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Bon jour, je suis Filou. 
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Liebe DERIVE- und TI-Freunde,  

DNL#33 leitet das nun schon 9. DUG-Jahr 
ein, zu dem ich Sie alle recht herzlich begrüße. 
An meiner Stelle lacht Ihnen dieses Mal Filou 
entgegen. Sie werden ihm im nächsten DNL mit 
einem Gespräch mit seinem Schöpfer JJ Dahan 
wieder und ausführlich begegnen. 

Ich möchte Sie gleich auf die 
Ankündigung der ACDCA Sommer-
akademie 1999 auf der gegenüber-
liegenden Seite hinweisen und Sie 
herzlichst dazu einladen. Die voran-
gekündigte Konferenz in Hagenberg, 
OÖ, musste leider abgesagt werden 
Aber wir sind sicher, mit der Som-
merakademie mehr als nur einen 
Ersatz anbieten zu können. Wegen 
dieser Ankündigung muss dieses Mal die Bü-
cherschau und auch die Sammlung 
der websites entfallen.  

Neben den ewig jungen Themen DGL und 
Fraktale möchte ich Sie besonders auf den Arti-
kel von Richard Schorn zur Gruppentheorie 
hinweisen. Er bietet uns eine nicht alltägliche, 
aber umso attraktivere Anwendungsmöglichkeit 
eines CAS. Die DERIVE-Implementation kann 
leicht auf den TI übertragen werden.  
Es bleibt mir nur noch, Ihnen allen ein Frohes 
Weihnachtsfest und ein gesundes, friedliches 
und erfolgreiches Jahr 1999 zu wünschen. Uns 
wünschen wir, dass Sie wie bisher weiter zur 
DUG halten und uns gewogen bleiben. 
Zum Schluss noch eine sehr wichtige Service-
leistung von uns gemeinsam mit Soft Warehou-
se Europe: Sie können von nun an alle DERIVE- 
und TI-files des aktuellen DNLs über eine neue 
Internetquelle abrufen. Klaus Jürgen Kutzler - 
die nächste Generation - hat auf der Homepage 
von SWHE eine DUG-Sektion eingerichtet, auf 
der Sie alle files finden:  

www.derive-europe.com/english/dugengl.htm[*]  

Damit müssen im DNL nicht mehr alle Listings 
abgedruckt werden. Falls Sie keinen Internetzu-
gang haben aber gerne etwas haben wollen, 
dann rufen Sie bitte einfach an oder schreiben 
Sie. Ich schicke Ihnen eine Diskette, wenn Sie 
nicht auf die Jahresdiskette warten wollen.  
Herzlichen Dank Klaus Jürgen für die angebote-
ne Hilfe und .... Servus.  
Damit wünsche ich Ihnen viel Spaß mit diesem 
DNL und im 9. DUG Jahr.  
Bis zum nächsten Mal - und denken Sie bitte an 
Gösing!!  
Josef Böhm, Editor  

Dear DERIVE- and TI-friends,  
DNL#33 opens a new DUG year. Yes, it is 

number 9. Welcome to you all. This time Filou is 
smiling to you on my place. In the next DNL you will 
meet him again, when he has a interesting TI-92 
discussion with his creator Jean-Jacques Dahan.  

First of all I' d like to point at the announcement 
of the ACDCA Summer Academy 1999 
on the opposite page and simultaneously 
invite you to come to Lower Austria. 
Unfortunately the Hagenberg Confer-
ence had to be cancelled but we are sure 
to offer with the Summer Academy in 
one of the most attractive regions of our 
federal state more than only a substitute. 
Because of this announcement I had to 
omit both Book Shelf and web sites as 
well.  

                      Besides the always 
young topics ODEs and fractals I want 
to point at Richard .Schorn's group 

theory article. This is a field where - at least in the 
DNL - we do not find so often CAS. The DERIVE 
implementation can easily be transferred onto a TI.  

I am very grateful that Johann Wiesenbauer 
"composed" his TITBITS from a long e-mail discus-
sion concerning an effective algorithm for calculating 
Stirling numbers. He promised to inform us in one of 
the next DNLs about the use of these numbers.  

Finally I am very happy to announce an impor-
tant service together with Soft Warehouse Europe. 
You can download all files (DERIVE and TI) men-
tioned in the actual DNL from SWHE's web site. K J 
Kutzler - the next generation - has established a DUG 
section on SWHE's home page where you can find all 
files for downloading:  
www.derive-europe.com/english/dugengl.htm[*]  

It is no longer necessary for me to print each 
listing in the DNL - and for you to type it in. If you 
don't have any access to the Internet then feel free to 
call or to write and 1'11 send a diskette, if you don't 
want to wait for the Diskette of the Year.  

Once more, many thanks Klaus Jürgen for your 
support and cooperation.  
I wish much pleasure with this DNL and for the who-
le DUG year number nine. 
Hope to meet you in Gösing 
Josef Böhm 
Editor 
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & TI-92 User Group. It 
is published at least four times a year with 
a contents of 44 pages minimum. The goals 
of the DNL are to enable the exchange of 
experiences made with DERIVE and the 
TI-92/89 as well as to create a group to 
discuss the possibilities of new methodical 
and didactical manners in teaching mathe-
matics. 
 
As many of the DERIVE Users are also 
using the TI-92/89 (and TI-NspireCAS) the 
DNL tries to combine the applications of 
these modern technologies. 
 

Editor: Mag. Josef Böhm 
A-3042 Würmla 
D´Lust 1 
Austria 
Phone/FAX: 43-(0)660 31 36 365 
e-mail:  nojo.boehm@pgv.at 

Contributions: 
Please send all contributions to the Editor. 
Non-English speakers are encouraged to 
write their contributions in English to rein-
force the international touch of the DNL. It 
must be said, though, that non-English arti-
cles will be warmly welcomed nonetheless. 
Your contributions will be edited but not 
assessed. By submitting articles the author 
gives his consent for reprinting it in the 
DNL. The more contributions you will 
send, the more lively and richer in contents 
the DERIVE & TI-92 Newsletter will be. 
 
 
Next issue:  June 1999 
Deadline  15 May 1999 
 

 
Preview:  Contributions for the next issues  
 3D-Geometry, Reichel, AUT 
 Graphic Integration, Linear Programming, Various Projections a.o., Böhm, AUT 
 A Utility file for complex dynamic systems, Lechner, AUT 
 Examples for Statistics, Roeloffs, NL 
 Quaternion Algebra, Sirota, RUS 
 Various Training Programs for the TI 
 A critical comment on the "Delayed Assignation" :==, Kümmel, GER 
 Sand Dunes, River Meander and Elastica, The lighter Side ....., Halprin, AUS 
 Type checking, Finite continued fractions, ....., Welke, GER 
 Share Holder´s Considerations using a CAS, Böhm, AUT 
 Kaprekar´s "Self numbers", Finite Groups, Schorn, GER 
 Linear Programming - Graphic Solution on the TI, Kirmse, GER 
 Implicit Multivalue Bivariate Function 3D Plots, Biryukov, RUS 
 Physical Problems, Magiera, POL 
 LU-Decomposition, Morales, COL 
 An Investigation on Calculus with the TO-92, Meagher, AUT 
  
 and 
 Setif, FRA; Vermeylen, BEL; Leinbach, USA; Speck, NZL; Biryukow, RUS 
 Wiesenbauer, AUT; Aue, GER; Koller, AUT and others ...... 
 

Impressum:  
Medieninhaber: DERIVE User Group, A-3042 Würmla, D´Lust 1, AUSTRIA 
Richtung: Fachzeitschrift 
Herausgeber: Mag. Josef Böhm 
Herstellung: Selbstverlag 
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Jean-Jacques Dahan, Toulouse, FRA  

Dear Friend,  

I supposed you are interested by publishing into DERIVE letter the article I've promised to you at the 
end of the  last year. I send the translated (in English) version in order that a great number of readers 
can read it. I am working on a Spanish version.  

DNL: Many thanks for your charming, enchanting and inspiring contribution about your talks 
with your little friend Filou. As you can see he took my place in the Letter of the Editor and he 
said that he wouldn't leave that position until he hasn't seen his conversation with his master 
published.  

Julio Cesar Morales, Universidad Nacional des Colombia, COL  

Dear Mr. Boehm,  

I send you the LU_ACTR.MTH file along with the corresponding .DOC and .DMO-files to see if they 
qualify for inclusion in your newsletter. LU_ACTR.MTH includes the functions U_P(A) and L_P(A) 
which (unlike the function that once appeared on the DERIVE web site) give the LU factorization (LU 
decomposition) of matrix A even if row interchanges are necessary.  

DNL: Dear Mr. Morales,  
As Editor I am feeling very happy and proud to have - after a long time of absence - an active 
South American member in the DUG and your article will be printed in our bulletin in the next 
future. Muchas gracias. 

Günter Scheu, Pforzheim, GER  

Dein Artikel über die "Logos, ..... " hat mir ausgezeichnet gefallen und in Deinem Artikel "Das Pas-
cal'sche..... " hat mich sehr gefreut und sogar überrascht was der TI-92 doch alles kann. Ich habe über 
160 Seiten für mein Buch geschrieben und hoffe, dass es in diesem Halbjahr noch beim Dümmler-
Verlag erscheint.  

Der Unterricht mit dem TI-92 macht mir und meinen Schülern enorm Freude. Fast in jeder Stunde 
lerne ich noch was Neues.  

Now in English: I have two questions concerning the TI-92 (Standard Model):  

 Why is the TI-92 unable to calculate the integral 
2 2

0
( ( 1)( 2)x x x dx− −∫ ? 

 There are also problems in calculating the 1st derivative of 
3

2 2

16( ) xf x x dx
t t
 

= − 
 

for x = t. 

 Calculate the zeros of the first derivative and then substitute them into f  without the ABS. Why 
does the TI present the solutions as ABS-expressions? 
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DNL: Dear Günter, many thanks for you friendly words about the last DNL. I really appreciate 
the comments of experienced teachers and "advocates of the GAS" - to quote Carl Leinbach. 
To your questions: As you can see the integral works, but it needs an incredible amount of 
time to find the integral value. Changing the upper bound to 1.9 or 2.1 accelerates the proc-
ess? 
I sent both requests to Michelle Miller - my very reliable link to the TI-experts - and via her I 
received a very short answer from the experts:  

1. and 2. are TI-92 bugs that were fixed on the TI-92+. 
There was a third answer from Michelle, because I added one more problem. We – Wolfgang 
Pröpper and I came across this bug (???) when we worked on our book about integration 
methods. In one section we dealt with the representation of integral functions. This is a prob-
lem on the PLUS, which doesn’t occur on the Standard Model. Compare two TI-92 screen 
shots given below: 

Let’s take a piecewise defined function, e.g. 
1

( )
1

x for x
f x

x for x
− <

=  ≥
  ⇔  when(x<1,-x,x) → f(x) 

 All integrals work – with one exception: a general upper bound: 

                         Standard TI-92                                               TI-92 PLUS 

 

 
The Tl's answer: 3. occurs on the 89/92+ because of a change that was made in symbolic 
integration due to a problem report.  
My conclusion: This is another example for the fact that there is no advantage without any 
accompanying disadvantage. 

See how TI-NspireCAS performs: 
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It is interesting to see how DERIVE6.10 – and other CAS – are coping with this integral: 

Using the IF-construct gives a wrong result. 
DERIVE simply substitutes the boarders into the 
both functions! 

Taking the CHI-function works correct. See be-
low the integral with two symbolic boarders. The 
TIs refuse to give any result. 

 

I recommend reading the very interesting article contributed by our Canadian friends 
Geneviève, Michel and Henri Integration of Piecewise Continuous Functions in DNL#91. 
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wxMaxima & CASIO ClassPadII 

 

 

 

Mathematica 

 
 
Peer van de Sanden, NED  

Hello, I want to compute Stirling numbers of the first and second kind: 
The following recursive functions work but are slow ... 

DNL: This email (you will find it on page 23) was the beginning of a very interesting discus-
sion on generating Stirling Numbers. Johann Wiesenbauer dedicated his TITBITS column to 
this topic (page 23). 

Rüdeger Baumann, Celle, GER  

I send a little “Knobelei” (= Brain Teaser) – puzzle for the DNL-readers which shows DERIVE’s ca-
pabilities to work with lists: 

What is the rule for the sequence:  1, 11, 21, 1112, 3112, 122213, 312213, 212223, ...? 

