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Materialien - Materials

Als langjahriges Mitglied der DUG wende ich mich mit einer Bitte an Sie:

lch habe auf meiner Homepage (Adresse siehe unten, Rubrik Mathematik) eine Reihe von
Grundlagenartikeln zum Einsatz des T1-92/\Voyage 200 sowie Unterrichtsbeispiele verdffent-
licht, die sicherlich einige Fachkolleginnen und -kollegen interessieren diirften. Ich bitte Sie
daher, im DNL auf diese Adresse hinzuweisen.

Vielen Dank!

Mit freundlichen Grifden

Jurgen Wagner, Ahnatal
http://j.wagner.bei.t-online.de

Groebner Bases

Dear Derivers!
at the following link you can find a new utility file for Derive 5.06 (and other versions.) that allows
computation of Groebner bases and other related functions:

http://www.science.unitn.it/~perotti/groebner.htm

Regards,
Alessandro Perotti

Announcement

Our good friend Carl Leinbach asked for publishing the following announcement and it is a
pleasure to do this:

in January at the Joint Meetings in Phoenix, Arizona (Jan 7 - 10) Ed Connors and | will be co
chairs of a Contributed Paper Session on "The effective use of Computer Algebra Systems
in the Teaching of Mathematics." We have a very limited number of slots for 20 minute talks
(15 minutes + 5 for questions). Also, could you mention the session in the DUG Newsletter?
The session is on January 7 in the afternoon. Anyone interested in submitting a paper
should send me their name, affiliation, e-mail address, the title, and a short (one or two para-
graph) abstract. They can e-mail me this information. Ed Connors and | will make the
decision by mid October, so we need the abstracts by mid September at the latest. We
have only 9 - 12 slots, so the process should be competative.

(email: leinbach@gettysburg.edu)

Dear DUG-members,

please inform us about new publications on the use of DERIVE and/or the CAS-TIs. We also
appreciate all information about interesting websites.

http://shop.bk-teachware.com

This is the address for DERIVE - & TI-related books. There is also a rich resource of additional
software and inspiring maths books.

Download all DNL-DERIVE- and Tl-files (+ the “Moon”-file) from

http://www.acdca.ac.at/t3/dergroup/index.htm
http://www.bk-teachware.com/main.asp?session=375059
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Dear DUG Members,

This is a very special issue of the DNL. Looking at
the front page you can see, that you have DNL#50,
the "Golden Issue", in your hands. I am sure that in
our times this 1s a very rare event for a private ini-
tiative founded in 1991 to reach an age of life of
more than 12 years, especially on a field of informa-
tion technology. I'll take the occasion to give my
thanks to all of you who have helped making the
DUG a lively group of not only CAS-interested
people, but of friends all over the world.

We have a second celebration: Johann Wiesenbauer
presents his "Silver" Titbits #25. On behalf of the
DUG T'd like to express our gratefulness for sharing
his rich experience and knowledge with us.

Inspecting the list of contents of this DNL I must
add some comments:

The first "Challenge for Programmers" found five
members who felt incited to face the challenge.
Special appreciation to you: Terence Etchells from
England, one (novice) colleague from Germany and
a remarkable "Senior Trio" from Japan. The Japa-
nese friends sent their findings by surface mail,
because we had some problems with the email con-
nection.

The new challenge (page 39) is an introduction to
an article planned for DNL#51. 1 felt myself chal-
lenged to program Lindenmayer-Systems. (Aristide
Lindenmayer imvented a string rewriting system
which can be used to abbreviate Turtle Commands
for generating nature like (fractal) structures).

Karsten Schmidt submitted a contribution on a
special matrix transformation. He promised to con-
tinue in a later issue with applications of the Moore-
Pentrose-Inverse.

I am very happy to redeem an old debt presenting
Georg Aue’s note on Linear Programming. This
note is from DOS-DERIVE times but his "handi-
craft"-modelling is of everlasting validity.

Benno Grabinger sent an interesting contribution
for all of us, who want to know how "randomly" the
random numbers of our TI-CAS and DERIVE really
are. With his permission, for what I am very grate-
ful, I made some little amendments to include some
DERIVE-links and -screen shots.

This DNL is again written very tight. I had to post-
pone an article which was the reaction on a strange
request posed in the DERIVE Newsgroup: "Is it
possible in DERIVE finding maximum and mini-
mum points of a graph in a similar way, as it can be
done on a graphing calculator (TI-83)?"

I found a way to simulate a GC on the 2D-Plot
Window without using means of calculus (for the
user — Calculus remains hidden in the background).
So one can do the investigations of a graph even in
secondary one level.

I am very proud of Peter Hofbauer's application of
the DNL-bomn DERIVE statistics tools. It shows a
meaningful linkage between school and real-life
mathematics. Many thanks, Peter.

In addition to the interesting announcements on the
Information Page, 1'd like to mention that René
Hugleshofer will present the results of a special
CAS-group (Forbes (UK), Herweyers (BEL),
Hugelshofer (SUI), Schomacker (DK), Bohm
(AUT) at a Conference in Reims. I'll tell more
about this project in fall — when we hopefully will
have it finalized.

Finally I'd like to wish you all a wonderful summer
— winter, of course for the southern hemisphere.
Maybe that some of us will meet at any occasion at
any meeting or conference or just in holidays.

With my best rega
Josef
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It 1s published at least four times a year
with a contents of 44 pages minimum. The
goals of the DNL are to enable the ex-
change of experiences made with DERIVE
and the 77-89/92/Voyage 200 as well as to
create a group to discuss the possibilities of
new methodical and didactical manners in
teaching mathematics.

As many of the DERIVE Users are also
using the CAS-TIs the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef Bohm

A-3042 Wiirmla

D’Lust 1

Austria

Phone/FAX: 43-(0)2275/8207
e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

Next 1ssue:
Deadline

September 2003
15 August 2003

Preview: Contributions waiting to be published

Finite continued fractions St. Welke, GER

Kaprekar’s "Self numbers", R. Schorn, GER

Some simulations of Random Experiments, J. B6hm, AUT
Wonderful World of Pedal Curves, J. B6hm

Another Task for End Examination, J. Lechner, AUT
Tools for 3D-Problems, P. Like-Rosendahl, GER

ANOVA with DERIVE/TI, M. R. Phillips, USA

Hill-Encription, J. B6hm

CAD-Design with DERIVE and the TI, J. B6hm

Sierpinski-Tetrahedrons and Octahedrons, H.-R. Geyer, GER

Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL
Farey Sequences on the Tl, M. Lesmes-Acosta, COL

The “Joseph-Game”, Riideger Baumann, GER

Simulating a Graphing Calculator in DERIVE, J.B6hm, AUT

2D- & 3D-Visualization of Moebius Transformations, T. Comar, USA
Boson Algebra with DERIVE, F. Fernandez, ARG

Lindenmayer-Systems, J. Béhm, AUT

and

Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,

Keunecke, GER, ......... and others

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wiirmla, D'Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag.Josef B6hm
Herstellung: Selbstverlag




D-N-L#50 DERIVE- and CAS-TI-User Forum p 3

Matthieu Gouin woopee77@yahoo . com
y = (x - 4)7(1/4)/(x + 4)"(1/4)

While tracing this equation in DERIVE, I notice that the left part of the graph (from -4 to the left) is dotted. Also,
if I try to trace the graph, it says : "not real and finite".

However, if I substitute values in the expression, for example -5, it simplifies to y = sqrt(3) which is a real value.

Do you have an idea of this behavior ?

DNL: | believe that the problem lies in graphing a quotient of complex numbers. First I set Options > Plot
Real and Imaginary Parts in order to receive the graph as shown below. It is interesting to follow the
path of the cursor box!!

, 13
Lo
P = ML
.-1 r‘(_‘_—_—_—_
-8 -7 6 -5 -4 -3 -2 -1 1 2 3 4 5 § 7 8
-1
o % 3
3
2
11
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 2
L —4

Then I rewrote the function and got the expected graph. In this case obviously DERIVE first evaluates the ex-
pression under the root which turns out to be positive for x < -4 or x > 4.
As you can see the TI has no problem to present the function as defined by Matthieu.

x — 4 |14
y = 4
X 1 Fev F3 FY4 F5: Fe6¥ F? &
. -f—"'” Zoom|TraceRegraph Math|orau|v /
3
+ 2 __4-—) —_—
_.—o—'—'_"'_'-‘l
I' r/-_;
7 6 5 -4 3 -2 1 1 2 3 4 5 6 7 8
-1
MalN RAD EXACT FUNC

Ron Larham

It's nice to be able to report that Derive (v5.05 and v4.02) manage to do this weeks NewScientist Enigma without
any additional analysis, while Mathematica managed to crash trying, and Maxima ran out of BigNum Space.

77777771
MCD (7777777 , 1006600) = 47657
DNL: Message of MuPAD Pro 2.5:

e modp (7777777%7777777,100000)
Error: Overflow/underflow in arithmetical operation
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Equations

Rick Nungester

DERIVE says:
u o

SOLVE (ATAN(TAN(x)) - x, %X, Real) = - — < x < ——

2 2
11 II

but x = -n/2 doesn’t satisfy the equation: ATAN|TAN|— — || = + — .
2 2

Shouldn’t the real solution be -7/2 < x < =/27?

DERIVE says:
2
SOLVE(LN(x ) - 2-LN(x), x, Real) = x > 0
] ; i 2 2
but x = 0 doesn’t satisfy the equation: LN(0 ), LN(0), LN(O ) - 2-LN(0)
[_CD 3 LN ( O ) B ’D]
Shouldn’t the real solution be x > 0?
Also, why does LN(0?) simplify to -0, but LN(0) doesn’t?

Albert Rich

Subtle and interesting points you raise.

1. Derive simplifies ATAN(TAN(x)) to

X 1
ATAN(TAN(x)) = x - H-FLOORY— + —\
{ o 2 )
which is valid everywhere except for x = k = n/2, where k is odd. This is the reason the point x = -n/2 is
included in the solution. However, if Derive did not make this transformation, it would be unable to
provide any solutions to the equation.

