that when r = rad[1] the second derivative is negative 
and when r = rad[2] the second derivative is positive. (You may want to convince yourself 
that the denominator is a positive real number in both cases.) 

Now comes the interesting part.Let´s look at the lateral surface areas for various choices 
of h between 0 and 1. The following figure graphs Fr(r,h) for h = 0, 0.1, 0.2, ......, 1 in a win-
dow size [-0.2, 1.5] by [-0.2, 8]. (Use the [Y=] facility. You can also create the family of curves with 
seq(fr(x,h),h,0,1,0.1), but plotting is very slow and you are not able then to determine the max and 
min-values using the F5-Math-tool. JB) 

 

It can be seen that after a certain value of h the minimum for the lateral surface area is at r = 
0, a cone, and the maximum is at r = 1, a cylinder. However, there are values of h in between 
where the maximum and minimum occur for a true frustrum, i.e. one that is neither a cone nor 
a cylinder. The maximum value starts on the left and as h increases "slides" to the right. The 
action of the minima is just the opposite. Does the switch from interior maxima and minima 
occur when these points cross? 

This seems like an intriguing question. Let´s investigate! First let´s look at the maxi-
mum and minimum points for the values of h for which we have drawn graphs. The figures 
below show a table generated in the Data/Matrix editor and then the line graphs of the data in 
column 4 versus column 2 and in column 5 versus column 3 using the Plot Setup option. 
These line graphs are superimposed on our original plot. 

      

It looks like the hypothesis may have some credence, but what happens in the "gap" in our 
data? 

Returning to the expression for ∂
∂ r

F(r, h) , we see that it is equal to 0 when 

h2 2r (1 r).= −  

Substituting this value for h2 into Fr(r,h) we have Fr(r) (1 r) 1 r 2= + −π . The graph of this 
function for 0 ≤ r ≤ 1 superimposed upon the graphs of Fr(r,h) is shown below. It seems to be 
very similar to the line graphs that were superimposed above. Could it be that the cross over 
point is at the maximum of Fr(r)? 
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Once again looks are deceiving. Analysis shows that Fr(r) has a maximum at r = 0.5 and h =  

= 1
2

 The numerical data shows that this is not the point where the maxima and minima 

cross. 
In a final effort to put our hypthesis to rest let´s look at the following equations: 

Fr(rad[1],h) – Fr(1,h)  =  0  (1) and 

Fr(0,h) – Fr(rad[2],h)  =  0  (2). 

Solving equation (1) for h should give us the value for h where the maximum shifts to an end 
point maximum. The solution to (2) should tell us where the minimum shifts. Using the 
nsolve( operator and restricting h to be between 0 and 1, equation (1) gives a value of 

 

h = 0.600566, 

equation (2) yields 

h = 0.626342. 

These answers are close, but far enough separated that we can be certain that the difference is 
not merely due to numerical error. To further convince ourselves we graph the left hand side 
of equations (1) and (2) for 0.59 ≤ h ≤ 0.63. (ymin = – 0.1, ymax = 0.1) 

 
 
Thus, there is a short interval of h val-
ues for which Fr(r,h) (with 0 ≤ h ≤ 1,  
0 ≤ r ≤ 1) has a maximum at r = 1 and a 
minimum in the interior of the interval. 

The analysis of this problem required all three aspects of the TI-92. The graphical evi-
dence suggested the problem and helped us to develop a hypothesis, but it certainly could not 
convince us. The numerical capabilities of the calculator enabled us to look at data and to find 
solutions to the equations that finally disproved the hypothesis. However, it was the symbolic 
capability that allowed us to perform the manipulations that gave us the equations that were 
input for our numerical solvers. Thus all three capabilities, the numerical, the graphical, and 
the symbolic were important components for doing this analysis. 
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THE GAUSS-SEIDEL METHOD - A Program for the TI-92. 

Leandro Tortosa and Javier Santacruz, Alicante, ESP 

Let´s supose that we want to solve the linear system of equations given by  
A X  = B 

and we are assuming that the system has a unique solution.  Let´s also suppose that the elements on the main 
diagonal are not nules; if they don´t, we do some rowswap elementary operation in order not to appear a null 
element in that place.  

Generally speaking, iterative methods are based on performing a partition on the matrix A as  

A = E – F ,  

being E and F square matrices of the same order like A. 
By substituting this decomposition of the matrix A in the initial system we´ll have  

( E – F ) X  =  B      E X  = F X  +  B   
X  =  E-1 F  X  +  E-1 B =  T X  +  C ,  with T = E-1F  y  C = E-1B. 

Using the last expression, we can rewrite it and getting the following iterative expression:  

Xk+1 = E-1 F  Xk  +  E-1 B  =  T Xk  +  C 

To begin with, we take an initial vector X0. From this, we generate a sequence of vectors  

X(1), X(2), X(3), ..., X(i) ,.... 

with the property of converging to the solution of the initial system.  
 