Rüdeger’s original file from 1999 does not work with DERIVE 6.10. I had to replace his orog-
inal definition of H(v,k) (see below) by a SELECT-construct which is expression #1 in Rüde-
ger’s hint file. Josef 
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Rüdeger’s Hint: 

 
I believe that it would not be so easy to program this sequence e.g. in PASCAL. On the other hand the 
Hofstadter Sequence 

1, 3, 7, 12, 18, 26, 35, 45, 56, 69, ... 

can easily be produced by a PASCAL program. Who of the DERIVE family can help with a DERIVE 
program? 

 
DNL: Dear Rüdeger, I can imagine that your request is a challenge for some of the DNL-
readers. (Among others I count on Johann Wiesenbauer.) By the way, I know your Teaser-
Sequence in a slightly different variation: 

1, 11, 21, 1211, 111221, 312211,13112221,1113213211, ... 
In the very recommendable CRC Concise Encyclopedia of Mathematics (Eric W. Weisstein) I 
found a nice and for me unknown name for this sequence: “Look and Say Sequence”. 

 

The Hofstadter Figure-Figure Sequence is defined as follows (also from CRC): 

Define F(1) = 1 and S(1) = 2 and write: 
F(n) = F(n – 1) + S(n – 1), 

where the sequence {S(n)} consists of those integers not already contained in {F(n)}. For 
example, F(2) = F(1) + S(1) = 3, so the next term of S(n) = S(2) = 4, giving F(3) = F(2) + S(2) 
= 7, so S(3) = 5 and F(4) = F(3) + S(3) = 12. Continuing in this manner gives the “figure” se-
quence as shown in Rüdeger’s problem. 
(Hofstadter, Gödel, Escher, Bach, p. 73 (Seite 79 deutsche Ausgabe) 
 

Sebastiano Cappuccio, Forli, ITA  

Dear Derivers,  
VECTOR(IF(x<0,2x+k),k,-5,5) works well with DERIVE 2.08 and I can simplify and plot it, 
getting a sheaf of parallel half-lines.  
Why does it neither work with DERIVE 3.01 nor with DfW 4.11? How can I get the same sheaf with 
them?  
Thank you, Sebastiano 



 
 
 P 8   

 
D E R I V E  &  T I - 9 2 -  U S E R  -  F O R U M  

 
 D-N-L#33  

 
Peer van de Sanden, NED and Carlos Fleitas, Comenar Viejo, ESP  

Hello, I don't know why it does not work in DfW 4.11 but I think that it has something to do with 
nesting formulas. This will work: 

F(x,k):=IF(x<O,2x+k)  
VECTOR(F(x,k),k,-5(5) 

 

 

 

 

John Alexiou, USA 

The problem seems to be that simplification does not occur for the 2nd or 3rd arguments of the  
IF( ) function for example , an expression  

#1: IF(u>d,u-d,u+d)  
when applied to  
#2: LIM(#l,d,t)  

you would expect the result IF (u>t,u-t,u+t ) but the simplified result is  
#3: IF(u>t,LIM(u-d,d,t),LIM(u+d,d,t))  

no matter how many times you simplify it does not simplify the 2nd and 3rd argument of IF( ).  
I always use the STEP( ) or CHI( ) functions which work better, unless you call STEP(0) which re-
turns 1/2 +/– 1/2 which cannot be evaluated.  

The problem exists for: VECTOR(IF()), LIM(IF()), and ITERATE(IF()) and possibly more ...  
 

Soft Warehouse, Inc. (Albert Rich)  

When DERIVE simplifies an IF statement, it simplifies the "conditional" clause (i.e. the first argu-
ment) of the IF statement. If its truth-value can be determined, the "then" clause (i.e. the second argu-
ment) OR the "else" clause (i.e. the third argument) of the IF statement is simplified, as appropriate. 
Note that the other clause is NOT simplified. Therefore, if the truth-value of the "conditional" clause 
cannot be determined, neither the "then" clause nor the "else" clause is, or should be, simplified.  

For example, if x is unknown and IF(x<0, 1+1,2+2) is simplified, DERIVE does not simplify 1+1 or 
2+2, since the truth-value of x<0 is unknown.  

However, the arguments of user-defined functions, as distinct from the clauses of IF statements, ARE 
always evaluated before calling the function. Therefore, you can define replacement functions for the 
IF statement that do evaluate the "then" and "else" clauses as follows: 

IF_THEN(condition,then):=IF(condition,then)  
IF_THEN_ELSE(condition,then,else):=IF(condition,then,else)  

Then, to generate the vector of IF statements that you want, you can simplify the command 

VECTOR(IF_THEN(x<O,2x+k) ,k,-5,5) 

Hope this helps clarify the situation.  
Aloha, Albert D. Rich  
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There was another discussion concerning "Isolated points", raised by an experience made 
by one of James Eckerman's students. 

James Eckerman, Sacramento, California 

A student of mine asked why her TI-89 gave her a graph that has points in quadrant two for the func-
tion cos(sqrt(x)) when she had the mode set on "REAL". I got the same picture with DERIVE. 
I'm sure some- one out there knows the correct explanation. Please help us out! Thanks. 

 
 

Harald Lang, SWE 

Look at the Taylor expansion of cos(x): 

 

 

If we substitute sqrt(x) for x, then we get: 

 

where the right hand side makes perfect sense also for negative values for x. I suppose what you see is 
the right hand side above. 

Adri van der Meer, NED 

Because cos( ) cos( ) ,
2

x xe ei x i x
−+

= − =  and this is real if x is real.  

If you choose the "real" mode in DERIVE, you don't prevent it from using complex calculus for "in-
termediate results". You only force DERIVE to choose the real branch (if possible) in the case of mul-
tivalued functions. 
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Peer van de Sanden, NED 

Hi Jim, here is a simple function that also gives a plot for negative x-values: 
F(x) := RE(x + SQRT(x))  

In this case it is expected. l am asking for the real part of a complex number. The output is real al-
though the part in the brackets (x + SQRT(x)) is complex.  

Your function COS(SQRT(x)) does the same thing.  

The real mode works on the input and on some simplifying algorithms. It doesn't affect the inbetween 
results. In your case:  

SQRT()                   COS() 
x(real)     →     z(complex)     →     y(real) 

Look at the following DERIVE simplification for the complex numbers a + b i  and b i and compare 
the results: 

 

The second expression has no imaginary part in its simplification! The output is real. 

Therefore (for x < 0): cos( ) .
2 2

x xe ex
− − −

= +  

The following function gives the expected plot: cos(if(x≥0,√(x)). 

Johannes Wiesenbauer, Vienna, AUT 

James examp1e reminded me of another one which is still a mystery to me:  

Why doesn’t DfW 4.11 show any points in the third quadrant when plotting the curve SQRT(x)^2? 
Anyone out there who has a clue? (It goes without saying that "dirty tricks" like simplifying this ex-
pression are strictly forbidden!).  

Cheers, Johann 

J. H. Frisbee, Houston, USA 

The SQRT(x)^2 problem may have to do with the way roots and powers are computed. First, it is in-
teresting to note that if one uses the product of SQRT(x) ∗ SQRT(x) the curve is complete. Now sup-
pose SQRT(x) is replaced by EXP(LN(x)/2). The more original form EXP(LN(x)/2)^2 exhibits the 
incomplete character and, unlike the above product form EXP(LN(x)/2) ∗ EXP(LN(x)/2) is also in-
complete.  
I have no idea how DERIVE actually handles the LN and EXP functions but I suspect that they-are 
probably used for powers (and roots) and that is the more fundamental cause of the incomplete plot. 

James Eckerman, Sacramento, California 

When I read James Eckerman's email, I remembered a strange function, which I obtained last fall.  
I tested my just bought TI-89 trying to calculate the locus of the maximum curvature of the power 
function curves. 
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In the course of that calculation I plotted the function 

1
2( 1)

2

2( )
(2 1)

xxf x
x x

− −
=  − 

 and was rather aston-

ished to see isolated points within a gap. Further work with DERIVE led me to some interesting re-
sults as you can see with the enclosed MTH-file: LOCMAXC.MTH (which is among the files in 
MTH33.zip). 

  

         
Compare the plots: TI-89 left above, Voyage 200 others. You can see the “isolated points”, 
Lorenz is writing about, Josef. 

As I mentioned in the MTH-file-comments the reason for the occurrence of the isolated points is the 
negative sign of the basis combined with integer values of the exponent of the power term. The sim-
plest example for this phenomenon is the (mostly complex valued) function F(x):=(–l)^x or 
"squeezed" in F(x):=(–l)^(1/x). Compare the well known F(x):= x^x, They all produce spirals in the 
complex space (x, RE(y), IM(y)). 

 

 

This is the spiral in an 
isometric representation 
(using ISOMETRIC from 
GRAPHICS.MTH – DOS-
Times, Josef). 

Ray Girvan, UK 

I haven’t looked through your derivation in detail; but I did try checking the plot of f(x) against 
GrafEq, which is normally very good at ‘difficult’ functions with singularities. GrafEq suggests only 
one singularity (1.5, -1/9) in the gap between x = 0.5 and x = 2. 
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Johann Wiesenbauer, Vienna, AUT 

Hi all, the function 
F(x):=((x-2)/(x^2(2x-1)))^(1/(2(x-1))) 

introduced by Lorenz Jaeneke is a very remarkable one, indeed, though some things are far less mys-
terious when viewed from the right angle. (Hence, those who love mysteries are advised to skip the 
rest of his note!)  

When drawing its parametric representation in the complex plane, namely [RE(F(x),IM(F(x)](by 
the way pros will input this term in the form [refx,imfx] and leave it to DERIVE to decipher it!) 
for x in [0.5, 0.99] and [0.99, 2] (adjust a suitable range before plotting, e.g. [-0.12,0.12] both for x 
and y) you’ll see at once what is going on here: If x approaches 1 then its image f(x) will move on 
one of two spirals that both have the same circle around the origin as limiting curve. Its radius is 
given by  

LIM(ABS(F(x)),x,1) = ê^(-5/2) 

Those "isolated points within a gap" are simply the countable many intersections of the two spirals 
with the real axis. In particular, they are certainly not singularities, as claimed by Ray Girvan (though 
I like his homepage very much!), because there is only one genuine singularity of f(x) when viewed in 
the complex plane, namely x = l. I hope you all will be enchanted by the picture of the two spirals as I 
was and there will be no troubles with older versions of Derive.  
 

Needless to say that I'm always referring to the current version of DfW which is 4.11 
at the moment. If you have an older version DfW 4.xx instead use the option of a 
free update on Derive's homepage! Johann 

Cheers, Johann 

Ray Girvan, UK 

Very neat. Another useful view is to plot RE(F(x)) and IM(F(x)) separately, which shows F(x) 
as out-of-phase real and imaginary sinusoidal components, both increasing in frequency as they ap-
proach x = 1. The "isolated points" are where IM = 0 and RE has maxima and minima. (In this case, it 
looks as if GrafEq was on the wrong track).  

One thing I notice: when I plot RE(F(x)) I get a smooth plot. But if I app1y Simplify/Basic to 
RE(F(x)) and plot the result, the section of the curve between 0.5 and 2 becomes discontinuous. Any 
idea what's going on.  

I am sorry! I know: singularities are places where the function blows up to infinity, not isolated solu-
tion points. I wasn't thinking. Thanks for the clarification. 

      

                          Plot of RE(F(x))                                          Plot of IM(F(x)), (Josef 1999) 
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Plotting with DERIVE 6.10 only the real parts first: 
 

        
 

Plotting real and imaginary parts now: 
 

         

Soft Warehouse, Inc (Albert Rich) 

Hello Ray Girvan  

The result of simplifying RE(F(x)) produces an expression mathematically equivalent to RE(F(x)) but 
expanded out. When the expanded expression is evaluated, roundoff error produces a small imaginary 
component in the result that prevents it from being plotted.  

The moral of the story: If you wrap RE around a complex 
expression in order to plot the real part, do not simplify it. 

Ray Girvan, UK 

It also looks quite good with an offset to show it from a different viewpoint:  

[x+RE(F(x)),IM(F(x)–x)], (setting the parameters to [-3,3] plots the function reasonably in 
one operation). 

I like the way an apparently discontinuous function like F(x) makes far more sense in complex space: 
just a smooth curve that twirls into imaginary over parts of its range.  

 

Johann Wiesenbauer, Vienna, AUT 

Hi all,  

I'm very sorry, but the second interval for x should be of course [1.01,2], otherwise you won't see the 
second spiral... As I just tried out it will also work, if you draw both spira1s at once by choosing the 
interval [0.5,2] for x, though I prefer the first option because it shows the limiting circle between the 
two spirals more distinctly.  