2. The limit of LN(x"2) as x approaches 0 from the left or right is minus infinity. Whereas, LN(x) as x
approaches 0 from the right is minus infinity, but the limit as x approaches 0 from the left is minus infin-
ity + n * /. This is the reason LN(0) does not simplify further. However, when solving equations, finite
imaginary parts added to real infinities are ignored. Thus the solution of LN(x*2)=2*LN(x) includes 0.

Because of anomalies like these that are difficult to remedy, | recommend always verifying the end-
points when Derive returns an interval as the solution to an equation or inequality.

Hope this helps.
Albert D. Rich

Rick Nungester

Thank you for your comments, but now | have bigger problems -- my faith in Derive is shaking... (:-)

"Valid everywhere except" says to me it isn't always true, and is a software defect. I've read other con-
tributors refer to Derive's strict attention to domain issues and not simplifying unless something is
ALWAYS true. The simplification above isn't always true, it is just usually true. Derive itself disagrees
with it:

ATAN (TAN (pi/2)) simplifies to +/-pi/2 (correct).

(pi/2) -pi*FLOOR ((pi/2) /pi+1/2) simplifies to -pi/2 (correct).
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These are different results.

This is the reason the point x=-7/2 is included in the solution. However, if Derive did not make this
transformation, it would be unable to provide any solutions to the equation.

This sounds like providing useful usually-true results is sometimes, but not always, more important
than strict mathematical truth. When Derive chooses one approach over the other is now unclear.
Isn't there is a correct simplification of ATAN(TAN(x)) that gets the x=k * =/2 (k odd) points correct
also?

Thank you, this now makes sense to me.
Because of anomalies like these that are difficult to remedy, ......

I like Derive and use it often, but that last comment surprises me. s it in the Derive Help or Reference
Manual? It seems like a "disclaimer” without clear boundaries. What other circumstances are there |
might expect "not exactly right" results?

Thanks again for your comments,
Rick Nungester

DNL (Josef)

I tried MUPAD solving both equations and didn’t receive any answer!
| also entered both equations into the Voyage 200. You can see its results below.

Then | tried — just for fun — another equation which one can easily solve manually finding that it is a
contradiction. MuPAD doesn’t give any answer, but forfunately DERIVE and the Tls:

2
SOLVE(LN(x ) - 2.-LN(2-x) = 0, x, Real) = false

give a correct answer.
v 1 debralCalc|other Praniolc1enn us| |

-solvefln[x2]-2~1n(><)=0,x) x2z0
" solve(tani(tan(x)) - x =0, x)

mod(2-x=n,2-My—-2-x-n=0

= tani(tan(x) - x =8} x = 12 truel

mod(2-x-n,2-m) _ nm|

2 2

= Lant(tan(xy)

tanit(tand{x>>
MéliR RAD EXACT FUKRC 4/30

A Limit from Sweden

David Sjostrand

Hi,

One of my students asked me about this. DERIVE 5.06 simplifies the limit given below to the correct value, BUT
approximates the same expression to the wrong value 0.

TAN(x) - 1 TAN (x) — 1

lim = 2.2 APPROX| lim =0
xX->11/4 1 x->n/4 1
SIN({x) - —— SIN(x) - ——
V2 V2

Can someone explain this?
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Albert Rich
Hello David,

TAN(pi/4) approximates to 1, which is exact so the numerator of your example approximates to exactly 0. How-
ever, SIN(pi/4) approximates to 0.7071067811..., which is not exact so the denominator of your example ap-
proximates to a small number. The quotient of 0 and a number, no matter how small, approximates to 0.

This 1is an excellent example of the pitfalls of numerical approximations, and the advantages of exact mode.
Hope this helps.

Aloha,
Albert D. Rich, Co-author of Derive

Vladimir Bondarenko vvb@mail.strace.net
Good Day.

Agree! This example is really pretty.

Now let's have a look at Maple 8.01 command Limit which is an inert form of limit() and can be used
for numeric evaluation of limits.

> Limit(sin(z)/z, z=0);
Limit (sin(z)/z,z = 0)
> evalf (Limit(sin(z)/z, z=0));
1.000000000
What about the approximation of the limit at hand?
> evalf (Limit ((tan(z)-1)/(sin(z)-1/sqrt(2)), z=Pi/4));
2.828427125
which coincides with the expected value.
Let's try to get more precision.
> evalf (Limit ((tan(z)-1)/(sin(2)-1/sqrt(2)), z=Pi/4), 50);
2.8284271247461900976033774484193961571393437507539

You can say that | used not an approximation to the original limit but got instead the output from a spe-
cial numerical limit function. Okay, let it be so.

Thus, let's us consider

> evalf (limit ((tan(z)-1)/(sin(z)-1/sqrt(2)), z=Pi/4), 50):

2.8284271247461900976033774484193961571393437507538

which again is alright.

What about MuPAD 2.5.2 7
> float (limit ((tan(z)-1)/(sin(z)-1/sqrt(2)), =z=PI/4));
2.828427125

> DIGITS := 50:
> float (limit ((tan(z)-1)/(sin(z)-1/sqrt(2)), z=PI/4));

2.8284271247461900976033774484193961571393437507539

The User Forum will be continued on page 34
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The TI-(& Derive-) Random Number Generator

Benno Grabinger, BennoGrabinger@t-online.de
Neustadt/Weinstrale, Germany

The random number generator (RNG) implemented into the 7/-CAS machines represents a sophisti-
cated coupling of two singular generators with period lengths p, = 2*' — 86 and p, = 2°" — 250. By this
coupling one can achieve a period length with an order of magnitude p = 2.3 - 10'®. The process is
described detailed in [1]. Here we will demonstrate that the 77s are using this procedure. Among
others it makes possible to predict the random numbers generated by the 77.

Figure 1 shows how to initialise the TI-RNG with "1"  |[Zf®q; 53, o [of e promiolC1em Up |

and how to produce subsequently twice a sequence of |*RandSeed 1 Done
. . " seq(rand(, i, 1,5

five random numbers in [0;1]. Figure 1 also shows, that E'?‘fé -81559 2254 .4692 .6867)
. . . . i Reeqirand(),i,1,3)

after a new initialization using 1 again, one obtains the €.0849 0201 .6219 .1272 .2647>

" " ¥ RandSeed 1 Done|
same "random numbers". " seq(randQ, i, 1, 5)

£.7456 .8559 .2254 .4692 L6867
segtrand{>, i 1_5L)

HMal KAD AUTO FUNC 2730

Figure 1

1. Random Number Generators
A RNG is defined by a finite set of states .S, a function f: S — S and an initial state s, (called seed).

The random numbers are produced by the iteration s; = f{s..;), i = 1,2,3,.....

Then a function g : S — ]0;1[ mapps state s; on a number between 0 and 1 in order to obtain uniformly
distributed random numbers in [0;1].

The concepts will be explained the following example.

Example 1
Linear congruence generator (Lehmer)

J(s)=(a-s+c)modm, O0<a,c<m,S={0,1,2,......m -1}
s
g(s)=—
m
The sequence of random numbers is generated by an iteration as follows
s,=(a-s,,+c)ymodm with 0<s, and a,c<m.

So 1s an arbitrary initial number, which initialises the RNG. "mod" indicates that each new random
number 1s the remainder of the integer division of (@ - s;; + ¢) by m. The next diagram visualises the
random number generating process.

e (asi_1+c)modm —

The quality of the RNG depends on the choice of @, ¢ and m. This will be illustrated by the next two
examples.
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Example 1.1

Choosing s, = a = ¢ = 7 and m = 10 we receive the sequence {7, 6,9,0,7, 6,9, 0, .....}, which is ob-
viously no random sequence. Arrived at the fourth number we have finished a cycle. Starting with
5o = 2 leads to another sequence with period length 4. (Figures 2 & 3).

T T T T 5 TrsvT & T FE T T T ]
E |Cont.r~olllx’0| Uar |Find..|Mode ] [};a AlgebrajCalc Dth;r* PrgmI0|IClean Up

TS01,%,3;
when(l—D s mod(a*s(1 1,%,8,CMmY+c, M)

Bseq(s(i,7,7,7,10),1,0,9
v 6 9 & 7 6

9 @ 7 8
B ceqis(i , 2, ?; 7.10),1,0, 9)
4 5 2 4 5 2 13
seg(s(1 =2,1’,'5’,1!3) ,1,8,9)
MAIN KAk _AUTO FUNC RAD AUTD FUNC /30
Figure 2 Figure 3
Example 1.2
The generator s; =(s,_, +3)mod 10 with s, =0 [ 2R gebralcalc|other [Pram1ojc 1o Up]
gives the sequence {0,3,6,9,2,5,8,1,4,7,0,3,...}.In
: : ®eoq(s(i,7,7,7, 1El),1 a,s)
a process forming remainders modulo 10 only the e s 'Y o B 7 &)
1 B seq(s(i, 2,7, ?,10),1 B N
10 remainders 0, 1, ..., 9 c.an appcar.. So we can g Y 4 5 2 13
say that this RVG has maximum period length mseq(s(i,B8,1,3, 10) 2, 9 12)
. @ 3 5 9 2 & 4 7 © 3P
(Figure 4). Seg(s(llﬂ=1=3=iﬂ)=1=B=12)
MAaIN R0 AUTO FUNC 3,31

This can easily be done with DERIVE, too.
Figure 4

s{i, x. a. ¢, m)y == {(ITERATES{MOD(a-x_ + c, m), x_, X, i))_
i

UVECTOR{s{i,. 7, 7, 27, 18), i, 18)

VECTOR{s(i, 7, 7. 7, 18}, i, 18) = {?. 6, 9. 0. 7, 6. 9, B, 7. 6]
UECTOR{s(i. 2. 7, 7. 18), i, 18) = [2,. 1, 4. 5, 2. 1, 4, 5, 2, 1]
UECTOR{s(i., @. 1, 3, 18}, i, 12) = [@, 3, 6, 9. 2, 5, 8. 1, 4, 7, B, 3]

Comment

It can be shown [3] that the following conditions are necessary and sufficient for a maximum period
length of a linear congruence generator.

e ¢ and m are relatively prime.