The Gauss-Seidel method is based on the Jacobi method with a slight modification. 
The well-known equations that describe the Jacobi method are: 

(x ) 1
a

b a (x ) a (x ) ; j 1, 2, ......, nj
i 1

i j
j jk k

i

k 1

j 1

jk k
i

k j 1

n
+

=

−

= +
= ⋅ − ⋅ − ⋅











 =∑ ∑  

Without going into details, we can see that the modification we must do to get the Gauss-Seidel 
method consist of calculating the i-th component of the vector Xk+1  using the components calculated before in 
the same step of the iteration, so we will use the components 

x1
k+1, x2

k+1, ... , xi-1
k+1        

For developing the program in the Ti-92, we use the next expression : 

Mx M A x b x I M A x M b= − + ⇒ = − +− −( ) ( )1 1  

where M is the lower triangular part of A. The iterative expression we get from the last one is 

x I M A x M bn n+
− −= − +1

1 1( )  

and this is the one we build at the program. 

An example : 
 
 

 

Let´s consider the system given by  Ax = b where A and b are 

defined like we can see  
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When we write gseidel() at the editor, the program is 

executed and the first screen asks us for the number of 

iterations and precision, 

 

 

 

 

After this step, the next screen asks us for the initial 

vector, x0. The default option is the null vector ; if we 

want to change it, we must press 1 and enter de desired 

one. Finally, it calculates the solution : 

 

 

 

A condition for the numerical stability of the solution. 
We have given an implementation of the Gauss-Seidel method for Ti-92. But the question arises now is : what´s 
the matter with the problems of numerical stability when we perform an iterative process, and  

We say that a matrix A is strictly diagonal dominant if  

a a i nii ij
j j i

n

> =
= ≠
∑ | | , , ... .

,1
1 2  

We can define the diagonal dominance of a matrix A, δ, like 

δ =





















=

≠

∑
max

a

a
i

ii

ij
j
j i

n

1

. 

From these definitions, we can say that a matrix is strictly diagonal dominant if δ > 1. 

The reason of introducing these concepts is that whenever we prove that in the linear system the matrix of the 
coefficients is strictly diagonal dominant, we can assure that the system has a solution and the iterative proccess 
is numerically stable. In other words, when the matrix A is strictly diagonal dominant, we can use the Gauss-
Seidel method described above to get the solution, because the iterative proccess is quickly convergent. 

We have developed a program Diadom for the TI-92 that shows us if a matrix is strictly diagonal dominant. (We 

must enter the matrix in the variable m5). 

Diadom() 
Prgm 
Local l1,l2,l3,n,s,i,j,k,δ,±,ε,m,g 
dim(m5) l1 
l1[1] n 
l1[2] s 
newList(n) l2 
Disp "Calculo de δω 
For i,1,n 
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abs(m5[i,i])/(Σ(abs(m5[i,j]),j,1,s)-abs(m5[i,i])) l2[i] 
EndFor 
Disp l2 
min(l2) k 
max(l2) δ 
If k<1 Then 
  Disp "no es estrictamente diagonal" 
EndIf 
Disp "La dominanza diagonal es" 
Disp "δ=",δ 
Pause   

 
PROGRAM FOR TI-92 FOR SOLVING SYSTEMS OF LINEAR EQUATIONS BY THE GAUSS-

SEIDEL METHOD 
 
The program asks you for the number of iterations you want to do and the precision to work. We introduce the 
matrix of coeficients of the system with label a  and the vector of the right-hand side of the system like b.  
 
gseidel() 
Prgm 
setMode("Exact/Approx","Approximate") 
Local n,i,j,k,l,l1,t,siter,pre 
{"Fix 0","Fix 1","Fix 2","Fix 3","Fix 4","Fix 5","Fix 6","Fix 7","Fix 
8","Fix 9","Fix 10","Fix 11","Fix 12"} l1 
dim(a) n 
n[1] n 
newMat(n,1) x0 
Dialog 
Title "Valores iniciales" 
Request "numero de iteraciones",siter 
DropDown "Precision",seq(string(l),1,0,12),pre 
EndDlog 
pre+1 pre 
setMode("Display Digits",l1[pre]) 
expr(siter) siter 
identity(n) r 
  For i,1,n 
    For j,1,i 
    a[i,j] r[i,j] 
    EndFor 
  EndFor 
Disp r 
Disp x0 
Disp "0 = aceptar" 
Input "1 = modificar",t 
If t=1 Then 
   Prompt x0 
EndIf 
For u,1,siter,1 
   (identity(n)-r^(-1)*a)*x0+r^(-1)*b x0 
   If u≠siter Then 
     Disp x0 
   EndIf 
EndFor 
Disp "El resultado es..." 
Pause x0T 
EndPrgm 
 