By the way, isn't it strange that Derive draws this highly complicated curve without batting an eyelid, 
but has troubles with the simple function sqrt(x)^2? Well, actually Derive is on the horns of a di-
lemma: In the latter case simplifying the expression before plotting it would fix the problem, but in the 
ease of our spirals simplifying the parametric expression above is not exactly advisable as Ray has 
noticed ...  

On this occasion, let me point out that Lorenz did a great job, when computing the actual values of the 
isolated points, namely  
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2m

+   (m a nonzero integer)  

so we'll look over the enormous troubles he had when computing the two real limit points of f(x). Just 
one remark that might be helpful to throw light upon matters of this kind: When computing the limit 
of an expression like  

( )
2

22

8 (1 4 )lim
(2 1)(4 1)

mm

m m

m m
−→∞

 − 
 + + 

 

you have to bear in mind that m is viewed as a complex variable by Derive (no matter what adjust-
ments had been made before!), so Derive was perfectly right in saying that this limit doesn't make 
sense. It took me some time to find out why Lorenz "succeeded" in finding a "limit" all the same: It's 
because ln x and ln(abs(x)) have the same derivative, so when applying L'Hospital's rule the outcome 
is the same as if you had taken the limit of the absolute value of the expression above which does ex-
ist! A nice fallacy, don't you think so? 

Cheers, Johann 

 

You can see the enchanting picture of 
the two spirals – Johannes 
Wiesenbauer – together with Ray Gir-
van’s curve “twisting into imaginary”, 
Josef. 
I cannot reproduce the plots with 
DERIVE 6.10, Josef. 
 

 

 

Two more “generator – generated” “Koch like curves (page 50)  
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A Spigot – Algorithm for π and e 

Peter Witthinrich, Lübeck, Germany 
 

In 1995 Rabinowitz and Stanley [1] published a new algorithm for computing the decimal digits of the 
irrational numbers π and e. It uses no floating point routines but only integer arithmetic and produces 
the digits one at a time without using them after computing. So there was no need to store them in an 
array or string [5]. The authors called it 'spigot algorithm' (called "Tröpfelverfahren" in [3] - in an 
exercise and example for Delphi programming). (For those of you who have never heard the word 
spigot – in German it is a “Zapfhahn”, Prost! Josef)  

The authors explicitly refer to a method published by Sale [2] in 1968 - nearly thirty years earlier, for 
computing the digits of e, the basis of the natural logarithm. It is very short, and it also pumps the 
digits of e one at time, again without using them after computing. Therefore the use of arrays for stor-
ing the already computed digits, i.e. in [4], can be avoided.  

The algorithm is based upon the well known series of e  

 
 

 

The sum right of 2 is <1. I shift the decimal point, i.e. I divide by 10 and simultaneously I multiply by 
10 each of the single summands. I obtain the following decimal place from the integer part of the re-
mainder within the parentheses. Again we find a fraction as remainder:  

  

( )

( )

1 1 1 1 1 12 10 10 10 10 10 ...
10 2 3 4 5 6

1 1 1 1 1 12 7 0 1 0 1 5 ...
10 2 3 4 5 6

     + + + + + + =            
     = + + + + + + +            

 

The digits of the intermediate results are calculated by integer division and stored. The last carry de-
livers the next decimal digit. Algorithmically you need a loop:  

 

 
The algorithm in [1] was written down in Algol 60, a good structured language, and it is not very dif-
ficult to translate it into TI-92 programming language (filename: spigote.92p): 
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The output on the TI-92 display has been formatted to 270 decimal places, nine rows with 30 digits 
each. Computing time for the 270 decimal digits was about 35 minutes. The computed digits for e are 
correct compared to the result in [4]. Unfortunately the corresponding algorithm for π[1] is more com-
plicated and longer than the algorithm for e. Both programs are rewritings of the programs given in the 
references in the TI92 language, they both don’t include new own ideas.  

A result of 270 decimal places here needs about seven hours computing time, the TI-92 is too slow:  

 
 

 
 
spigotpi() is included in MTH33.zip. 
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Subject: Shading with DERIVE 

Peer van de Sanden, Netherlands  
Dear Derivers, 

I started this new year (happy new year to you all) with creating an utility file that I needed often in 
the past but never had the time to make it. It's called shade.mth. This file contains four functions 
for shading an area between the two functions f(x) and g(x) on the interval [a, b]: 
 SHADE(a,b,space) 
 SHADE_UNDER(a,b,space) 
 SHADE_BACK(a,b,space) 
 SHADE_BACK_UNDER(a,b,space) 

You must define the functions f(x) and g(x) before using the functions. The parameters a and b are the 
boundaries of the interval [a,b] (with a < b). The parameter space is the space between two spacing 
lines. This parameter is optional. The standard value for space = 0.2. The vertical boundaries x = a and 
y = b will not be calculated and therefore will not be plotted.  

The SHADE-function draws lines in the area where f(x) > g(x) on the interval [a,b]. The angle of the 
lines is 45° if the x-scale and the y-scale in the plot are equal.  

The SHADE_UNDER-function draws lines in the area where g(x) > f(x) on the interval [a,b]. The angle 
of the lines is 45° if the x-scale and the y-scale in the plot are equal.  

The SHADE _BACK-function draws lines in the area where f(x) > g(x) on the interval [a,b]. The angle 
of the lines is -45° if the x-scale and the y-scale in the plot are equal.  

The SHADE_BACK_UNDER-function draws lines in the area where g(x) > f(x) on the interval [a,b]. 
The angle of the lines is -45° if the x-scale and the y-scale in the plot are equal.  

The shading works with various functions, The functions do not work on intervals on which either f(x) 
or g(x) has an asymptotic behaviour. 

 

As I produced a shading tool some times ago (DNL#15) and G P Speck presented his "Con-
centric Curve Shading" in DNL#31, you may think that there is some demand on tools to 
beautify plots. (W.Pröpper's contribution in this DNL works in the same intention). I had some 
ideas to improve Peer's useful tool and contacted him how to add the boundaries, to com-
bine both shadings and how to produce a SHADE_BETWEEN-function. After a very short 
while he wrote back: 
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I tried several times to develop an easy to use shading-tool. The functions you added make it possible 
to make life even more easier. Here are my suggestions: 

• Include the boundaries in my original user functions. Then they can be deleted from your func-
tions.  

• Rename the functions in a more logical way  
• Add one more which shades normally and backwards between the two functions f(x) and g(x) 

Then we will have the following functions: 

User functions (not frequently used):   User functions (frequently used): 

SHA_A(a,b,space)     SHADE(a,b,space) 
SHA_U(a,b,space)     SHADE_BACK(a,b,space) 
SHA_AB(a,b,space)    SHADE_BOTH(a,b,space) 
SHA_UB(a,b,space) 
SHA_ABO(a,b,space) 
SHA_UBO(a,b,space) 
 
Most people will only need your functions. Thus these functions should have the most comfortable 
names. The SH_A- and SH_U-function look a little like the SHADE-option on the TI-92  

Note: in the Options Menu on the plot screen you must select Points-connected and Points-small and 
perhaps no color cycling.  

Note: I remember that I had problems with functions with asymptotic behaviour like f(x) = 1/x^2 with 
g(x) = 0. Derive will not be able to simplify function SHADE(-1,1). With space = 0.2 the maximum 
will be at x = 0 and you will get a vector with an infinite amount of elements. In this case an other 
value for space will do e.g. SHADE(-1,1,O.3). 

I wanted to have shading functions for plotting histograms (Dutch word, I don't know if the English 
name will be the same). I have included an example in histogram.mth. The original shading-
functions are adjusted for this application.  

You are welcome to publish it in the International DERIVE & TI-92 Newsletter. You additions de-
serve that the original MTH-file will be adjusted, preferable in the way that I suggested.  

But, would it not be nice if Derive had a shading option or an area color option in the plot screen like 
the TI-92 is providing? I would like to right click with the mouse on an area and choose my own back-
ground color or shading for that area.  
Groeten van Peer van de Sanden  
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See some two examples: 
 

 

  

 

  
The next plot was created using the DERIVE 6 option to transfer the plot for a short 
while to the very comfortable Graphics Utility Paint. Click on the plot after copying it in 
the Algebra window and open the Edit Menu for proceeding. 
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Graphic - Tools for the TI-92  

von W. Pröpper, Nürnberg 
 

1. Einleitung 

Nach dem Entpacken der Datei GRA_TOOD.EXE haben Sie außer dieser Dokumentation 
RA_TOOD.DOC eine TI-92 Gruppierung GRA_TOOD.92G erhalten. Mit Hilfe von TI-Graph-Link 
kann dieses group file in 5 TI-92 PRGMs (*.92P files) entpackt werden. Diese können dann (auch 
unter Verwendung von Graph-Link) in den TI-92 übertragen werden. (Es empfiehlt sich, vorher mit 
2nd [VAR-LINK]  ein eigenes Verzeichnis auf dem TI-92 anzulegen - Z.B. UTY - die Programme 
dorthin zu laden und in diesem Verzeichnis ablaufen zu lassen.)  

Die Programme wurden von W. Pröpper erstellt und werden zur nichtkommerziellen Nutzung für den 
allgemeinen Gebrauch freigegeben. Obwohl die Programme mit Sorgfalt angefertigt wurden, kann 
eine Gewährleistung, gleich welcher Art, nicht übernommen werden.  

Verbesserungsvorschläge, Anregungen und Kritik werden dankbar (und möglicherweise zähneflet-
schend) entgegengenommen.  

Snail-Mail: W. Pröpper, Josef-Simon-Str. 59, 90473 Nürnberg  

E-Mail:  w. proepper@wpro.franken.de; 

2. Programmbeschreibung 

Der TI-92 erlaubt schnell und einfach Graphen von Funktionen darzustellen. Will man diesen Graphen 
jedoch ein vorzeigbares Äußeres geben, stößt man schnell an Grenzen. Die Plot Styles "Dot", "Square" 
und "Thick" stellen, wenn überhaupt wirksam, nicht das Optimum an Sauberkeit dar und die über die 
Funktionstaste F7 im Graphik Fenster erreichbaren Linien- und Textwerkzeuge dienen in den wenigs-
ten Fällen dazu, einen Graph mit aussagekräftigen Zusätzen zu versehen. Die fünf Programme der 
GRA _ TOOLs Gruppe sollen hier eine gewisse Abhilfe schaffen. Mit einem der Programme können 
Graphen mit verschieden geformten Markierungen für Punkte versehen werden und mit den vier rest-
lichen Programmen lassen sich strichlierte Linien zeichnen. 

(Short explication in English follows at the end of the contribution, Josef) 

pntat(x,y,p,l) zeichnet Punkte mit den Koordinaten (x,y). Dabei können x und y sehr unterschiedliche 
Formen im Aufruf annehmen (Beispiele s. unten). Die Form der Markierung wird mit dem Para-
meter p bestimmt. Ist p = 1, so wird ein "+"-Kreuz und bei p = 2 ein "×"-Kreuz gezeichnet. Einen 
kleinen Kreis erhält man mit p = 3. Bei p  = 4 entsteht ein gefülltes Quadrat ( ) und bei p = 5 ei-
ne gefüllte Raute (♦). Der Parameter l bestimmt die Größe der Objekte. Bei l = 2 beträgt ihre ma-
ximale Ausdehnung 5 Pixel, bei l = 3 ist sie 7 Pixel. Nach regulärer Ausführung des Programms 
schaltet der TI-92 in das Graphik Fenster. Liegen jedoch alle Punkte außerhalb des Plotbereichs 
oder wenn für p bzw. l unzulässige Werte angegeben wurden, bleibt der Home Screen aktiv und 
der Programmaufruf meldet done (obwohl eigentlich nichts passiert ist). 

Beispiele: pnt(1,2,1,2) erzeugt ein kleines "+"-Kreuz im Punkt (1,2), während pnt(2,1,2,3) bei 
(2,1) ein großes "×"-Kreuz zeichnet. pntat({-1,2,3},{1,-1,2},1,3) setzt große "+"-Kreuze an die 
Stellen (-1,1), (2,-1) und (3,2). 
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Wenn die Funktion f(x) deklariert ist und bei x = 2 eine stetig behebbare Definitionslücke besitzt, 
dann setzt pntat(2,limit(f(x),x,2),3,2) an diese Stelle einen Kreis mit Radius 2 Pixel. 