* a-1isamultiple of p for each prime factor p of m.

e g -1 isamultiple of 4 if m is a multiple of 4.

Example 1.3

The RNG implemented in DERIVE has all the properties of the comment from above and looks as
follows:

s; =(2654435721-s,_, + 1)mod 2** .
(More information can be found in [2], Chapter 40.)

We initialize this RNG using the PCU-time as seed and show the first 10 random numbers — without
division by 2*%. Then we use the s () -function and we observe that the same numbers are generated.
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RANDOM(EB) = 1292528975

32
UECTOR(RAMDOM{2 ). i. 18}
[547478792, 1691357513, 271827218, 3180759283, 1598744636, 2179531293, 32298634,
3287163831, 128162860, 198378161]

32
UVECTOR{s (i, 1292528975, 2654435721, 1, 2 ). i. 2, 11)
[547478792, 1691357513, 271827218, 31887592083, 1590744636, 2179531293, 322986340,
3287163831, 128162888, 198378161]

1Y Fev o TS G
Iv {—lﬂlgebraICalc.IUther'Prgr-IDlClearn Up ]
Y4 ~ 4 LY = 7 < L

4 had El

; Beeq(s(i,0,1,3,10),1,0,12)
In Figure 5 we reproduce the DERIVE random 03 6 9 8 Y 2 8 3

numbers on the 77 taking x = 10 as initial value wseqls(i, 10, 2654435721, 1,2%2), 4,1, 5)
(774553435 S03170936 1017851477 34
for the procedure. o« £774553435 903170996 1017851477 3¢
32 4
. ) 2
Attention in the DERIVE session. One has to "lay £,1803  .1870  .2370  .7921 .7654)

the same seed" s,=10 for each experiment. ;.1.368933943&%&.?65350§5§3§047?41}|

Figure 5

RANDOM{-168) = 1@

32
UECTOR({RANDOM(2 . i, 1. 5)
[?74553435, 883176996, 1817851477, 3401986302, 3287189871]
RANDOM{-18) = 18

32
UECTOR(RANDOM(Z 3}, i, 1. 5)

32
2

[@.186339. ©.187@02, 8.236987, B.792068,. 0.765358]
RANDOM{-18) = 18
UECTOR{RANDOM(1}, i. 1, 5)
[6.186339. 0.236987, B.765358, B.6410851, 0.468358]

Comment: It is interesting that each second random number is used for RANDOM(1)??

Example 2

Multiplicative linear congruence generator (MLCG)

Setting ¢ = 0, we create an MLCG, which has maximum period length m — 1 if m is prime and a is a
primitive element modulo m [3].

I1. Coupled Random Number Generators

Basics are the two following comments ([1]):

Comment 1
Let X; and X, two discrete independent random variables. Additionally it is assumed that X; is uni-
formly distributed on {0,1,2,.....d — 1}, with d > 0 and integer, i.e.

P(X, =n)=%, ne{0,1,2,....,d 1.

Then random variable X' = (X; + X;) mod d is uniformly distributed on {0,1,2,....,d - 1}.



plo0 Benno Grabinger: The TI-Random Number Generator | D-N-L#50

Proof
X=nifX,+X,=n+k-die P(X=n)=> P(X,+X,=n+k-d).
k=0

Values which can be taken by X; are noted as {a, a+1, a+2, ...., b}. If X; =, then X; must equal
(n-j)+k-d, thatX; + X, =n+ k- d becomes true. The fact that the domain for X; is {0,1,2,., d - 1}.
is equivalent to X; = (n — ) mod d.

b b
Hence P(X:n):z:P(X2 = j)-P(X, :(n—j)moda’)=%Z:P(X2 =j):§-1=$A
j=a Jj=a

The next comment is very obvious and does not need special explanations:

Comment 2
Let f; and f; two generators with periods p; and p,: St = filS1i1)s S24 = fo(S2,01)-

We inspect the sequence {s, = (s,;,5,,)| > 0}. This sequence has a period length p = lem(p,,p,)

Taking two MLCGs each of them with maximum period lengths

S, =0,8,,modm and s,,=a,-s,, ,modm, (m,m, relatively prime).

Coupling these two generators results in a new generator z.
z, =(s,; — 5, )mod(m, —1).

According to comment 1 random variable Z is an uniformly distributed random number z; on
{0,1,....,(m;-1)-1} and foliowing comment 2 the period of Z is lem(m, — 1, m, — 1).

III. The TI-Random Number Generator
In the TI-RNG the two generators

5,;, =(40014s,, ,)mod(2*' —85) and s,, = (406925, ,_,)mod(2°’" —249)

are coupled to the generator z; =(s,, —5,,)mod(2*' —85-1).

1) F2v 2w Fyv [33 (134
- . : IV{—IHI bra|Calc|Other|P) IUI U
Both single generators have periods of an order of magnitude gebraftalctherPronioiclean b

2*', the coupled generator has — according to comment 2 from
pied g g

above — a period length of lem(2*' - 86,2>' — 250) ~ 2.3 -10"®! mlem{231 -g5- 1,231 249 -1)
) a3 4 . 2305842648436451836
(for comparison: 2°" ~ 2.1 -10°. See Figure 6) n1em(231 —gs— 1,251 - 249- 1)

2. 3058426518
1cm{2"~31-85-1,2~31-249-1>

MAIN KaD EXACT DE_ 2730

Figure 6

We define a new function (coupling two special varieties of s (1,x,a,c,m) from above) to receive
tirnd(i,x) with i = number of iteration (recursion) and x = initial value generating s,. Generator
s, is initialized with 40014x.

The coupled generator tirnd(i,Xx) can be obtained as described above (formula for z;). The ran-
dom numbers are divided by 2*' — 85 in order to receive in [0,1] uniformly distributed random num-
bers.

mod{s(1,40014x,40014,0,2~31-85)-s(i,x,4092,0,2~31-249),2~31-85-1)/
(2731-85)>tirnd(i,x)
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1 Fev F3v (T4 T FS T Gad T ] rﬁ T Fe T rsz (ad I F5 T F6v T ]
- ~{Eltion'r.r*ol II/DI'Ja:‘ Find..|Mode - I—-"J F!lgc—vbr*a Calc|Other|PramIDiClean Up
Ttirndii, modlsli, 40014 x, 40814, 0, 27T —&5) - sl

3
Imodcs 1, 4001 4%, 40014, 0, 2°31-85) =51, x, = =7
40692, 0, 2~°31-24%3, 2731 285-15,{2>31-8%> 231 _

Dore
mseq(tirnd(i, 1Y,1i,1,%)

{.74556077 .85990060D .22936006 . 4Ep
= RandSeed 1 Done
Bseq(rand),i,1,5)

£.745956077 .855390060 . 22536006 . 4€h
seq{rand{>.i. 1.5

MAIN RAD ERACT DE MAIM RAD EZACT DE _23/3%

Figure 7 Figure 8

As you can see in Figure 8 we produce a sequence of five random numbers initialized by x = 1 and
then we initialize the built-in random generator using "seed" = 1 and receive the predicted "random

So we have described how the CAS-T7 built-in random number generator works.

Finally, we try as we did before with the DERIVE-random numbers on the TI. We implement the
TI-RNG in DERIVE:

tirand{i, x) ==

nr

31 31 31
MOD(s{(i + 1, 40014-x. 46614, 8. 2 — 85y - s(i + 1, x. 48692, B, 2 - 2493, 2 - 8

31 .
2 - 85 -

UVECTOR{tirand{i. 1), i. 18}
[B.745568,. ©.855708, 0.225360. 0.469229, P.686698,. B.0849241, B.9800636, A.621907,
8.127215, B8.264651]

References:
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Boson Algebra

Francisco M. Fernandez
Dear Josef,

I am attaching a manuscript entitled "Derive and boson algebra™ so that you consider its publica-
tion in Derive Newsletter.

Two of my undergraduate students who are presently taking a course on Physical Chemistry
have agreed to do some special theoretical work based on Derive. They have no experience on pro-
gramming, and one of them had never used a PC before she started. After this experiment | expect
more students will be interested in CAS.

Best regards, Marcelo.

(Have you ever herad about BOSON Algebra? You will read about in the next DNL. (Josef)
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An Introduction to the Moore-Penrose Inverse of a Matrix
Karsten Schmidt, Hannover, Germany, ks@karstenschmidt.de

Introduction

Associated with real numbers are 4 basic operations we all have been accustomed with since our early
years in school: addition, subtraction, multiplication, and division. In matrix algebra you can perform
similar operations for 3 of these 4: you can add or subtract two matrices 4 and B if they have the
same dimension, i.c. the same number of rows and columns. You can also multiply two matrices, 4
and B, provided the number of columns of 4 is equal to the number of rows of B. This, by the way,
provides an intuitive insight why, in general, 4B = BA since, depending on the dimensions of 4 and
B, AB might exist while B4 might not.

Consider the following three matrices A, B, both having 2 rows and 2 columns, and C with 3 rows and
2 columns:

1 2 1 2
2x2 3 4 x2 2 4 3x2

The calculation, for example, of

2 4 0 0 5 10 7 10
A+B= ; B-A= ; AB= ; BA=
5 8 -1 0 11 22 14 20

is straightforward. In multiplication we get the element in row i and column j of the product AB by

b b —
b O N

calculating Zaikbkj , where n denotes both the number of columns of 4 and the number of rows of B.
k=1

Since C is of a different dimension, this matrix cannot be added to or subtracted from A or B, and the
product BC, for example, does not exist. The product CB, on the other hand, does exist since the
number of columns in C is equal to the number of rows in B:

5 10
CB=|2 4
3x22x2

32 10 20

However, you cannot divide a matrix B by another matrix A, regardless of their dimensions. Since
dividing a real number & by another real number a (provided that a # 0 ) is equivalent to multiplying b
by the reciprocal of a, denoted by a™', we could use the “reciprocal” of a matrix to circumvent the
lack of division. There is indeed such a reciprocal of certain matrices, called the “inverse” and de-
noted by 4™,

The unique inverse of a matrix 4, which satisfies the condition
AV A=44"=1

nxn nxn nxn

exists if and only if 4 is square and nonsingular (recall that a'a =aa™ =1). Here, A4 denotes a

nxn

square matrix 4 with n rows and n columns and I represents the identity matrix
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1 0 0

01 0
I = .

00 -1

whose role in matrix algebra is similar to that of the “1” in the system of real numbers (I4=AI = A,
for example). A matrix A is nonsingular if and only if its determinant is different from 0, i.e. A

exists 1f and only if det (A) #0. A square matrix that has a determinant of 0 is called a singular

matrix. Recall that there is only one singular real number, 0.

Calculating the inverse of a matrix by hand is quite tedious, even more so than the product of two
matrices. Algorithms for the calculation of 4™ can be found in any standard textbook on matrix alge-

bra (cf. for example Schmidt & Trenkler (1998, pp. 38-40)). However, using DERIVE makes things
easy when it comes to the calculation of matrix products, inverses, and determinants:

i 2 1 2
SIS A== #1: @ ==
3 4 3 4
1 2 1 2
n2: B == [ ] f#2: B := [
2 4 2 4
i 2 1 2
#3: C := 2 @a #3: cC:=12 @8
2 4 2 4
2 4 -2 i
#4 R +B = ~1
5 8 #4 A = 3 1
8 2 2
H5: B-48-=
-1 @ -1 1 211
#i5: B = ]
[ 5 18] 2 4
Be: f-B =
11 22 : 1 271
[ ? 10 ] 6 c = [2 [}
#?: B-A =
14 20 2 4
i 2 i 2 #7?: DET(R) = -2
Hs: B-C = [ ] 12 @8 48: DEI(B) = @
2 4 )
2 4 1
5 18 #9: [DET(C) =DET | 2 8
#9: ‘B = 2 4 2 4
10 28

From the left screenshot (dealing with addition, subtraction, and multiplication) it is clear that the
product BC does not exist. DERIVE’s way of telling us this is by refusing to simplify the requested
product. Instead, it just substitutes the two matrices for the respective symbols and leaves it at that.
From the right screenshot (dealing with inverses and determinants of matrices) it becomes clear that
both B~ and C™' do not exist. With respect to B, which is a square matrix, we find that its determi-
nant is 0, 1.e. B is a singular matrix. C, on the other hand, is not even a square matrix; this also implies

that you cannot compute det(C ) since the determinant is only defined for square matrices.

Finally, there is another operation defined for matrices: transposition. The transpose of a matrix A,
denoted by A', is found by interchanging rows and columns of A. This implies that if A has m rows
and n columns, A’ has n rows and m columns. Consider the transpose of our 3 examples:

1 3 1 2 1 2 2
A'= ; B'= ; C'=
2 4 2 4 2 0 4

If a matrix is equal to its transpose (as B is) it is called a symmetric matrix. Obviously, only square
matrices can be symmetric.
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Moore-Penrose Inverse

From the previous section we know that matrices which are not square, or are square but have a de-
terminant equal to 0, do not have an inverse. However, for any matrix A , if it is nonsingular, singu-

mxn

lar, or not even square, there exists a unique matrix with properties related to those of the inverse of a

nonsingular matrix. This matrix is the Moore-Penrose inverse, denoted by 4", which satisfies the

nxm

four conditions

AA* A=A (1)
A A4 = 4 )
(A°4) = 4" A 3)
(AA4") = A4" 4)

Conditions (3) and (4) require both 4”4 and 44" to be symmetric matrices. Note that the dimension
of A" is equal to the dimension of A4'.

The concepts of the Moore-Penrose inverse and, more generally, the so-called generalized inverses go
back to Moore (1920) and Penrose (1955). Greville (1960), Rao (1962), Rao & Mitra (1971) and Ben-
Israel & Greville (1974) are some standard references related to generalized inverses and to the
Moore-Penrose inverse. Note that generalized inverses are matrices which only satisfy condition (1).
Therefore, in general the number of generalized inverses of a matrix is infinite.

Consider the special case of 4 being a nonsingular matrix. Then its inverse 4~ exists. Now substitute
A for A" in conditions (1) to (4). Since A4 =A4A4" =1, it is easy to verify that all 4 conditions
are satisfied. That is, if 4 is a nonsingular matrix, we have 4* = 4™ . (Moreover, in this case A7 is
the only generalized inverse.)

We now proceed to an algorithm for the computation of the Moore-Penrose inverse. We start with a
fairly simple formula for the calculation of the Moore-Penrose inverse if 4= a , i.e. if 4 is a (col-
nxl

umn) vector:
La ifaz0
a+ — aa , ] (5)
0 ifa=0

A vector is nothing else but a matrix with only one column, and should, therefore, be declared in

DERIVE as such (i.e. do not use the symbol ™7 but EEE], and set the number of columns equal to
one).

The function MPIV given below can be used to compute the Moore-Penrose inverse of a vector a. The
function first checks if the actual parameter that has been passed on is indeed a (column) vector. If
not, an error message is printed on the screen. If the parameter turns out to be a vector the function
tests if @ is a vector of zeros by computing a'a and checking if this is equal to 0. If so, the Moore-
Penrose inverse of #=0 is simply a* =0". If a'a is greater than 0, a* equals the transpose of @ (a

row vector) divided by a'a .
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gn:g
The reason (a-a) 141 is used instead of just a* - a is that while the product = is in fact a real
number (a “scalar”), DERIVE actually returns a matrix with one row and one column (easily to iden-

tify by the two pairs of brackets around the scalar). The ( )y141 part “extracts” the real number

from this matrix and so allows a comparison with another real number, and also a division of @ by
this real number.

MPIV(a) :=
If DIM(a‘) = 1
If (a‘'~a)ylyl =0
0-a?’
a'/la‘ea)yLlyl
“This is not a column vector!”

Now consider the next screenshot:

f1:

1 2
f2: MPIVU{a) = H-——. —_— ”
5 5 |
#3: b= [1, 2, 8]
#4: HMPIVU¢(h) = This is not a column vector?
1
#s5: c == 2
x
1 2 3¢
MPIU(c) = » -
#6: 2 2 2
x +5 x +5 x +5

I 1
ST

A vector a 1s declared (as a matrix with 3 rows and 1 column) and its Moore-Penrose inverse is com-
puted with the MPIV-function. Let’s do this manually according to (5):

1 1
=|2|; aa=(1 2 0)|2|=1"+2*+0°=5; a* =2-a' =(
0 0

a
3x

Wi~

$ 0)

1

What happens if you declare the same vector with the symbol ®? is demonstrated in statements #3
and #4.

If a vector has symbolic elements it could be that the MPIV-function would not compute the Moore-
Penrose inverse. Consider first vector c; although it contains the symbol x, the MPIV-function finds
the Moore-Penrose inverse since for any value of x we have ¢ # 0. Vector d, on the other hand, would

be a vector of zeros if the second element, —x?, equaled 0. Therefore, the MPIV-function would not

be able to compute d* and thus DERIVE only simplifies MPIV (d) as far as possible.
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The function MPI given below for the computation of the Moore-Penrose inverse of any matrix is
based on the Greville algorithm, which computes the Moore-Penrose inverse in a finite number of
steps. A description of the Greville algorithm can be found in Schmidt & Trenkler (1998, pp. 115-
116), for example; in Schmidt (1998) and Schmidt (2000) you can also find a description of this algo-
rithm, along with earlier versions of the MPI-function.

The Greville algorithm starts by computing the Moore-Penrose inverse of the first column of A4 ac-
cording to (5); therefore, the MPI-function starts by calling the MPIV-function with the first column

of A. The result is the first row of 4" (which is only an intermediate result).

MPT (A, APLUS, aj, dt, c, bt, J) :=
Prog
APLUS := MPIV(A coL [1])
J = 2
Loop
If J > DIM(AaY)
RETURN APLUS

aj := A coL [J]

dt := aj‘-APLUS‘-APLUS

¢ := (IDENTITY_MATRIX(DIM(A)) - A cOL [1, ..., J - 1]-APLUS)-aj
bt := MPIV(c) + (1 - MPIV{(c)-.c)/ (1l + dt-aj)-dt

APLUS := APPEND(APLUS - APLUS-aj-bt, bt)

J + 1

The Greville algorithm and hence the MPI-function then proceed to the second column of 4 and com-

pute the second intermediate 4" by transforming the previous result and appending another row. This
is repeated for all columns of A. After as many steps as the number of columns of A the Greville algo-

rithm has found A*. Note that in each step the MPIV-function is called. Hence, the MPI-function
might not be able to find A*.

Consider the following two screenshots:

12 12

w e [i] w ol )
3 4 3 4
12 12

#2: B == #2: n:=[ ]
[2 4] 2 4
12 12

#3: c:=|2 o #3: c==[2 B]
2 4 2 4

#4: b == [[1. 2. 81] #4: b := [[1. 2. @]]

#5:
f15: MPI(C) =

#6:

#e:

#7:
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The Moore-Penrose inverse has been computed for the 3 matrices given in the introduction and, in
addition, for the row vector

b=(1 2 0)

1x3

Note that » must be declared as a matrix with 1 row and 3 columns, not as a vector.

For the nonsingular matrix A also the inverse has been computed which is identical to the Moore-

Penrose inverse. To find out if the matrix given in statement #7 is indeed the Moore-Penrose inverse
of B we check conditions (1) to (4):

| spp-[! 2)(F F)1 2)_(1 2 (1 2)_,
) 2 42 22 4) (2 4 _(24_
H—_J

3 |l 2)% F) (% % ¥ %
25 25 25 23 25 25 25 25
H_/
Conditions (3) and (4) are also satisfied since B*B and BB" (both indicated in the above equations)

are apparently symmetric matrices.

Let’s do the same check for C:

12O 1 012 1210 1 2
(1) CC*C:ZO(I 2 1jzo:z()(()1]=20=c
2 48N 2 A2 4) (2 4) 2 (2 4
ctc
1 2 L0 2
w [0 L0 0 1 0) (0 L 0)° 1 (o 1 o)
@ CCC:L_.I_L20_1__LLIL_LL010=L_LL=C
10 4 5 10 4 5
24 10 45%0% 10 4 5
R ——
cct

Again, conditions (3) and (4) are also satisfied since C*C and CC” (both indicated in the above
equations) are apparently symmetric matrices.