Um alle Punkte mit horizontalen Tangenten (in den meisten Fällen die Extrema) mit einem gro-
ßen "+"-Kreuz zu markieren, ruft man pntat(zeros(d(f(x),x),x),f(zeros(d(f(x),x),x)),1,3) - oder 
besser: zeros(d(f(x),x),x), was eine Liste der Nullstellen der 1. Ableitung berechnet, und dann 
pntat(ans(1),f(ans(1)),1,3) - auf.  

Das Markieren aller Nullstellen einer Funktion mit einer großen Raute würde mit 
pntat(zeros(f(x),x),0,5,3) allerdings nicht funktionieren, da der x-Parameter (bei mehr als einer 
Nullstelle) eine Liste mit mehr als einem Element liefert, der Wert 0 für den y-Parameter jedoch 
nur als einelementige Liste interpretiert wird. 

Mit f(zeros(f(x),x)) anstelle von 0 erhält man jedoch das gewünschte Resultat.  

slv(x,I,p) zeichnet eine vertikale strichlierte Linie an der Stelle x. Die Länge der Striche ist l, die 
Zwischenräume haben die Länge p. Da ein Funktionsgraph durchaus mehrere vertikale Asympto-
ten besitzen kann, darf der Parameter x auch eine Liste sein.  

slh(y,I,p) zeichnet entsprechend eine horizontale Linie bei y. Die Parameter l und p haben die glei-
che Wirkung wie bei der vertikalen strichlierten Linie. (Für y ist nur eine Zahl bzw. ein numerischer 
Ausdruck zulässig.) 

sls(x1,y1,x2,y2,I,p) erzeugt eine strichlierte Linie durch die Punkte (x1,y1) und (x2,y2) mit Strich-
länge l und Zwischenraum p. Diese Prozedur wird normalerweise für schiefe Asymptoten oder 
auch Wendetangenten verwendet. 

 sls ruft slv bzw. slh, wenn die x- bzw. die y-Koordinaten gleich sind aus dem Folder uty. Falls die 
Programme in einem anderen Folder des TI-92 installiert sind, führt dies zu einem Programmfeh-
ler. 

slf(t,I,p) liefert schließlich eine strichlierte Näherungskurve der Funktion y = t(x). Dazu muss t ein 
Ausdruck mit der unabhängigen Variablen x sein. Die Näherungskurve besteht aus Geraden-
stücken, deren Anfangs- und Endpunkt auf der Kurve y = t liegen. Die angegebenen Parameter für 
Länge und Zwischenräume beziehen sich auf horizontale Stücke und sind bei einem Koordinaten-
system mit gleichen Längen der x- und der y-Einheiten (z.B. ZoomDec) stimmig. Bei starker 
Verzerrung (z.B. ZoomStd) sind die für den Betrachter sichtbaren Strecken gleich lang, obwohl, 
bezogen auf das Koordinatensystem, die steileren Stücke länger sind als die flacheren.  

 Der Term t darf auch längere Lücken im Definitionsbereich haben (z.B. √(x 2– 1), der in ] -1,1 [ 
nicht definiert ist). Allerdings läuft slf dann einigermaßen langsam. Um „passende“ Werte für l 
und p zu erhalten muss man ggf. etwas experimentieren.  

 

Die fünf Programme laufen in den 4 zweidimensionalen Graph Modes. Es empfiehlt sich, zuerst den 
Graph der Funktion zeichnen zu lassen und anschließend die oben gezeigten „Verschönerungsarbei-
ten“ vorzunehmen. Das Kommando ReGraph (F4) im Graph Screen löscht alle von den oben genann-
ten Funktionen erzeugten Linien und Punkte. 
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Ein Polynom 3. Grades: Extrempunkte mit "+"-
Kreuzen, Wendepunkt mit "×"-Kreuz, Nullstellen 
mit Rauten. Wendetangente strichliert. 

Cubic: Turning points "+", inflection point "×", 
zeros "♦", tangent in inflection point dashed. 

Eine gebrochen rationale Funktion mit vertikalen 
und schiefen Asymptoten. Punkte sind gekenn-
zeichnet wie vorher. 
Die stetig behebbare Definitionslücke ist mit ei-
nem Kreis markiert. 

Rational function with two vertical and one 
slant (oblique) asymptote, points are marked 
like on the left graph, the removable discon-
tinuity is marked by a circle. 

  

Eine gebrochen rationale Funktion mit einer verti-
kalen Asymptote und einer Parabel als asymptoti-
scher Kurve. Besondere Punkte sind wie vorher 
gekennzeichnet (Nullstelle mit " ") 

Rational function with a vertical asymptote 
and a parabola as asymptotic curve. Zero is 
marked by a " ". 

Eine Kurvenschar (fk(x) = (-2 k + ln x).ln x), in 
der die Kurve der Tiefpunkte kurz gestrichelt, 
die der Wendpunkte mit längeren Strichen ein-
gezeichnet ist. 

Family of curves (fk = (-2k + ln x)⋅ln x), with 
locus of turning points dashed (short seg-
ments) and locus of inflection points (long 
segm.). 

 
 
Summary of the tools 
 
pntat(x,y,p,I) point at (x,y), p for the mark (1,2,3,4,5) for + , ×, , , ♦; 

I for size: 2:  smalI, 3: large 

slv(x, I, p)  vertical dashed line at position x, with segments of length l and spaces of 
length p  

slh(x, I, p)  horizontal dashed line at position x, with segments of length land spaces of 
length p  

sls(x1, y1, x2, y2, I, p)  segment between points (x1,y1) and (x2,y2), length and space  

slf(t, I, p)  dashed function graph for function t(x), length and space  
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Titbits from Algebra and Number Theory(14) 
by Johann Wiesenbauer, Vienna 

Back again! As some of the readers may know there has been a vivid discussion about Stirling 
numbers of the first and second kind via the DERIVE-mailbase quite recently. In the aftermath 
Josef has asked me to sum up the results of this discussion and to tell you more about Stirling 
numbers in general, in particular how they are defined and what they are good for. Well, actu-
ally this stuff belongs to combinatorics (in fact, their DERIVE-implementations can be found 
in the new utility-file COMBINAT.MTH !), it is true, but I have no guilty conscience at all 
when treating this topic here, as Stirling numbers also have a number of important applications 
in algebra and number theory.  

The discussion mentioned above was triggered off by the following problem posed by Peer van 
de Sanden on the DERIVE-mailbase(derive-news@mailbase.ac.uk):  

Hello,  

I want to compute Stirling numbers of the first and the second kind. The following recursive func-
tions work but are slow:  

Stirling numbers of the first kind:  

 

Stirling numbers of the second kind:  

 

For this last function I have found a faster one:  

 

Does anyone know a function for the Stirling numbers of the first kind which is faster then the one 
from above:  

Here are the recursive rules:  

Stirling1(n,1) = (n-1)!  
Stirling1(n,n) = 1 

Stirling1(n,k):= (n-1) ⋅ Stirling1(n-1,k) + Stirling1(n-1,k-1)  

Peer van de Sanden  
 
I named the function stirl because later we will use STIRLING (name of the respective 
DERIVE functions). Johann will give a short description what the St. n. are good for. In this 
revised version I’ll take the space to add some more accurate notes on them, Josef 
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Some words about Stirling numbers: 

James Stirling was a Scottish mathematician who lived from 1692 – 1770) 

Stirling numbers of the first kind S1(n,k) is the number of permutations of a set of n ele-
ments having exact k cycles. 

Set {1,2,3,4} can be distributed in 2-cycle permutations as follows: 

(1,2,3)(4), (1,3,2)(4), (1,2,4)(3), (1,4,2)(3), (1,3,4)(2), (1,4,3)(2),(2,3,4)(1), (2,4,3)(1), 
(1,2)(3,2), (1,3)(2,4), (1,4)(2,3) which makes exact 11 possible circles. 

Function says:  

Stirling numbers of the second kind S2(n,k) is the number nonempty subsets of a set with 
n elements having k elements. 

Set {1,2,3,4} can be partitioned into two nonempty subsets as follows: 

{{1,2},{3,4}},{[1,3},{2,4}},{{1,4},{2,3}}, {{1,2,3},{4}},{{1,2,4},{3}}, {{1,3,4},{2}},{{2,3,4},{1}} which 
makes exact 7 partitions. [1] 

Function says:  

Now let’s Johannes proceed: 
 
Before going on I should explain where the recursive rules above come from. Basically, Stirling num-
bers are used to convert back and forth between the standard representation of a polynomial over a 
commutative ring with identity and its representation using so-called factorial powers  

: ( 1)( 2)...( 1) ( 0).kx x x x x k k= − − − + ≥  

(For k = 0 take the empty product 1 as usual). More precisely the following defining equations hold: 

0
: ( 1) and : ( 0)

n
n n k k n k

k

n n
x x x x n

k k
−

=

   
= − = ≥  

   
∑ ∑  

where we used the notations 
n
k
 
 
 

 and 
n
k
 
 
 

 for Stirling1(n,k) and Stirling2(n,k), respectively. 

From the definition of the Stirling numbers of the first kind it follows immediately that the polynomial 
( 1)( 2)( 3)...( 1)x x x x x n+ + + + −  

is their generating function for any fixed n ≥ 0. (The reader should be warned here that some authors 
choose the signs of Stirling numbers of the first kind in such a way that the nth factorial power  

( 1)( 2)( 3)...( 1)x x x x x n− − − − +  

becomes the generating function for fixed n ≥ 0. They are usually called the "signed" Stirling numbers 
of the first kind in order to differ them from our "unsigned" ones.) In particular, by expanding both 
sides of the equation 

0
( 1)( 2)( 3)...( 1) ( 1)

n
k

k

n
x x x x x n x x n

k=

  
+ + + + − = + −  

  
∑  

[1] Graham, Knuth, Patashnik, Concrete Mathematics, Addison-Wesley, 1989 
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and comparing the coefficient of xk for 0 ≤ k ≤ n, the recursion formula for Stirling numbers of the first 
kind mentioned by Peer is easily obtained.  

My answer contained the following passage:  

.... To the best of my knowledge in the current version of the new utility file combinat.mth the fol-
lowing formulas are used for Stirling numbers:  
                    1   k                   k - j_   n 
stirling2(n, k) ≔ · ∑   COMB(k, j_)·(-1)      ·j_  
                   k!  j_=1 
 
stirling1(n, k) ≔ 
  If n < k 
     0 
     If n = k 
        1 
        (-1)^(n + k)·∑((-1)^j_·COMB(n - 1 + j_, n - k + j_)· 
        COMB(2·n - k, n - k - j_)·stirling2(n - k + j_, j_), j_, 1, n - k) 
 

The implementation of ST1RL1NG1(n,k) above is certainly faster than that of Peer van de Sanden 
(by a factor 2 or so). Since it essentially follows a suggestion of mine, I would like to pass on the 
question: Is there still a faster one? ...  

Yes, it is true, Al Rich had asked me exactly the same question so me months before and I had sug-
gested in my answer the implementation of STIRLINGl(n,k) above (however, without considering the 
cases n < k and n = k; by the way, Peer too overlooked the case n < k and also the case k = 0 in his 
implementation). Since my implementation was so much faster on average than Peer's (speaking of a 
factor 2 only was actually a colossal understatement!), I thought that my final asking whether there 
was still a faster one was only a rhetorical question. Little did I know then, how much I was mistaken!  

This is where the third protagonist, Ralph Freese of Hawaii, comes into play with the following mes-
sage:  

Here's a faster Stirling1 version:  
stirling1_aux(v, n) ≔ VECTOR(IF(k = 1, n!, IF(k = n + 1, 1, n·v  + v     )), 
                                                               k    k – 1 

                      k, 1, n + 1) 
 
                      n - k                                                 

stirling1(n, k) ≔ (-1)     ·(ITERATE(stirling1_aux(v, DIM(v)), v, [1], n))  
                                                                          k 

 

Notes:  

1. This is only valid if 1 <= k <= n; it really should have an 1F statement like Derive's version in 
front of it.  

2. I've included the sign as Derive did; Peer van de Sanden's numbers are called unsigned Stir-
ling numbers of the first kind.  

Concerning calculation time:  

Peer van de Sanden algorithm is slow because to calculate stirling1(2n,n) two calls are made to 
stirlingl(2n-2,n-1), four calls are made to stirling1(2n-4,n-2), ... , and 2n calls are made to stir- 
ling1(1,l). So this implementation requires exponential time.  
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The program above is really the same recursion as Peer van de Sanden's except that it remembers 
what it has previously calculated.  

The Derive program is much better: it has running time proportional to n"3. The program above 
has running time proportional to n/: 2.  

Shortly after he added the following Post Scriptum. 