Finally, let’s check if MPI (b) gives indeed the Moore-Penrose inverse of b:

1 L 2 9
5 5 5
(1)  bb'h=(1 2 0)|2l(1 2 0)=(1 2 0)]2 £ 0|=(1 2 0)=b
0 000
———
b*b
1 1 1 L
5 5 5 5
@ peb =31 2 0) 3=\ 3I()=| 3 =5
0 0) lo)a |o

Conditions (3) and (4) are satisfied as well since 5*b and bb* (both indicated in the above equations)

are apparently symmetric matrices. Note that bb* is a scalar, i.e. a matrix with one row and one col-
umn, and thus always symmetric.
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A Note from David Halprin davidlaz@net2000.com.au

Hi Josef

Just a short note, to tell you that I received DNL#47 yesterday and I feel that I should congratulate you
on the high standard, that you always produce.

I read your paper on parameters and faces first, and I found it fascinating. By coincidence, only one
week ago, while DNL was en route, I was dabbling with parametrically expressed spae curves, which
are generated by a point in simple harmonic motion being rotated about the three axes simultaneously,
and the three projections onto the coordinate planes of that very space curve. I found one that gener-
ated a face with spectacles, so I encircled it and added two circles for eyes, and voila, a caricature of
me in my better days.

Bis auf zu spiter
David Halprin
face := [COS{t} — COS(?-t). SIN(15-t)-SIN(t) - SIN(?-t)]

head == [1.64-C0S(2-t). 1.64-SIN{2-t)]
left_eye := [-0.375 + B.95-C0S(2-t), -@.266 + @.85-SIN(2-t)]
right_eye := [@.375 + B.B5-CO8(2-t), -B.266 + B.85-SIN(2 -t)]
0<=t=<=P|

1T Fzv Y_ F2 FY4 FEv [ F6™ |17
- a Zoom{Trace |Regraph|Math|Draw|«

MAIN RAD EXACT FAE
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Descriptive Statistics with DERIVE —
- A Real Life Application

Peter Hofbauer, peter.hofbauer@schule.at
Hom, Lower Austria
History

In fall/winter 2002/2003 OA Dr. Dietmar Weixler from the Waldviertelklinikum Hom (WVK -
Hospital in a town in northern Lower Austria) made general inquiries among all doctors who worked

in operation theatres. The aim of this inquiry was to investigate the atmosphere in the op-theaters of
the WVK.

Most of the answers had to be given by a scale from 1 (= does not bother at all) to 10 (= maximum
bothering).

I present a sample of questions from the questionnaire:

I. Which circumstances are influencing my feeling and my performance in the operation theatre in a nega-
tive way. Please mark a number between 1 (= does not influence) and 10 (= maximum negative influence).

Part A: Sound
Quest 3 Signal sounds of the anaesthesia control

1 2 3 4 5 6 7 8 9 10

Part B: Illumination, Movement
Quest 1 Quality of illumination

1 2 3 4 5 6 7 8 9 10

II. Which circumstances are influencing my feeling and my performance in the operation theatre in a
positive way. Please mark a number between 1 (= maximum pesitive) and 10 (= maximum negative).

Quest 1 Music (assumption: according to my habits)

1 2 3 4 5 6 7 8 9 10

Data Analyse

For evaluation of the data I was given an Excel table. I intended to use Excel for further working. We
fixed the expected graphic representations and numeric statistical measures. Very soon I found that
the numbers delivered by Excel could not be correct from my point of view (eg. median, quartile).

(According Excel the 3 quartile of [1,1,1,1,1,1,1,2,22]=1.75 1)

So I decided to use DERIVE for calculating the statistics. I had not to "invent the wheel again", but
came back to Josef's DERIVE — tool (DNL#45 & 46) which — with some slight changes ~ completely
fulfilled our expectations. I appreciated the possibility to enter the data in a list, to receive all re-
quested numbers in one single step and to immediately represent them graphically.
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Data Import

I want to underline the fact that it is very easy to import the data from an Excel-table to DERIVE: The
data were exported from Excel into a text-file (Separation of the columns by comma. We had to take
in account the non-answered questions because they were interpreted by Excel as zero and would
have led to incorrect results). The text-file could be imported directly to DERIVE. Having performed
the necessary calculations and plots we had no problems to import the results into the final report as a

Word document.

The following DERIVE-section shows the collected data from questionnaire Part A and one special
treatment of answers for Question 5.

abschnittA := [[4. 8. 8. 3. 5., 4, 4, 8, 3. 6, 2, 2, 1, 2,1, 3, 5, 6, 1, 2, 3, 18,
2, 4, 2, 1. 5, 2], [?, 9. 8, 7, 4, 18, 3, 18, 5, 9. 3, 4. 1, 2.1, 5, 9. 8, 1. 6,

5. 19, 6, 18, 3, 1. %, 3}, 1,1, 2. 5. 1, 2, 1, 2, 2, 1.1, 1.1, 2, 1. 2, 6, 5,
1. 2. 2. 6. 2, 9. 2, 1. 5. 1]. [5. 4. 5.6, 2, 2, 2, 2,2, 3.1, 4. 1, 1, 18, 2,
9. 8, 2, 3, 4. 9, 3,18, 1, 1, 5. 5], [2. 3, 3. 6. 2, 2,2, 2,2, 2,2, 2,1, 1,
1, 2. 9. 5,1, 2. 2, 3, 6. 2.1, 1, 2], [1. 3, 6., 3, 4, 2, 1.5, 2, 3, 6, 2.1,
1. 1. 4, 1, 1.1, 2, 2, 2, 3,1, 1.1, 2], [?, 2. 6, 6, 7. 9. 8, 8, 8, 5, 7. 3,
1, 2 P

»16. 4. 4. 6. 1, 4. 4, 18, 18, 7. 2. 1. 5, 4]. [18. 2, 8, 18, 8, 7. 9. 9. 5

1, 3, 3, 6. 16, 7. 1, 3. 3. 4, 9, 3, 3, 1,5, 7). [1., 1. 4, 1, 1, 3. 5.
3. 1. 2, 2,1, 3, 2,5, 2,16, 1. 1, 8, 1, 18, 18, 3, 2, 18, 1, 1], [6, 18, 9. 1
1, 18, 11]

- "

quests == abschnitth
5

Datensatze: 27

Minimum: 1
Maximum: 9 e
Modalwert{e) [2] li.5
KENNZ{gquest5) = -
1.Quartile: 2 P |
Median: 2 "B.J I
3.Quartile: 3 . .
Halbueite: 1 -1 1 2 3 45 6 72 8 9 18 1
1-8.5
BOXPLOT {quests, 1)

Comment

Special attention must be directed to the fact that in this case a real-life application can be treated
using basic statistic methods only. All the statistical measures used are part of secondary 1 level cur-
riculum. But it must be added that publication of these numbers and diagrams cannot be considered to
be complete without an analysis of the underlying method of collecting the data (inquiry). And espe-
cially this critical inspection of the results might lead students of secondary 2 level to a deeper under-
standing of statistics. (See the respective comment given in the final report).

The next page shows a DERIVE-histogram, the statistics and box plots for all questions of Part A.
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histosh{quest:, 8.5, 18.5,. 18)

UECTOR{KENNZ{abschnittf ), i. DIM{abschnittf})
i

Datensdtze: 28 Datensitze: 28 Datensidtze: 28 (
Minimum: 1 Minimum: 1 Minimum:
Maximum: 18 Maximum: 1@ Maximum:
Modalwert{e) [2] Modalwert{e) [1. 3. 2. 18] Modalwert{e) [1]
1.Quartile: 2 : 1_Quartile: 3 ) 1 _Quartile: !
Median: 3 Median: 5.5 Median: 2
3.Quartile: 5 3.Quartile: 9 3.Quartile: 2.5
Halbueite: 3 Halbweite: 6 Halbweite: 1.5 |
Datensdtze: 28 Datensatze: 27 Datensitze: 27 Datensdtze:
Minimum: 1 Minimum: 1 Minimum: 1 Minimum:
Maximum: i@ Maximum: 9 Maximum: [ Maximum:
Modalwert{e} [2] Modaluert{e) [2] Modalwert(e) [1] Modalwert{e)
+LL
1208 |
+18 ] 1 |
116 | — | —
114 b { [ F— i
112 | | | {
16— .
18 A I I |
O W—— :
e [ [ —
12— | : |
1 2 3 4 5 6 ? 8 9 18 11
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Kategorie 1 / Abschnitt A (Schall) / Frage 5

Geridusche durch sonstige Aniisthesiegeriite
(Cellsaver, Narkosegasabsangung, Bairhugger etc.)

Kennzahlen Sdulendiagramm
(absolute Haufigkeiten — absolute frequencies)

20+
Datensatze 27 184

161 14

14+
Minimum o
Maximum 9 10+

81 6

6_
Modalwert 2 4_J 3 )

bE l 0 1 0 0 1 0
1.Quartile 2 0+ : ] "  n l , . . m

! 2 3 4 5 6 7 8 9 10

Median 2
3.Quartile 3
Halbweite (IQR) 1

Graphische Darstellung der Kennzahlen

Anmerkungen (Comments):
Keine (non)

Excerpt from the Evaluation and Final Report:

... Using a scale (1 — 10) in this questionnaire we must indicate the characteristic of this kind of
gathering data. The choice of a rating scale (more or less arbitrary) allows only limited usual de-
scription of data by mean and standard deviation.

... It is also necessary to point out that given evaluation scales can cause bias.

... Missing data records were ignored and reduced the number of the data to be evaluated.




D-N-L#50 | Aue & Béhm:Visualising Linear Programming Problems | p23

Visualising Linear Programming Problems (& an old Debt)

(1) Question of an Austrian colleague:

Is it possible in DERIVE to represent a Linear Optimisation Problem in three dimensions. I'd like to
represent the goal funktion z = 5x + 8y only above the region which is described by the set of con-
straints:

x20ANDy>20ANDx<9ANDy <8 AND 5x+4y <60 AND x + 2y < 18.