The final n should be n – 1 and I noticed that Derive was returning the unsigned stirling1 so the (-
1)n+k should be removed. stirling1(n,k) should be defined: 

stirling1(n,k):=ITERATE(stirling1_aux(v,DIM(v)), v, [1], n - 1))  
                                                                k 

Ralph 

 

Well, should I really have to swallow the bitter pill and accept that I had clearly failed in finding the 
best way of tackling this problem? At first, I wasn’t prepared to do this as you may conclude from my 
following reaction: 

Hm, … although Ralph’s implementation of Stirling numbers of the first kind is certainly streets ahead 
of anything I have seen so far on that score, it remains to be seen whether it is really faster than mine 
in practice (though it should be asymptotically faster, if the estimates above are correct). 

Unfortunately, when trying to check this I came across unexpected difficulties. For small n, say 
n<100, my implementation is notably faster, it is true, but for larger n (n=103 and k = 1 seems to be 
the smallest example) the function SUM( ) in stirling1(n,k) 

                    1   k                   k - j_   n 
stirling2(n, k) ≔ · ∑   COMB(k, j_)·(-1)      ·j_  
                   k!  j_=1 
 
stirling1(n, k) ≔ 
  If n < k 
     0 
     If n = k 
        1 
        (-1)^(n + k)·∑((-1)^j_·COMB(n - 1 + j_, n - k + j_)· 
        COMB(2·n - k, n - k - j_)·stirling2(n - k + j_, j_), j_, 1, n - k) 

all of a sudden goes to pieces returning senseless values such as fractions. 

To see that my routine should work and SUM () is actually the culprit all you have to do is to replace 
SUM( ) by SUM(VECTOR(…)) in stirling1(n,k), but it goes without saying that this remedy is sheer 
madness when it comes to performance. 

Thus in my opinion in terms of speed a fair comparison between the two implementations seems to be 
impossible before a fix of this bug and has to be postponed … On the other hand, it may well be that 
very few Derivers, if any, are troubled by this … 

(By the way, according to Albert Rich this SUM error was simply caused by a dummy variable name 
conflict: stirling1 and stirling2 both used the same dummy variable j_ …) 
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This is what Ralph answered: 

Absolutely right. (Referring to the first paragraph of my email!) 

I didn’t get the SUM error. On my computer computing S1(2n,n) was faster with your version than 
mine even with n=100. But the time as a function of n did seem to be growing at a slower rate than 
yours. Viewing S1(n,k) as a lower triangular matrix, may method calculated the first n rows and re-
turned the (n,k)th entry. But it really only needs the entries in the parallelogram bounded by (1,1), 
(k,k), (n,k), (n–k+1,1). 

Here is a program to do that: 

 
 
(Sorry, this isn’t very readable.) The area of the parallelogram is k⋅(n-k+1). The worst case is k = n/2. 
it is only about twice as fast for k=n/2 but for k near 1 or n, it is much faster. Yours is worst when k is 
small since it sums from 1 to n–k so this one is faster than yours when k is small. 
Ralph 
 
When checking Ralph’s arguments above it dawned on me at last that he was right and I had to change 
my basic strategy. This is from my answer: 

(...) After looking into the whole business once more, I must admit that you have a point there. on top 
of leading to that SUM-bug the formula I used is also very inappropriate when it comes to small val-
ues of k. Therefore I have made up my mind to change sides and try to beat you at your own game. 
What about the following implementation? 

S1(n,k)≔IF(k>n,0,IF(k=1,(n-1)!,IF(k>n/2,(ITERATE([DELETE(n_·APPEND(v_,[0])+ 
        APPEND([0],v_)),n_+1],[v_,n_],ITERATE([n_·APPEND(v_,[0])+APPEND([0],v_), 
        n_+1],[v_,n_],[[1],0],n-k),k))↓1↓1,(ITERATE([DELETE(n_·APPEND([0],v_)+ 
        APPEND(v_,[0])),n_+1],[v_,n_],ITERATE([n_·APPEND([0],v_)+APPEND(v_,[0]), 
        n_ + 1], [v_, n_], [[1], 0], k), n - k))↓1↓1))) 
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And here are some execution times on a Pentium 116 PC (1999) 

S1(1000,2): 0.5s vs. 2.3s 
S1(1000,500): 20.2s vs. 161.9s 
S1(1000,999): 0.5s vs. 2.2s 

Now (in 2014) are the execution times: 0.063s (2566 digits number), 2.27s (1627 digits num-
ber) and 0.063s for the 6 digits number. Josef 

I hope this top performance will reconcile you even if you don’t agree with my programming style due 
to the missing auxiliary functions. (Sorry!) 

Cheers, Johann 

I’d like to explain the decisive idea behind my implementation above, because it could turn out useful 
in your own programs. Similar to Pascal’s triangle one can compute the “Triangle of Stirling Numbers 
of the first kind”, e.g. 

 

Now it is obvious that it should be much faster to compute each row of this triangle as a whole vector 
by using the built-in vector operations than computing it element wise. Take the row number 5 for 
example: Instead of computing each of its components 

0 = 4⋅0 + 0, 24 = 4⋅6 + 0, 50 = 4⋅11 +  6, etc. 

we can compute it at once from two modified copies of row number 4 (zeros have to be inserted in its 
beginning and end, respectively) in the following way: 

4⋅[0, 6,11,6,1,0] + [0, 0, 6, 11, 6, 1]. 

This accounts for the frequent occurrence of expressions such as 

n_⋅APPEND(v_, [0]) + APPEND([0], v_) 

in my implementation above. 
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Only later did I exploit Ralph’s idea that only the Stirling numbers of the first kind in a certain paral-
lelogram are actually needed to the full extent. It is contained in my following email to all Derivers 
connected to the mailbase (skipping many other interesting contributions in-between in order to cut a 
long story short and come to an end): 

Just in case you also belong to the people who dot the i’s and cross the t’s like me, you might enjoy the 
following a little bit tidier’version’ of my STIRLING1(n,k): 
stirling1(n,k):= 
IF(k ≥ n, 
   MAX(1 - k + n, 0), 
   IF(k, 
      0, 
      IF(k = 1, 
         (n - 1)!, 
         IF(k = n - 1, 
            COMB(n, 2), 
            IF(k > n/2, 
               (ITERATE([n_·DELETE(v_) + DELETE(v_, 1 - n_ + n), n_ + 1],  
               [v_, n_], ITERATE([n_·APPEND(DELETE(v_), [0]) + v_, n_ + 1],  
               [v_, n], ITERATE([n_·APPEND(v_, [0]) + INSERT(0, v_), n_ + 1], 
               [v_, n_], [[1], 0], n - k), 2·k - n), n - k))↓1↓1, 
               (ITERATE([n_·DELETE(v_, 1 - n_ + n) + DELETE(v_), n_ + 1],  
               [v_, n_], ITERATE([n_·v_ + APPEND(DELETE(v_), [0]), n_ + 1],  
               [v_, n_], ITERATE([n_·INSERT(0, v_) + APPEND(v_, [0]), n_ + 1], 
               [v_, n_], [[1], 0], k), n - 2·k), k))↓1↓1))))) 

Numerical experiments seem to indicate that the asymptotic growth of computation times for Stirling 
numbers of the first kind is much better than that for Stirling numbers of the second kind, though the 
latter can be given explicitly by the simple formula 
                    1   k                   k - j_   n 
stirling2(n, k) ≔ · ∑   COMB(k, j_)·(-1)      ·j_  
                   k!  j_=1 

This leads to the following interesting question: Is this inevitable or does exist an implementation for 
Stirling numbers of the second kind as well that is asymptotic faster than the one above? 

Shortly after I gave the answer myself: 

Yes, there is an implementation with a far better behaviour and as a matter of fact it is so simple that 
it is almost embarrassing. (Why couldn’t this guy do his job properly from the very start?!) 
stirling2(n, k) ≔ (ITERATE([APPEND(v_, [0]) + INSERT(0, v_), n_ + 1], [v_, n_], 
[[1], 0], k))↓1·VECTOR((-1)^(k - j_)·j_^n, j_, 0, k)/k! 

For small n and k, you may gain some fractions of a second by using the old implementation, but in 
my opinion it doesn’t pay off to split the computation depending on the size of the arguments ... 

Again it was Ralph who found a flaw (though harmless this time!) in the routine above thereby putting 
the finishing touches to it: 

Nice! 

I did note that you didn’t need to have the n_ since it is not used. So it can be simplified a little to: 
stirling2(n, k) ≔ ITERATE(APPEND(v_, [0]) + INSERT(0, v_), v_, [1], k)· 
VECTOR((-1)^(k - j_)·j_^n, j_, 0, k)/k! 

Ralph 
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Well, there may still be minor improvements, e.g. 
stirling2(n, k) ≔ IF(n < k, 0, ITERATE(APPEND(v_, [0]) + INSERT(0, v_), v_, [1], 
k)·VECTOR((-1)^(k - j_)·j_^n, j_, 0, k)/k!) 

but its performance is already staggering in the present form. For example, try to compute stir-
ling2(2000,1000) with DERIVE and other CAS (nomina sunt odiosa!) and you’ll see the differ-
ence, believe me!. The same goes for stirling1 above, where I recommend comparing the computa-
tion times for stirling1(1000,500). 

Note: (stirling2(2000,1000) is a 3355 digit number, which needs 1.41 sec calculation 
time, stirling2(1000,55) gives a 1627 digit number needing 0.93 seconds.) 

Concluding another nice programming task: stirling1(n,k) can also be defined as the number of 
permutations on n letters having k cycles, whereas stirling2(n,k) is the number of ways to parti-
tion a set of n elements into k disjoint subsets. How could DERIVE-routines for stirling1(n,k) and 
stirling2(n,k) look like that make use of this?  

 

Additional comments on Stirling numbers: 
I found many interesting explanations, proofs and identities in one of the “computer science 
bibles” – Concrete Mathematics by Graham, Knuth & Patashnik.  
Here is a small selection together with the DERIVE verification: 

1

0
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−
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=

−   
=    −   

   
= −   

   
+ + +   

= +   
   

+    
= −    +    

∑

∑

∑

 

[1] does not work with the functions given in Titbits14, but it works with the DERIVE - func-
tions. 
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A finite Group with linear rational Functions 
Richard Schorn, Kaufbeuren, GER 

richard.schorn@t-online.de 
 
Expressions A and B (see below) can be used to construct a finite group. The binary operation  
P⊗Q= PQ is defined by replacing variable x in expression Q by the expression P which is “P in Q”. 

A = 
1

x
x −

,  B = 3 x−  

Find the order of the group by building the complete group table. Explain your work using DERIVE. 

 

Solution: 

CaseMode ≔ Sensitive 

       x               
A ≔ , B ≔ 3 - x 
     x - 1             
 
B      Let’s find AB 
 
3 - x 
 
3 – A      Replace x in B by A (A in B) 
 
       1    
2 -      and factorize! 
     x - 1  
 
 2·x - 3  
     this is now AB! 
  x - 1   
 
OP(E1, E2) ≔ lim  E2   Introduce function OP(E1,E2) for “E1 in E2” 
             x→E1    
 
OPI(e1, e2) ≔ ITERATE(e2, x, e1, 1) same for purists who don’t like the limit 
      at this occasion. 
                  1    
OP(A, B) = 2 -     
                x - 1  
 
                   1    
OPI(A, B) = 2 -  
                 x - 1  
 
                    2·x - 3  
FACTOR(OP(A, B)) =   once more AB. 
                     x – 1 
 
OP(A, A) = x     The powers of A: A2 

 
OP(B, B) = x     and B2 (does not need DERIVE). 
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   2·x - 3    2·x - 3     x - 3  
OP,  =  
    x - 1      x - 1      x - 2  
 
   x - 3    2·x - 3      
OP,  = x 
   x - 2     x - 1       
 
   2·x - 3    x - 3      
OP,  = x 
    x - 1     x - 2  
 
The group contains cyclic subgroups of orders 2 and 3, thus the group order must be divisible by 6! 

            x - 3  
OP(B, A) =  
            x - 2  
 
                                1      x - 3  
[OPI(A, B), OPI(B, A)] = 2 - ,  
                              x - 1    x - 2  
 
                          2·x - 3  
OP(OP(B, A), OP(B, A)) =  
                           x – 1 
 
Vector of the elements known so far: 
 
                x                       2·x - 3         x - 3  
e1 ≔ x, e2 ≔ , e3 ≔ 3 - x, e4 ≔ , e5 ≔  
              x - 1                      x - 1          x - 2  
 
e1 = A2 = B2 = E, e2 = A, e3 = B, e4 = AB, e5 = BA 
 
OP(A, [e1, e2, e3, e4, e5]) 
 
   x               1             2·x - 3  
, x, 2 - , 3 - x,  
 x - 1           x - 1            x - 2   
 
   x         2·x - 3           2·x - 3  
, x, , 3 - x,  
 x - 1        x - 1             x - 2   
 
A new element has been born (the last one in the row is ABA). 
 
Now we have found all elements of the group: 
 
                x                       2·x - 3         x - 3         2·x - 3  
e1 ≔ x, e2 ≔ , e3 ≔ 3 - x, e4 ≔ , e5 ≔ , e6 ≔  
              x - 1                      x - 1          x - 2          x - 2   
 
grp ≔ [e1, e2, e3, e4, e5, e6] 
 
 
We check if there are really no “Strangers in the Group”? 
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                            x             2·x - 3    x - 3    2·x - 3  
FACTOR(OP(e1, grp)) = x, , 3 - x, , ,  
                          x - 1            x - 1     x - 2     x - 2   
 
                         x         2·x - 3           2·x - 3    x - 3  
FACTOR(OP(e2, grp)) = , x, , 3 - x, ,  
                       x - 1        x - 1             x - 2     x - 2  
 
                              x - 3       2·x - 3      x      2·x - 3  
FACTOR(OP(e3, grp)) = 3 - x, , x, , ,  
                              x - 2        x - 2     x - 1     x - 1   
 
                       2·x - 3    2·x - 3      x      x - 3            
FACTOR(OP(e4, grp)) = , , , , x, 3 - x 
                        x - 1      x - 2     x - 1    x - 2            
 
                       x - 3           2·x - 3       2·x - 3      x    
FACTOR(OP(e5, grp)) = , 3 - x, , x, ,  
                       x - 2            x - 2         x - 1     x - 1  
 
                       2·x - 3    2·x - 3    x - 3      x              
FACTOR(OP(e6, grp)) = , , , , 3 - x, x 
                        x - 2      x - 1     x - 2    x - 1            
 
This is the result: 
 

2 3 3 3, , 3 , , ,
1 1 2 2

x x x xx x
x x x x

− − −
= = = − = = =

− − − −
E A B AB BA ABA  

 
with among others BAB = ABA, ABAB = BA, BABA = AB, … 
 
See the operation table: 
 

 E A B AB BA ABA 

E E A B AB BA ABA 

A A E AB B ABA BA 

B B BA E ABA A AB 

AB AB ABA A BA E B 

BA BA B ABA E AB A 

ABA ABA AB BA A B E 
 
On my request Richard Schorn sent three additional examples: 

o A = 5 3
2( 1)x

+
−

+
 which gives a cyclic group of order 5 (see next page). 

o A = 1 ,
x

 B = 1 x− gives a group which is isomorph to the group constructed by   

           2 3 ,3
2

x x
x
− − − 

 (= group of cover mappings of an equilateral triangle). 

o A = 2 ,x−  B = 2
2 x−

 leads to a group of order 8. 
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I tried to create the group table belonging to Richard Schorn’s first additional example. Cy-
clic groups are groups with all elements being powers of one single element. They can con-
sist of finite or of infinite many elements. 

Using the TI-NspireCAS I found out the five elements of this group: 

U = x, A = 5 3 ,
2( 1)x

+
−

+
 A2 = ( 5 3)( 1) ,

2 5 1
x

x
+ +

−
− −

A3 = ( 5 3)(2 5 1) ,
2(( 5 1) 2 ( 5 2))

x
x

+ − −
+ ⋅ + ⋅ +

 

A4 = ( 5 1) (( 5 1) 2 ( 5 2)) 2 5 3
4 2

x x
x x

− ⋅ + ⋅ + ⋅ + − − −
− =  

 
 

 
And this is the operation table of this commutative cyclic group: 
 

 U A A2 A3 A4 

U U A A2 A3 A4 

A A A2 A3 A4 U 

A2 A2 A3 A4 U A 

A3 A3 A4 U A A2 

A4 A4 U A A2 A3 
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ON THE SOLUTION OF A LINEAR DIFFERENTIAL EQUATION OF 

THE ORDER n WITH CONSTANT COEFFICIENTS 
Emilio Defez Candel , Vicente Soler Basauri 

 Departamento de Matemática Aplicada 
Universidad Politécnica de Valencia,  P. O. BOX 22.012. Valencia. Spain 

 
1. Introduction: 
 
In this paper we study the solution of the homogeneous linear differential equation of nth order with 
constant coefficients, not covered in Derive utility files, by implementing the file: 

CONST.MTH 

which enables the general solution of the homogeneous linear differential equation of the order n with 
constant coefficients: 

( ) ( ) ( ) ( )) 1)
1 1 0    0n n

n na y x a y x a y x a y x−
− ′+ + + + =…  . 

The functions in this file are also used to solve the linear differential equation of the nth order  

( ) ( ) ( ) ( ) ( )) 1)
1 1 0    n n

n na y x a y x a y x a y x f x−
− ′+ + + + =…  , 

by means of the undetermined coefficients and the constant variation methods.  

The organization of this paper is as follows. In section 2 we review the theoretical results on linear 
differential equation of nth order (see Flett). In section 3 we study the implementation of the file side 
CONST.MTH used for the solution of homogeneous linear differential equation, illustrating its use 
with several examples. In section 4 we apply the CONST.MTH file to the solution of the complete 
differential equation, depending on whether we use the undetermined coefficient or the parameter 
variation method. The file was implemented with Derive XM. 

2. Linear differential equation of nth order 
 
Definition 2.1 A linear differential equation of nth order is a differential equation that can be written 
like this:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) 1)
1 1 0 x x    n n

n na y x a y x a x y x a x y x f x−
− ′+ + + + =… .  (1) 

We can write the equation (1) in a more compact way: 

 ( ) ( )∑
=

==
n

i

i
i DxaAxfAy

0

  ,  , (2) 

where D is the derivative operator, defined as yyD
dx

ydyD
dx
dD n

n
n === 0  ,    ,  .  

The existence and uniqueness of local solutions of equation (1) is guaranteed by the following result: 

Theorem 2.1 Let all the functions ( ) nixai ,,1,0  ,  …=  and ( )xf  be continuous functions in an inter-

val ] [ba, , with ( ) 0≠xan  in that interval, and let ] [ { }0 0 1,  , , , , nx a b y y y∈ …  be arbitrary real values. 

Then there exists a unique solution ( )xyy =  of the differential equation (1) in all the interval ] [ba,  
verifying: 

( ) ( ) ( )1)
0 0 0 1 0,  ' , , n

ny x y y x y y x y−= = =…  
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Definition 2.2 An homogeneous linear differential equation of  the nth order is a differential equation  
(1) where f(x) = 0. I.e.: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) 1)
1 1 0 x x    0n n

n na y x a y x a x y x a x y x−
− ′+ + + + =…  ,  (3) 

which can also be written like this: 

 ( )∑
=

==
n

i

i
i DxaAAy

0

  , 0  .  (4) 

As a consequence of the linearity of the derivative operator, the following result is obtained: 
 

Theorem 2.2 If  ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  are solutions of (3), then any linear combination of these 

functions of the form: 

( ) ( ) ( )1 1 2 2 n 1 2 n    + C    ,    , ,   , C  Rny C y x C y x y x C C= + + ∈… … ,  

is a solution of (3). 
 
Theorem 2.2 suggests the following definition: 
 
Definition 2.3 A set of functions ( ) ( ) ( ){ }1 2 , , , ny x y x y x… , all of them continuous in the interval 

] [ba, , is said to be linearly dependent in ]a,b[ if there exist constants nααα ,,, 21 … , not all naught, 
so that 

( ) ( ) ( )1 1 2 2 n    +  =0ny x y x y xα α α+ + …  , 

in all the interval ] [ba, . Otherwise the functions ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  are said to be linearly 

independent. 
 
Definition 2.3 and theorem 2.2 enable the obtaining of the following result: 
 
Theorem 2.3 If ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  are n functions linearly independent  in the interval ] [ba, , 

solutions of (3), where all the functions ( )  ,  1,2, ,ia x i n= …  are continuous in the  interval ] [ba,  with 

( ) 0≠xan  in the mentioned interval, then the general solution of equation(3)  is given by: 

( ) ( ) ( )1 1 2 2 n    + C    ny C y x C y x y x= + + … ,  

where  C ,  , , n21 …CC  are arbitrary constants. 
 
Let’s observe the importance presented by the linearly independent sets of solutions of equation (3), 

( ) ( ) ( ){ }1 2 , , , ny x y x y x… . This brings about that these sets are given a special name. 

 
Definition 2.4 The n solutions ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  to (3) are said to form a fundamental sys-

tem of solutions of equation (3) if they are linearly independent over the definition interval of differ-
ential equation (3). 
 
The following concept will enable us to characterise the fundamental sets of definitions in a simple 
way, without having to resource to definition 2.3. 
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Definition 2.5 Let ( ) ( ) ( ){ }1 2 , , , ny x y x y x…   be n functions having derivatives up to order n-1 in the 

interval ] [ba, . The Wronskian of ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  is defined, evaluated in x, and the value 

of the following determiner is denoted  as ( )1 2W , , , ;ny y y x… :  

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2

1 2
1 2

1) 1) 1)
1 2

' ' '
W , , , ;

n

n
n

n n n
n

y x y x y x
y x y x y x

y y y x

y x y x y x− − −

=

…
…

…
# # % #

…

,  (5) 

 
The way of characterising fundamental sets of solutions is given by the following result: 
 
Theorem 2.4 The n solutions ( ) ( ) ( ){ }1 2 , , , ny x y x y x…  to (3), defined in the  interval ] [ba,  are a 

linearly dependent set, if and only if 
( )1 2W , , , ; 0ny y y x =… . 

Furthermore, if the n solutions ( ) ( ) ( ){ }xyxyxy n,,, 21 …  to (3) are continuous in the interval ] [a b,  

and the function ( ) 0≠xan  , then only one of the following possibilities is verified: 
 
1. ( ) ] [1 2W , , , ; 0  ,  ,ny y y x x a b≡ ∀ ∈… , 
 
2. ( ) ] [1 2W , , , ; 0  ,  ,ny y y x x a b≠ ∀ ∈… . 

 
We will call homogeneous linear differential equation of the nth order a differential equation (1) 
where: 

( ) ( ) ,    ,  1,2, ,   ,  0i i ia x a a R i n f x= ∈ = =…  , 

and which is written in this way: 

 ( ) ( ) ( ) ( )) 1)
1 1 0    0n n

n na y x a y x a y x a y x−
− ′+ + + + =… . (6) 

By using the derivative operator D, equation (6) results like this: 

 ( ) ( ) ) 1) 1)
1 1 00,   P D n n

n nP D y a D a D a D a D−
−= = + + + +… , (7) 

For equation (6), using theorem 2.1 the existence of solutions is guaranteed. Furthermore, the follow-
ing result will enable us to find solutions of (6) which have an exponential form.  
 

Proposition 2.1 The differential equation ( )   0=yDP has function ( ) xrexy  0=  as solution, for each 

one of the  roots r0  of the polynomial equation: 

                                                                        ( ) 0.P r =  (8) 

(8) is said to be a characteristic equation of (6). 
 
Let us distinguish different cases according to whether the roots of (8) are simple or multiple. 
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Theorem 2.5 If (8) has n roots different form each other, real or complex, nrrr ,,, 21 … , then the func-
tions  

{ }1 2  , , , nr xr x r xe e e… , 

form a fundamental set of solutions of (6), and therefore the general solution of equation (6) is given 
by: 

1 2 nr  x r  x r  x
1 2 n e  e   + C  e   y C C= + + … , 

being  C ,  , , n21 …CC arbitrary constants. 
 
Note 2.1 Let us observe that if (8) has a complex root βα i+ , it also has its conjugate βα i−  as a 
root. Therefore, in the general solution of (6) obtained in theorem 2.5 a term of the following form 
must appear: 

 ( ) ( )   e e  xi
2

 xi+
1

βαβα −+ CC , (9) 

with   , 21 CC  arbitrary constants. If we are interested  in the real solutions, we can used the identity 

 ( ) ( ) ( )( ) sin cose=e ib+ bibaa + , (10) 

to write (9) as follows: 

 ( ) ( ) ( ) ( )( )  sin   xcosA e= e e  x xi
2

 xi+
1 xBCC ββαβαβα ++ −  (11) 

where 21 CCA +=  and ( )21 CCiB −= . 
 