Attempt One: Edit goal function and constraints (as equations) and plot with
0 x 10,0 y 10,0 =z 90.

[z = 5.x + 8-y, x + 2:y =18, S-x + 4-y = 60, y=0, x =9, y =8, x 0]

You can imagine that I was not really satisfied
with this model.

SoItried .....

Attempt Two: I inspected the problem in the xy-plane first.

B x99 ABLy<8ASx+4dyl60ax+2y <18

.. \

I define the region of the goal func-
tion plane and add the boundary
points of the restricted area in plane
as point list to have a “top view”.

N,
N

SOLUE(S-x + 4-y =68 ~ x + 2-y =18, [x. y1) = (x =8 A y = 5)

IF(0 € X <9 A0 <y <8A5x+ 4-y <60 AX+ 2y <18, 5.x + 8:y)

8
a
15
9 —
4
8 5 [}
2 8§ @4
5] 8 8
5]

Plotting a Boolean expression the coloured base polygon together with the "goal plane".
Plotting the Boolean expression in the plane adds a coloured base polygon:

IF(0 €« x € 9A 0 <y <8A5x+ 4.y <60 AX+ 2-y < 18, 0)
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Another nice impression is given by plotting
IF(0 < x <9 A0<y <8A5x+ 4y<60Ax+ 2:y <18, 5:x + 8-y, 0)

An additional very helpful feature is offered by applying the TRACE-option. One can trace the opti-
mal solution (i.e. the highest point of the plane) and read off in the bottom left corner:
Cross:8,5,80.

Attempt Three: We calculate the edges of the polygon in the goal-function plane and plot this poly-
gon together with the base:

ziel{x, y)} = §5-x + 8-y
simpl3d == UECTOR( [u__ , v_ ., ziel(u_ . wv_ )], v_. simpl)
1 2 i 2

T’-\[ N 50

mﬁodg&mn@ ] Using an appropriate tool (see DNL#...) one can
represent the figures on the TI-92/Voyage 200,

g too
And finally T apply a function to fill the polygon
(see the respective contribution in this DNL):

poly_3d{(simpl3d)

FRESENT RAD EXACT FUNC

(2) Question in 2a DERIVE course:

Is it possible in DERIVE to visualise the various goal function lines simulating the shift process how it
is done by hands using something like a slide bar?

. ~l40
o . ~~Z=50 9 T
My answer was: "Yes, it is, Use Nl nean e Te T
. . ~7 N N
a very simplified form of my S g ‘“\_\
geglider() from the DNL. Take the \\\ ™~ . Z=80
example from above: -
~. S
. \\\
Move the "Trace Box" along the Ry \2_\7@
reference line z/10 at any posi- =0
tion and simply plot goal (). ~..
-9 -8 -7 6 5 4 -3 -2 -1 2 3 4 5 -2 8 9 16™11 12 13
-1 S~ e
. Y
210 2 g
3 = = ~
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y=-3
[2 ==, f{x. 2} ==]
goal{dummy) :=
Prog
2 == 18-hCross
f{x, 18-hCross)

SOLVE(5 'x + 8-y =z, y) = |y =

z — 5-x

8

f{x, 2z} ==

goal{}

goal()

goal{)

5-{16 - x)
8

goal{) =

= 88

The DERIVE code for the "glhiding" goal function
line.

(3) An Old Debt

Reading the Preview of future contributions you
could alsways find Georg AUE, Germany. Georg
has been a DUG-member since the very beginning
in 1991. Several years ago — in times of DOS-
DERIVE — he sent a letter — there was no email at
these times — concerning the simplex algorithm.
Together with hisletter was a diskette containing
two examples how to solve LP-Problems in 3
variables performing the necessary matrix trnas-

formations step by step.

He wrote that his students had problems to imag-
ine the 3D-representation and so they first made a
sketch in oblique view and then in top-, front- and
side view. The latter could be folded to a real 3D-
model using glue and little pieces of wire (paper
clips). He included a photo of the model.

Now in times of DfW one can give an impressive 3-D model very easily. The first line is Georg’s solu-
tion, followed by the line producing the model of the simplex determined by three planes (assumed x,

¥, z >=0) and the final solution.

6x+3y+2z<6
3x+2y+62<6
2x+6y+3z<6
3x + 4y + 5z = Maximum

Base x1, x2, x3, ul=u2=u3=8B (6/11;6/11;6/11;0;8;8 == ?2/11

because of ui>=B maximum value of z is reached?

0.5450.545,0.545)

6 —6-x -3y 6 - 3-x -2y 6 - 2-x -6y
HIH[ - -
2 6 3
22
—— —4-y - 3-x
11

5
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Richards Challenge (1)

Mrs Britia Brigge from Hannover sent a letter and wrote that she was introduced to Programming
with DERIVE and to the DNL by her colleague Riidiger Baumann and she immediately did her first
steps in Programming facing Richard’s Challenge.

Here are her remarkable findings:

At first I defined function RFolge (), which is Richards Folge (Richard’s Sequence) as follows:
RFolge{n@ := 92371. length == 18, k, numh) :=
Prog
k = FLOOR(LOG{nB, 18})
numb := FLOOR{n., 18) + 18"k-MOD{FLOOR{MOD{n. 188), 18} + MOD{n, 18), 18)
If length { w

ITERATES (numb. n. n@, length)
ITERATES {numb, n, n@)

and received the numbers as given in the DNL:

RFolge{} = [9371, 8937, 893, 2889, 7288, 8728, 2872, 9287, 5928. 592, 1859]
DIM{RFalge{9371, «}} — 1 = 1560

The period length appeared as 1560 assuming that there is no preperiod, what I didn "t check.

It seems to be that the numbers appear more or less chaotic (similar to a random number generator).
To visualise my impression I represented the sequence in the coordinate system.
Using and applying

18p8Q - « o
N I LRI
repr{v) := UECTOR([i, u_], i. DIM{v)) A
* SR, ';?':...h_'-_
repr{RFolge (9371, «)) nﬁ”F:- sNA B
o, o - - .
emeg" "
I received the following graphic representation " -
ady
e T T

o e W e
R L
nt e = Y

588 i@aa 15848

Now I had to answer the question if all sequences would have the same period length and would show
a similar behaviour. I tried other initial values 1000, 2000, ...... , 9000:
UECTOR{ [1888 -k, DIM{RFolge{1080-k. =)) — 1]. k, %)°
[ 1060 2000 3600 4980 500 6OGD VGG S6PE 9608
1568 312 1568 312 15 312 1568 312 1560 ]

So we have other period lengths. Funny is the sequence starting with 5000:
RFolge (58680, )
[5ha8,. 588, 58, 58P5, 5560, 550, 5855, 505, 5858, 5585, 5558, 5555, 555, 55, 5, S5@00]

and its graphic representation. The numbers are not uniformly distributed they remain in certain inter-
vals.
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118088
. .. . My conjecture is: If the initial number consists of
; B T I digits 0 and 5, the period length is 15; if it con-
r88ag- - e SN - . .. ..
sists of digits 2, 4, 6, 8, 0 (even digits) only then
. P . the period length is 312, in all other cases it is
- [ - - L = gu B
lé@a@ == T S a . Lt 1560.
+
4 S "' '__- - .- ._'. - To verify (proof?) this conjecture, I define the
function Periods ():
:héan e tad o
" e e T T et e S
L a . :-lg .:"“ .'ii.- =
206
Periods{n = 1@. nl == 99, Set_ == {}) :=
Loop
If n > nt
RETURN Set_
Set__ i= Set_ v {DIM{RFolge{n, ®w)) - 13}
n o+

Periods() = {3. 4. 12, 28, 68}

For two-digit numbers we find 5 different period lengths. The shortest periods show the numbers
composed of 0 and 5, which can be seen as follows:

SELECT{DIM{RFolge{numb, @)} — 1 = 3. numb. 18, 99) = [58, 55]

RFolge{55, w) [55. 5. 58, 55]

[58. 55, 5, 58]

RFolge (58, w)

Three-digit initial values result in possible period lengths as follows:

Periods {1688, 999) = {4. 7. 24, 28, 168}
RFolge(268, =) = [268. 426, 842, 684, 268]

Exact four sequences have period with length 4: [268, 426, 684, 842]. In this case not the numbers
composed of 0 and 5 give the shortest periods. These numbers [500, 505, 550, 555] return sequences
with periods 7, 96 numbers have periods 28 and the remaining 768 numbers period 168.

[ UECTOR{k. k. {4. 7. 24, 28, 1683})
VECTOR{DIM{SELECT {PIM{RFolge{numb, @)} — 1 = j. numb, 188, 999)). j. {4. 7. 24, 28,

1683) ]
[4. 7, 24, 28, 168]
[4. 4, 96, 28, 768]

For five digit numbers I found out the following: there are 7 different period lengths with the distribu-
tion as shown in the table:
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Period lengths 3 7 21 781 2343 5467 16401
Number of cycles 2 4 10 2500 8748 19996 58740

The minimum initial value with period 3 is 50550, because ...

RFolge (58558, )

[58558, 55@55, 5585, 5B558]

RFolge {58058, «) [GB858,. 55805, 55588, 555@. 58555, 5055, 5685, S685@]

RFolge (50888, o) [-8000,. 5668, 588, 58, 506885, 55888, 5568, 558. 560655, 5805, 56508
5858, 58585, 556858, 55585, 55558, 55555, 5555. 555, 55, 5. 50688@]

»

... the minimum initial value giving period 7 is 50050, minimum initial value with period 21 is 50000,
etc.

Richards Challenge (2)

I received another (surface-) mail from Japan:
A Solution to Richard’s CHALLENGE (#49, p.39) from the Japanese Senior Trio:

Yoshihiro NAKANO (80 yrs old)
Kiyoshi YAMASHITA (78 yrs old)
Toshio NISHIKAWA (69 yrs old)

We investigated the periodicity in Richard’s CHALLENGE using the 10-digit initial number
1234567890.

The period is found as 1 736 327 236 or 2 * 2 * 7 * 19 * 31 * 127 * 829.