Theorem 2.6 If  r r= 0  is a root of (8) with m order of multiplicity, then m solutions linearly inde-

pendent associated to r0  exist, 

{ }0 0 0 0    2 1,  ,  , ,r x r x r x r xme xe x e x e−… . 
 
Note 2.2 If (8) has a complex number βα i+  with m multiplicity as a root, then βα i−  is also a root 
with m multiplicity. Applying theorem 2.6 to the 2m solutions corresponding to these two roots and 
working as stated in note 2.1, it can be proved that 

 ( ) ( ) ( ) ( ){   2  1  cos   ,  cos   ,  cos   , , cos   ,x x x m xe x xe x x e x x e xα α α αβ β β β−…  

 ( ) ( ) ( ) ( )}  2  1  sin   ,  sin   ,  sin   , , sin   x x x m xe x xe x x e x x e xα α α αβ β β β−… ,  (12) 

is a set of  2m independent solutions of differential equation (6). 
 
3. Solution of the homogeneous linear differential equation of nth order  
    with constant coefficients with DERIVE. Implementation. Examples. CONST.MTH 
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Given the homogeneous differential equation of the nth order with constant coefficients 

( ) ( ) ( ) ( )) 1)
1 1 0   0n n

n na y x a y x a y x a y x−
− ′+ + + + =… , 

we will introduce in the vector [ ]1 0, , ,n nv a a a−= … the coefficients of this equation, written in serial 

order, tapering downward. The CONST.MTH file  functions operate in the following way: 
 
1. Function AUX_0(v)  creates vector 1, , , ,1n nx x x−  …   with the same dimension as v. 
 
2. Function  AUX_1(v) starting from v and AUX_0(v) provides us with the characteristic polynomial of 
equation (6). 
 
3. Function AUX_2(v) calculates the roots of the characteristic polynomial (let us remember that De-
rive does not directly provide us with the multiplicity of a roots of a polynomial). Thus AUX_2(v) 
gives a vector of the form [ ]1 2, , , sx r x r x r= = =… , where { }1 2, , , sr r r… are the roots of the characteris-

tic polynomial, real or complex, each one with a multiplicity { }1 2, , , sl l l… and being verified ∑
=

=
s

i
i nl

1

. 

 
4. Function  AUX_3(v) provides us with the list of roots calculated by the function AUX_2(v), giving a 
vector of the form [ ]1 2, , , sr r r… . 
 
5. Functions SEPARA_RAIZ_1(v) and SEPARA_RAIZ_2(v)  separate the real and complex roots of the 
characteristic polynomial given by AUX_3(v). 
 
6. Function AUX_4(v,i) , for every root of the characteristic polynomial ri , give us a vector with the 

values of the characteristic polynomial and  its n – 1 first derivatives of that root. Thus it produces a 
vector of the form  [ ]0 1 1, , , nb b b −… , where  

( )  ,  =0,1, , 1
i

j

j x rj

d P x
b j n

dx == −… . 

It is evident that when a root has multiplicity s, it will give rise to a vector of the form 
1

2 10, ,0, , ,
s

s nb b
+

+ −

 
… … 

  


������
 . 

 7. Starting from a vector 
1

2 10, ,0, , ,
s

s nb b
+

+ −

 
… … 

  


������
 ,  obtained by means of the function AUX_4(v,i), the 

function AUX_5_1(v,i) provides us with a vector of the form: 

P1

1, ,1,0, ,0
s+ 
… … 

  
 , 

for each root ri  of the characteristic polynomial. For that purpose it uses functions 

KRONECKER_VECTOR (s),VECTOR_AUXILIAR_1(s,i) and VECTOR_AUXILIAR_2(s,i). 
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8. Function AUX_5(v,i) filters function AUX_5_1(v,i) so as to avoid anomalies such as the one in the 
following example: 
 

Example 3.1 Let us consider the polynomial ( ) 24 xxxP += . This polynomial verifies 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 2

3

2

4) 4)

0 0
' 4 2 ' 0 0

0  is a double root of ( )'' 12 2 '' 0 2
''' 24 ''' 0 0

24 0 24

P x x x P
P x x x P

x P xP x x P
P x x P
P x P

= + ⇒ =
= + ⇒ = ⇒ == + ⇒ = 
= ⇒ = 

= ⇒ = 

, 

 
Function AUX_4(v,i) for [ ]0,0,1,0,1=v  provides as a result vector [ ]24,0,2,0,0  and function 
AUX_5_1(v,i) provides vector [ ]0,1,0,1,1 . Thus strange solutions would be introduced to differential 
equation (6). Function AUX_5 (v,i) permits us, for this concrete example, to obtain vector [ ]0,0,0,1,1  
as an answer, which interprets the root 0=x  as a double root of this polynomial. 
  
9. Functions AUX_REAL_1(v,i) and AUX_REAL_2(v,i) work with the real roots,  operating with each 
one of them so that they appear with its corresponding multiplicity. 
 
10. Function  AUX_6(v,i) gives us the partial solution of the differential equation obtained of the real 
roots. 
 
11. Functions AUX_COMPLEJA_1(v,i), AUX_COMPLEJA_2(v,i), AUX_COMPLEJA_3(v,i) and 
AUX_COMPLEJA_4(v,i) operate on the  complex roots ri of the characteristic polynomial. Basically 
they operate their real and imaginary parts separately, and prepare them so that when they are added in 
pairs, as indicated in notes 2.1 and 2.2, the imaginary numbers disappear and the root appears with its 
corresponding multiplicity.  
 
12. Function AUX_7(v) adds all the partial results obtained when working with the real  and complex 
roots separately, providing us with the solution of the differential equation. 
 
 
Examples:   

( ) ( ) ( ) ( ) ''' 3 ''  -4 12 0y x y x y x y x′+ − =       . (13) 

In this case vector [ ]12,4,3,1 −−=v , and we have: 

  
 
Let us check that the solution obtained is actually a solution of (13). 
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The next two examples will be solved by applying CONST.MTH and by MATHEMATICA:  
(4)

(4)

7 18 0
0

y y y
y y

′′− − =

′′+ =
, 

  

 
 
Finally two more examples of order 5: 
 

(5) (4)

(5)

6 237 1358 108 72 0
5 25 15 25 125

3 4 0

y y y y y y

y y y

′′′ ′′ ′+ + + + + =

′′′ ′− + =

 

 
DERIVE calculation + check of the solution: 
 

 
 
[1] T.M.Flett, Differential Analysis. New York. Cambridge University Press. 1980 



Firstly the Lower Riemann Sum is 
shown  by cajainf(). 
 
Let f(x) = x2 on [0,3] with 5 subdivi-
sions. 
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THE RIEMANN INTEGRAL WITH THE TI-92 
Francisco Jose Santonja Gómez 

C.U. ESTEMA-ANTONIO DE NEBRIJA UNIVERSITY. Valencia. Spain 
 
In this paper some TI-programs and functions concerning integration are given.  
 
Description of the TI-programs 

 
 

 
Next, the program cajas u p ( ) has been defined to present 
the  
For i ,O,n-I,I  
:PtOn a+(b-a)*i/n,valor(f,a+(b-a)*(i-l)/n)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, the program cajasup() has been defined to present the Upper Riemann Sum. 
You only have to replace the marked program block of cajainf() by the block given below. 
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Next program rieman() has been defined to calculate both Riemann Sums. 

  
Finally program tableta() shows the integration as the limit of the sums (lower and upper sum) con-
verging to the same value. 
 

  
References:  

Llorens Fuster, Una Lección de Matematicas con Ordenador, EPSILON. n.31-32, p. 81-88. 1995.  
Llorens Fuster, Aplicaciones de DERIVE al Análisis Matemático 1, Polytechnic University ofValencia 
Press.  
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For me this contribution was challenge enough to remember my DERIVE deeds from 1992 and I pro-
duced a TI-92 package: :integ(). My friend Wolfgang Pröpper saw my efforts and very similar to me he 
again found many ways to make this package more user friendly and he added some important fea-
tures. Encouraged by Bernhard Kutzler we produced a book "The Riemann Integral - From Counting 
Raindrops to the Fundamental Theorem". I’d like to add some screen shots to show where F. San-
tonja’s inspiring ideas led Wolfgang and Josef:   

 
 Discuss the integral functions:       (… and much more.) 
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Helge von Koch' s Snowflake 

 
Matija Lokar, Faculty of mathematics and physics, University of Ljubljana, Slovenia 

Matija.Lokar@fmf.uni-Ij.si '  

As at the time being it is snowing, let's try to draw some snowflakes with DERIVE, too. As basis we 
take the so called Koch curve. It belongs to the class of recursive defined objects. We get them with 
applying a certain procedure to a base object. Base object, which can be line, box, circle, triangle or 
something else, is transformed into severa1 simi1ar objects which serve as the starting point of thea 
same transformation. We know Peano curve, Dragon curve, Hilbert curve, Sierpinski triangle and 
several others.  

 

We start with line (Koch curve of order 0). The basis procedure is as follows. We divide the line into 
three parts. The middle part is substituted with two lines that form en equilateral triangle with deleted 
line. We get the Koch curve of the 1st order. If we apply the procedure on all four segments then we 
will get the Koch curve of 2nd order.  
An interesting paper about Koch curve can be found on Internet on page  

http://www.eurologo. org/papers/logomov. html[1}. 

There LOGO is used. But we would like to draw with DERIVE. Let us first recall some basis facts 
about drawing with DERIVE.  
A point in DERIVE is represented as pair of coordinates in square brackets, divided by a comma. So 
the origin is represented as [0,0] and a point with co ordinate x = 1 and coordinate y = 2 as [1,2]. If we 
plot such an expression ([1,2] for example), we get point (1,2). If we would like to draw several 
points, we make a vector consisting of two-dimensiona1 vectors, namely an n x 2 matrix, where n is 
number of points. When we draw several points, DERIVE can draw a line which connects points. 
When we are in 2D-Plot Windows, we choose Options State and set Mode to Connected or 
Discrete. We can also set the size of points. When set to Small, point can not be distinguished 
from the joining line in Connected mode.  

Now to our Koch curve. First we calculate three new points that our procedure makes. Each one will 
be calculated with a function. The parameters for all three functions are the starting and ending point 
of the line. We exploit the fact that we can calculate with points like with vectors.  

TT(a,b):=a+(b-a)/3 
TDT(a,b):=TT(b,a)  
TO(a,b):=(a+b)/2+SQRT(3)/6*[a SUB 2-b SUB 2,b SUB 1-a SUB 1]  
 

Let us check first our attempt. Set u as a starting point ([-1,-1]) and 
v as an ending point ([1,1]). We have to draw a polygon 1ine 
[u,TT(u,v),TO(u,v),TDT(u,V),v]. 
It seems OK. Now we use the recursion. If the order of curve is 0, 
then we have a 1ine. Otherwise we have four curves of one 1ess 
degree on: u-TT(u,v); TT(u,v)-TO(u,v);  
TO(u,v)-TDT(u,v) and finally TDT(u,v)–v.  
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We edit and plot KOCH([-2,0],[2,0],3]. Simplifying we 
get a huge expression. Before plotting we turn off automatic color 
cycling and hide the axes (all in Options Display).  
  
But if we observe the received expression, we are not quite satisfied. First there is no need to use exact 
arithmetic, so we set Precision := Approximate PrecisionDigits := 2. This also 
significantly speeds up the computation. Also on each step we end up with four polygon lines. But we 
should get only one. So we change function KOCH a little: 

KOCH(a,b,n):= If n = 0         

                 [a,b]          

                 APPEND(KOCH(a,TT(a,b),n-1),KOCH(TT(a,b),TO(a,b),n-1), 
                 KOCH(TO(a,b),TDT(a,b),n-1),KOCH(TDT(a,b),b,n-1)) 

Another improvement is due to observation that we get all points twice – first as an ending point and 
secondly as a starting point. If we just drop the second point in case of order 0 then we circumvent this 
obstacle: 

KOCH(a,b,n):= If n = 0         

                 [a]          

                 APPEND(KOCH(a,TT(a,b),n-1),KOCH(TT(a,b),TO(a,b),n-1), 
                 KOCH(TO(a,b),TDT(a,b),n-1),KOCH(TDT(a,b),b,n-1)) 

Now our function does not behave “properly” for n = 0 and we lost the first point of the sequence. So 
we define: 

KOCH_CURVE(a,b,n):= IF(n=0,[a,b],APPEND([a],KOCH(a,b,n))) 

If we draw three Koch curves based on the sides of an equilateral triangle the  we get the so called 
Koch Snowflake. First let us define POLY(n) which produces the vertices of a regular polygon of 
order n. 

POLY(n):= VECTOR([3·COS(i),3·SIN(i)],i,2π,0,-2π/n) 

Then we define KS(a,m)  which creates a collection of KOCH curves of order m between consecu-
tive points of a vector a. 

KS(a, m):= VECTOR(KOCH(a↓i,a↓(i+1),m),i,1,DIMENSION(a)-1) 

Simplifying KS(POLY(3),5) gives the Snowflake. 
We see it together with an accompanying triangle. 

It should be also noted that the order n in which we 
compute the polygon is important. If we use points 
computed with  

POLYB(n):= 
VECTOR([3COS(i),3SIN(i)],i,0,2·π,2π/n) 

then we get Koch curves which are inside the triangle. 
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The snowflake is always a challenge to be faced. I think that it may be nice to compare the 
various ways producing this famous fractal structure. You can do this in this DNL studying 
the next contribution. Compare also with the Roanes-Lechner-Wiesenbauer implementation 
of LOGO in DERIVE (in DNL#25, March 1997) and with Robert Setif' s Treasure Box (DNL#3 
and DNL#6 from 1991/92). Josef  

Another comment from 2014 concerning “challenge”: I tried to reproduce the recursive pro-
cedure given above with TI-NspireCAS. The first steps – were not so difficult – even missing 
the programming tools for graphics included in the V200 programming language. 

But I could not find a way to transfer Matija’s recursive creation of the Snowflake. It would be 
great if any Nspire expert among you would accept the challenge and follow Matija’s ideas 
from 1999 with the nowadays TI-NspireCAS, Josef 

This is what I did so far: 
 

  
 

[1}Now this website can be accessed at https://eurologo.web.elte.hu/lectures/logomov.htm 
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2.2 All diagonals of a regular n-gon 

A nice graph is created connecting each vertex of an n-gon with each of the remaining vertices: 
The radius of the circum circle is 1. The line connecting the ith vertex [COS(i),SIN(i)] with the 
jth one [COS(j),SIN(j)] is described in DERIVE by a list 

[[COS(i),SIN(i)], [COS(j),SIN(j)]] 

 

 

 
To avoid plotting lines twice it is sufficient to 
connect the ith vertex with vertices # (i+1), (i+2), 
....n. Function LINIEN(i,n) creates all the 
lines starting from point i. 
 
DIAGON(n) produces all diagonals by running i 
through all n vertices of the n-gon. 
 
 
You can see the result of DIAGON(20). 

 
LINIEN(i,n):= VECTOR([[COS(2*π*i/n),SIN(2*π*i/n)],[COS(j),SIN(j)]],j, 
              2*π*(i+1)/n,2*π,2*π/n) 
 
DIAGON(n):=VECTOR(LINIEN(i,n),i,n-1) 
 

2.3 A family of rotated n-gons 

These graphs show families of polygons which are produced by rotating a polygon by a constant angle 
δ, eg. δ = 5° and simultaneously shrinking it in such a way that the new polygon is exactly inscribed 
the preceding one. At first one has to find the shrink factor f: 
 

Given is  sector OP1P2 of a regular n-gon with radius r. Its angle α in the 
center is α = ∠P1OP2 = 2π/n. Angle ß is given by ß = (180° – α)/2 =  
= π/2 – π/n. The rotated triangle OR1R2 is part of the next polygon with 
a circumscribed circle of radius f⋅r = OR1. We apply the sine rule in 
order to find OR1: 

r f
ß

r f
ß n

nsin sin ( )
sin

sin( )
sin( / / )

sin( / / )
=

°− −
→ =

°− −
=

−
+ −180 180
2

2β δ β δ
π π

π π δ
 
 

Using sin(90° – α) = cos α gives f: 
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Setting r = 1 gives the radius of the 
kth polygon’s circumscribed circle 
with fk. This polygon is turned by the 
angle k⋅δ. 
  

ROTECK returns its vertices. 
ROTSCHAR(n,δ,k) produces a family of z rotated n-gons. 
 
ROTECK(n,δ,k):= VECTOR([F(n, δ)^k·COS(i+k·δ),F(n,δ)^k·SIN(i+k·δ)], 

                i,0,2·π ,2·π /n) 
 

ROTSCHAR(n,δ,z)≔ VECTOR(ROTECK(n,δ,k),k,0,z) 
 
ROTSCHAR(4, 5°, 20) 
 
ROTSCHAR(10 ,30°,20) 
 
ROTSCHAR(3, 2·°,25) 
 
 
3. The Koch Curve 

The Koch curve is a well known example of a fractal. It was defined in 1904 by the Danish mathema-
tician Helge von Koch. Koch had the intention to show a "Monster curve", which is continuous on 
each place but nowhere differentiable. 

3.1 The construction 

We assume that you all know how to obtain this famous curve: 

Using DERIVE commands you can produce a 
Koch curve or order n in an easy way. You start 
with the unit segment as Koch curve of order 0 
and build step by step curves of next order. The 
important idea is to relate a segment (x,y) to a 
sequence of segments generator(x,y). 
 
The only difficulty is to express the vertex of 
the equilateral triangle by the points x and y. We 
define the auxiliary function nv(v), which is 
the normal vector of v with equal length and 

turned to the left. Using nv(v) we can define the generator - function. 
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x y x y

(x+y)/2+NV(y-x)sqrt(3)/6

 

 
The Koch curve of order n consists of a list of points v = [v1, v2, …vDIM(v)]. You receive the curve of 
next order n+1 in applying generator to each of the segments (vi. vi+1). next(v) creates these 
vectors generator(vi,vi+1) and appends them one after the other. Finally we have to append the 
last point vDIM(v). Starting with segment [[0,0],[1,0]] as Koch curve of order 0 we use a recur-
sive construction process to create Koch curves of order k with koch(k). 

I will demonstrate how generator works with the next curve (Koch2-Curve), Josef. 
 

3.2. Koch similar curves 

You can generalize the Koch curve in various ways. If you replace generator(x,y) by any other 
appropriate function. koch(k) will generate "Koch similar" curves. Four examples of these curves 
will be presented in the following. nv and next will remain the same. 
 

3.2.1 The Koch-2-Curve 

If you start with the unit segment and choose points [0.4,0.2] and [0.6,-0.2] as vertices of the generator 

three segments of equal length 1
5

. 

This generator is described by DERIVE in the following function: 
 
generator(x,y):=[x,0.6*x+0.4*y+0.2*nv(y-x),0.4*x+0.6*y-0.2*nv(y-x)] 
 

Even if the application of matrices to describe mappings in the 
plane has not been discussed in classes you could provide this 
function as a "Black Box". 
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Demonstration of the “generator”: 

Let’s assume that the initial segment is [(1,1), (5,3)] – which is then koch(0). According to 
the algorithm given above koch(1)=append(next(koch(0))). 

next(koch(0))=append(generator(koch(0)1,koch(0)2),koch(0)2) 

generator((1,1),(5,3))=((1,1),0.6*(1,1)+0.4*(5,3)+0.2*nv(4,2),  
                       0.4*(1,1)+0.6*(5,3)-0.2*nv(4,2) 

 
 
 
 

0 1
0.2*(4,2)* =(-0.4,0.8)

-1 0
 

generator((1,1),(5,3))=((1,1),(0.6+2-0.4,0.6+1.2+0.8), 
       (0.4+3+0.4,0.4+1.8-0.8))= 
     =((1,1),(2.2,2.6),(3.8,1.4)) 

next(koch(0))=((1,1),(2.2,2.6),(3.8,1,4),(5,3)) 

 

We check the p&p-calculation: 

 

The graph of the first steps of this curve is 
given on the next page. 

 

3.2.2 The Cross Stitch Curve 

Another possibility is to replace the equilateral triangle by a square. Then the generator is built by 5 
segments of length 1/3. 
 
generator(x,y):=[x,(2*x+y)/3,(2*x+y+nv(y-x))/3,(x+2*y+nv(y-x))/3,(x+2*y)/3] 
 

3.2.3 The Ice Curve 

A Koch curve which makes us think on ice needles and ice flowers can be generated very easily.  
Let us erect a segment of length 1/3 in the mid point of the unit segment. 
 
generator(x,y):=[x,(x+y)/2,(x+y)/2+nv(y-x)/3,(x+y)/2] 
 
 
The pictures on the next page show these three varieties of Koch curves: (DERIVE 6): 
 
Koch-2-Curve 
Cross Stitch Curve 
Ice Curve 
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3.2.4  The Cesáro Curve 

The equilateral triangle in the original Koch curve is replaced by an isosceles triangle. The length of 
its sides is calculated in order to obtain a generator consisting of four segments of equal length. Vary-
ing the base angle α results in varieties of this kind of Koch curve. 
 

       
)cos1(2

1cos
2
1

α
α

+
=→=− rrr  

 
The DERIVE - Code: 
[α:=85°,r:=1/(2*(1+COS(α)))] 
 
generator(x,y):=[x,x+r*(y-x),(x+y)/2+r*SIN(α)*nv(y-x),y-r*(y-x)] 
 
KOCH(6) 
 

 

3.3. Koch curves in a square 

Four Snowflake curves can be assembled to form a ”Koch Square”: 
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To generate a Koch- or Koch similar curve on any chosen segment v needs only a change in 
koch(k) from above: 

koch1(k,v):=IF(k=0,v,APPEND(next(koch1(k-1,v)))) 

Using the vector v0 to describe a square, square(k,v0) creates the square of order k. 
 
v0:=[[0,0],[1,0],[1,1],[0,1],[0,0]] 
 
square(k,v_):=VECTOR(koch1(k,[v_SUB i,v_SUB (i+1)]),i,DIM(v_)-1) 
 
Depending on the chosen generator you can receive the following pictures. Using v1 returns curves 
which are directed out of the square. Interesting pictures result in combining both versions. 
 
v1:=[[0,0],[0,1],[1,1],[1,0],[0,0]] 
 
generator(x,y):=[x,(2*x+y)/3,(x+y)/2+SQRT(3)/6*nv(y-x),(x+2*y)/3] 
 
square(4,v0) 

 
 

 

v1:=[[0,0],[0,1],[1,1],[1,0],[0,0]]
 
square(4,v1) 
 

  

     
(Students could try to find their own generators. See here some suggestions. Josef) 
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Gallery of ‘Koch - Relatives’ 
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What about the Koch curves and TI-NspireCAS? 

 
There were no problems presenting the n-gons, but things changed treating the Koch curves. 

 

I tried to reproduce Maria’s recursive procedures  
with TI-Nspire. It is a shame, I failed. It would be  
great if somebody from the DUG community could 
transfer Matija’a and/or Maria’s recursive proced- 
ures on the Nspire. 
 
Then I changed my strategy and used the generators iteratively – and this lucked. 
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I must use colAugment for collecting the points as a whole and to add y as last element of the 
generator.  

 
 

 
 
This is the generator of the fractal on 
the right hand side. 
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Matija Lokar, University of Ljubljana, Slovenia 
 

ANIMATION IN DERIVE 
 

Motivation for this contribution is twofold: During systematic study of all menus in DERIVE 
(DOS version), I wondered why we need Window > Open and Window > Flip command. Also 
a colleague asked me how to demonstrate the behaviour of the sine function sin(x + t) in de-
pendence of time parameter t. 

Well, the head line is promising too much. I will not describe any ingenious technique in DERIVE and 
a proper animation to be the substitute for AcroSpin or similar program. But for the task described it 
was quite successful. 

The idea is to create the sequence of graphs and by switching simulating an animation. We exploit the 
possibility that DERIVE can open many windows on the same position (Window > Open) and switch 
from one window to the next one (Window > Flip). 

Suppose we like to show how sine waves sin(x + t) “travel” in time. First we prepare a suitable se-
quence of functions – each one as an own expression: 

SIN(x) 

SIN(x + π/6) 

SIN(x + π/3) 

SIN(x + π/2) 

… 

… 

SIN(x + 11π/6) 

 

Let us plot the last graph: 

Plot > Under 10 > Plot 
Open a new window 

Window > Open > 2D Plot 

Go to the Algebra Window, mark the 
before last expression and plot it 

Algebra 

Plot 

Plot 

 

 

 

It really works!! 

We open a new window on the same place and repeat the procedure until we plot the function sin(x). 
Now we have prepared all the pictures and by rapid switching we animate them. Using Window > Flip 
would be too slow, so we use F2. If our computer is sufficiently fast then we will get the impression of 
a travelling wave. 

ACDC – Amusing Corner of the DERIVER’s Curiosity (founded by Alfonso Población Saéz) 