We used APL-like language J (version J4.06a) of K.E.Iverson in Toronto, Canada.

The time of calculation is 469441 sec (or 5 d 10 h 24 m 1 s) by IBM PC (Aptiva, 300 MHz, WIN 98).
Our proposal to CHALLENGE:

How many kinds of periodicity are there in the for example 3-digit initial numbers (100 — 999)?

Part 2:
This letter is a continuation of the former letter. We have investigated “How many kinds of
periodicity are there in Richard’s Numbers from the 1-digit to the 10-digit case?”.

Part 3:

This time we would like to send you the result using DERIVE (Ver. 2.5 from 1993).

RICH18{n} := ITERATE{ [MOD{ELEMENT{v. 2) + ELEMENT{v, 18}, 1B). ELEMENT{v, 1), ELEMENT{wv,
2y, ELEMENT(u, 3). ELEMENT(v. 4). ELEMENT(v, 5}, ELEMENT(u, 6). ELEMENT{v. 7).
ELEMENT(v., 8), ELEMENT{v, 9)], w. [1. 2, 3. 4. 5, 6, 7, 8, 2, 8]. n}

The results for various data vectors v are;

{5,0,0,5,5,5,0,5,0,0] 7 calculation time < 1 sec
[0,5,5,5,5,0,5,5,5,5] 127 3 sec
[5,5,5,5,5,5,5,5,5,5] 889 15 sec
[2,0,0,0,0,0,0,0,0,0] 1953 124 9 hours
[1,2,3,4,5,6,7,8,9,0] 1736 327 236 5d10h24m
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Digits Period How many members Examples
1 1 1-digit & all “0” (trivial)
2 3 3 05, 50, 55
24,48 62, 86
12 12 12, 17,29, 31,36, ..., 40,42
20 20 02, 04, 06, 08, ..., 84, 88
60 = 2%%3%5 60 01, 03,07, 09, ..., 99
3 4 268, 426, 684, 842
7 7 005, 050, 055, 500, 505, 550, 555
28 28 100, ...
24 120=24 %5 002, ...
168 = 2°%3x7 840=168 * 5 007, ...
4 15 15 0005, 0050, ..., 5550, 5555
312 624=312%2 0002, 0004, ..., 8888
1560 9360 = 1560 * 6 0001, 0003, ..., 9999
5 3 3 05505, 50550, 55055
00505, 05055, 05550, 50050, ...
21 21 00005, 00050, ..., 55555
781 3124=1781* 4 00002, 00004, ..., 88888
2343 9372=12343 %4 01101, 01103, ..., 99899
5467 21868 =5467 = 4 00101, 00103, ..., 99988
16401 = 3%7%11%71 65604 = 16401 * 4 00001, 00003, ..., 99999
6 63 63 (all “5-family™) 000005, ..., 050505, ..., 505050
3124 63 (all “2-family™) 000002, ..., 020202, ..., 202020
196812 = 2°%3%7+11%71 | others
7 127 127 (all “5-family”) 5000000, ...
5208 127 (all “2-family”) 2000000, ...
661416 =
5 others
=2"43%7x]11%31%127
8 3 3 05505505, 50550550, 55055055
63 252 (all other “5-fam.”) 50000000, ...
2232 255 (all “2-family™) 20000000, ...
15624 = 2°%3%*7%3] others
9 73 511 (all “S-family”)
121836 511 (all “2-family”)
8894028 others
10 7 7 special members of the “5-family”
127 127 other members of the “5-family”
889 =7%127 rest of the “5-family”
1953124 1023 (“2-family)
1736327236 =
2 others
=2°¥T%19%31%127%829

We have noticed that intimate parallelism exists between the period and the numbers of the members.

nakano@mta.biglobe.ne.jp

The results differ from Mrs. Brigge's because the Japanese Seniors accepted leading zeros as parts of
the numbers (strings).
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Richards Challenge (3)

The first answer of all came from Terence Etchelles. He sent a DERIVE file containing two functions
One of them showed the leading zero in the output, the other did not. The complete file is included in
the files of this issue.

R_SCHORN{n. m. mod, size, counter, list, units. tens., sum, lastdigits) :=

Prog
size := FLOOR(LOG{n, 18))
counter :=1
list == [n]
Loop

If counter > m

RETURN REUERSE(llst)
upits == MOD{(n, 10)
tens := FLOOR(MOD{n. 180),/1@)
sum = HOD(un1ts + tens, mod)
lastdigits := FLOOR{n-/18)

n := sum-18"size + lastdigits

If sum = @
list := ADJOIN{INSERT{B. STRING{lastdigits})). list)}
list := HDJOIH(n. list)

counter :+

R_SCHORN(3718, 12. 18)
[3718. 9371, 8937, 8893, 2889, 7288, 8728, 2872, 9287, 5928, @592, 1859, 4165]
R_SCHORN2{3718. 12, 18)
(3718, 9371, 8937, 893, 2889, 7288, 872@, 2872, 9287. 5928, 592, 1659, 4165]
R_SCHORM2{3718, 12, 4}
[3718. 1371, 137, 20613. 261, 1620, 21682, 22168, 1221, 3122, 312, 3831, 303]
R_SCHORN(3718, 12, 4)
[3718. 1371, 06137, 2813, 6201, 1828, 2182, 2218, 1221, 3122, 6312, 3831. 6363]

Fill your 3D-polygons with DERIVE

Josef Bohm

In GRAPHICS . MTH you can find the useful function POLYGON FILL (pointlist) which makes
possible to present a filled polygon in R” and R’. I can imagine that it is not so easy to explain this
function including crossproducts to students (- to make the "Black Box" white). I believe that the fol-
lowing function is possibly easier to understand:

v v
1 i
poly_3d(v) := VECTOR , i, 2, DIM(v) - 1
v v
1 i+ 1

v is the point list which generates the polygon. poly_3d (v) divides the figure into triangular areas
which all have one edge — the first point of the list — in common. We can demonstrate this by defining
and then plotting a pentagon first as wire grind and then by customizing the plot settings:

8- 2.1
penta := VECTOR/|[4.COS(t), 4.-SIN(t), 4], t, O,

5 5
poly_3d(penta)
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For the filled polygon set Insert Plot > Plot Color > Scheme > Custom and then set

all colors the same.

As second example I'd like to present the intersection of prism with hexagonal base and a plane.

Plane: x+y+z=6

3 3 3 3
#9: a == [3, 8. 8], b == —E—, —5—-43, 8|, ¢ := |- —, —-43, @], d := [-3, 8, 8], e :=

The figure shows the base and the intersecting
plane.

hexa := [a, b, c, d, e, F]
poly_3dl(hexa)
2 =6—-x-—-y
In two steps we can add the intersection figure
which is another hexagon.

The lateral faxes accomplish the figure.

hexal == UECTOR([U sV .6 -v —-wv ]. v, hexa)
1 2 2

1

poly_3d{hexal)

ﬂPPEND{UECTOR(poly_3d([hexa_. hexa » hexal 4+ hexal_]), i. 1. 5). puly_3d{[hexa6,
i i

i+ 1 i+

hexa , hexal , hexal ]))
1 1 6

We define a star by its points and give different presentations by varying the order of the points in the

pointlhis.t

[s1 == [4. 4. 8], s2 := [B, 2, 8], s3 == [-4, 4, B8], s4 = [-2. B, B]. s§& == [-4, -4.
B8]. s6 = [B, 2. B}, s? = [4, —4. B8], s8 == [2, B, 8]]

star = [s1, 82, s3. s4, =5, sb. s7. s8. si]
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Variations of a Star

Given are the edges of a star. Use poly_3d() to produce the various figures.

Ways to write with DERIVE and T1
By Milton Lesmes Acosta, Bogota, Colombia

It is known that DERIVE does not work as a word processor. So I would like to give some ideas about
programming to start writing and modifying the fonts.

I believe that is important to report that this ideas are the result of an effort to teach mathematical
concepts like linear equations, functions, matrices, starting with problems. The idea was developed by
two of my students Yenni Andrea Castillo and Francy Angélica Riveros from the Universidad Distri-
tal Francisco José de Caldas facing the problem to design symbols with the use of technology. They -
- as students for becoming teachers - proposed a didactic unit to develop mathematical concepts and
competences in Colombian secondary schools.

First, to the point with DERIVE. Matrices with parametric equations as entries for each character have
to be constructed (a decision has to be taken as a result of the design), for example:

vt n, 3 3. 3n1 @

l+cos(—+—) —+=sin(—+—)

0 3t T 3t 2 4 2 2 2 4

2t 0 1t 7 1+cos(3n_1+£) §+—3—sin(3—m—+1)

. A0t ! i 2 42 2 "2 4
= 3 A=| 10 20 C:= 3 s 3 3

r T+1 3-% Treos(os+Dy 24 2gin ™+ Iy

0 0 2 4 2 2 2 4

3 it wm, 3 3 . 3wt 7w

I+cos(—+—) =+=sin(—+—)

4 2 2 2 4

as a decision to take matrices 4x2 and parametric functions with 0 <1 <1 to build characters in the
subset [O, 2] X [O, 3] of the plane.
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Maybe that this is new for you:

You can define the matrices as "E" =, "I":=, etc. Strings can be used as variable names!!
(5] 3 8 3-x T 3%
1 3.
2-% 8 3-x 13- ?
1 3-x + 1
#2: E := 3 I == . Pz 3 » A := 10 28
2t — 1 3. - —
2 2 x+ 1 3 -3
|l 1 3-x
2-t 3 -t 3
3 @ 3-x 2.t 3-x 1 3
a 7] 2-t 3 - 3-x 2 1 3-x
#3: L == » N == = T ==
] e 2- 3 2-¢ 3
2t @ 2 31 a 5] 2-t 3

(Comment: The quotes " are not displayed in the Algebra-Window, but in the Edit line.)
You can construct your own characters, I am sure you get the idea, and with auxiliary definitions like:

write{text)

o\, E) ==

[ €

€

X

1.1

1= UECTOR(G(textk, 3-(k — 1), k. 1. DIM(text}>

With text being a string, you can write. For example with the given matrices for “T”, “I”, “C”, “A”

and “L”, you enter

write ("TICALC")

switch to 2D-Plot-Window and get the plot.

CALC

Now you can multiply, rotate each letter and finally to try writing in Derive as a word processor in the

2D-plot Window.

perform a rotation of the “"A™

EERE

enfs] enf2]

Which transformation is given by the following calculation

#9: A
#108: 4-0(A, 2)

Can you perform the same transformation using of ..., ... 7

*
= o i

/\
A
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Produce the following picture:

Rekine

And now with the TI-92 (PLUS/Voyage 200). Check and try to develop the idea what we want to see

presented on the TI screen:

Call program cartel () from the home screen.

Hello World!|

MbIN RED ERACT FUNC 39/30

T fe”

¥ f=—|{Zoom

HET IO Mok-T4;

HARIR RAD EXACT FUNC

(¥ Sonlrracelredrapniathlorzul” 21 |

Yello Woridl

HRIN KRO EWACT FUNC

Cartel ()

Prgm

C1ri0

ClrDraw
SetGraph("Axes","0ff")
InputStr a

Px1Text a,1,1

For 1,9,10

For j,0,109

If Px1Test(i,j)=true Then
Pxloff 1i,j

Px1Crcl 3=%1+30,3%j+20,1
EndIf

EndFor

EndFor

EndPrgrm

The idea is a simple one to use the transformation of
the plane

T(x,y)=3(x,y)+(30,20) = (3x+ 30,3y +20)

‘Where and how to change the program to receive other
outputs of the given input?

DERIVE- and CAS-TI User Forum 2

Mathematica 4.2.1 ?

In[l] := N[Limit[(Tan(z]

Out 1] = 2.82842712474619
In{2] := << NumericalMath
In[2] := NLimit[(Tan([z]-1
Out [3] = 2.82836823694454

- 1)/(Sin[z] - 1/Sqrt[2]), z -> Pi/4], 50]
00976033774484193961571393437507539

“NLimit®

)/ (8in[z]l-1/8qrt[2]),z->Pi/4,WorkingPrecision-»50]
76740918798903060816031

ADR> This is an excellent example of the pitfalls of numerical approximations, and the advantages of

exact mode.
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Okay, let it be so. How then Maple, Mathematica and MuPAD managed not to fall into a snare?
Couldn't Derive 5.07 use the same strategy? (hopefully, yes)

DS>> Can someone explain this.
Yes, and the explanation is simple. lt's a rare bug in Derive.

In quality of the expert, figures at my fingertip, | am happy to announce that it is Derive that is the least
error-prone system as compared with Maple 8.01, Mathematica 4.2.1, and MuPAD 2.5.2.

So you a had a lucky strike to identify a bug | had not identified yet (I envy you with the blackest envy,
yes ;)

By the way, if you are interested in various bugs and workarounds in commercial computer algebra
systems you may wish to visit my sites in progress

http://www.cas-testing.org/ Symbolic Testing Group Official Home (95% ready)
http://maple.bug-list.org/ Maple Bugs Encyclopaedia (20% ready)

Very soon, they will be updated dramatically (which will give you a numerically expressed flavor about
how EXCELLENT Derive is :)

Au revair,

Mathematical and Production Director
Symbolic Testing Group

David Sjostrand
Hi again,

Thank you Al and Vladimir very much for your answers

If T skip lim then (TAN(PLI/4 +h) - 1)/(SIN(PL/4 + h) - 1/sqrt(2)) approximates to 2.82842712.... if
h=10"-50 and PrecisionDigits := 100, which makes sense.

I also would like to mention my students Joseph Bentham and Magnus Roeding at Elof Lindaelv’s gymmasium
who found this anomaly when they were working with the limit that I had asked them to compute.

Best regards, David Sjostrand

Cable Problem

Rick Nungester
Given a 100m cable hanging between two equal-height anchors, drooping at the low point 10m below the an-
chors, what is the span between the anchors? How do I solve this using Derive?

I get to solving these two equations for a (catenary constant) and s(span):

a*COSH(s/ (2*a)) - a = 10
2#a*SINH (s/ (2*a)) = 100
But then what? (Given span and droop, length can be found by solving only a single-var iteration. Similarly,

given length and span, droop can be found by solving only a single-var iteration. The problem here seems
harder.)

Related question: Given length and droop, is there an algebraic solution for the RATIO length/span? This is
related to a recent post in newsgroup geometry.puzzles titled "2 poles and a rope".

Rick
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Ron Larham

1. Put cosh(s/(2a)) = ch.

2. Use the appropriate identity ot replace sinh(s/(2a))
by an expression in ch.

3. Solve the first equation for a in terms of ch.

4. Substitute this value of a into the second equation.

5. Solve resulting equation for ch.

6. Use value of ch to find a.

7. Use value of ch and a to find s.

n-Scaling
Louis F. Lowell louis.lowell@verizon.net
Hello all,

I am using Derive 5.05 and would like to have the horizontal scale on the plot screen in multiples of pi/2. I don't
recall how this is done, and cannot find information about this in the help file. Can someone refresh my memory?

DNL: | gave the advice to set Plot region > Horizontal length 6PI and 12 Intervals which results in the
following 2D-Plot Window (Josef).

-7.854 —6.2832 —4.7124 -3.1416 -1.5788 1.5788 3.1416 4.7124 6.2832 7.854

But Abert Rich had a better advice:

Albert Rich

The following is from the Derive 5 on-line topic for the 2D-plot window's Options > Display > Axes com-
mand:

The axis scale factors make it possible to display axis labels in a unit appropriate for the expression
being plotted. For example, when plotting trigonometric functions, it is often convenient to make the
horizontal axis labels multiples of pi. To do this, use the Options > Display > Axes command to set the
horizontal axes scale factor to p by clicking on it in the Greek symbol toolbar. Then click on the zoom
out icon or press the F6 key to obtain simple multiples of pi.

2

2.5x —2n -1 .5n -x —@.5n 8.5n n 1.5n 2n 2.5

Michel Gouy

Hello,

I write with DERIVE : eql:= 2x + 3y + 5 = 4.
Is-it possible to simplify eql in2x + 3y = -17

Thank you
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DNL:

Hi, Michel,

I am sure that DERIVE doesn't "simplify" as you like without giving any "orders" what to do.
At another occasion you might prefer to "simplify" equl to2x + 3y + 1 = 0.

I wrote a little function, which does the work (putting all variables on the left hand side of the equation) and
which can easily be adapted for other "simplifications".

vars_left{u) := (LHS(u) — RHS(u) = @) - SUBST{LHS(LHS{u) — RHS(u)). VARIABLES{u), [O.
a1>

eql = 2-x + 3-y +5 =4
vars_left{eql) = (2-x + 3-y = —1)
2 2 2 2

vars_left(3:x —4-y — 3-xy +5 =x +y +3I-x - x-y + 18)

2 2

2-x - x{2-y+3) -5y =5§

vars_left{2-u + 3-v —w +5 = —u - 18-v + 6-w - ?)

3-u+13v - 7w = —12

Francisco M. Fernandez http://www.conicet.gov.ar/webue/cequinor/mick.htm framfer@isis.unlp.edu.ar

1 + x
pade L2 s 012 Hi Derivians,
<0 +0 I had a problem with pade .mth that appears in DNL #49. Apparently
1.2 i1 it does not work properly on rational functions for some initial value of the
xz.[]l Lo en et variable (x=0 in my example), but it does if you change the expansion

! point. You may say that it is foolish to look for a rational approximation to a
+ X

pade[ P LT 2] rational function, but | was just testing the program.

Best regards, Marcelo

Johann Wiesenbauer

Hi Marcelo,

Well, after a lot of debugging | know the problem with my pade.mth now (it has something to do with
the built-in function TERMS, whose behaviour is sometimes unpredictable), but | don't know how to fix
it without a decrease of performance.

For the time being, | can offer you the following fix though, which is considerably slower, but on the
other hand far more transparent. (Hence, there might be people out there who appreciate this version
even more!)

(You can download the updated program pade() from our websites, Josef)

Don Phillips

Just got DNL #48 over the weekend. It was a @s¢n. k) i<

great issue, as always! It was good to see my #1: O;(n 18)~K + QSCFLOOR(n, 18y, 1)
article in print. You did a wonderful job with it; | ’ T

#2: Q8 (153, 2}

liked the used of the TI-89 screen shots to show 3. ag

that my programs came up with the same an- DINCFLOORCABS (n>)) y
w4z GSn(n. k) 3= z (FLOORCIn[))

swers. e .

On page 24 there is a routine to calculate the #5: sn(1s3, 2)

sum of the kth powers of the integers of a num- #&* &

ber, QS(n,k). There is another way to do this.
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"1Help!!!

A mail from a German class arrived having a very dramatic title:

In our endexamination (Abitur, Matura, Baccalaureat) we investigated the family of functions

! z ax
f,(x)= le 2" Using their TI-92PLUS all pupils found the correct second derivative
a

XZ
£ 0= (x* -2ax+d* ——l)e_7+
al
) o2
fl@==
a

aZ

(a*-a®+2)e?

£, (@)= ;
a

. How is this possible?

. Calculating the 2™ derivative for x = a the expected resuit is

which most of us (37 out of 42) obtained but the remaining 5 received

My answer was (supported by some screen shots of Thomas Himmelbauer):

e lPraniofs een i

1 Fe' F3v Fyv 13 Fev
el atbralcalcfother Praniolclenn Up

_— e = -
[ﬁ.mT Fe T F3v T Vhid T T T Fov T ‘l
v — ngegra Calc Clth;r‘ Prgnl0[Clean Up

2
o 3 (%)

2
X
[x2-2‘a'x+a2—l]-eax 2

X

-l
[34-a2+2]-e 2

HMARIR RAD EXACT FUNC 3/ %

HMAIN RAD ERACT FUNC 4/30

— Done| |a garcso . « deif(a) -3
a2 2 2
=5 (F(0}) + ddf () a‘ a?
dx (a%-a2+2).e 2| | 42 . _ e 2
2 " ddf(a) Sy [ 2 ) |x=a =
ddf <a> dd f ¢adl x> . x, 21 x=a] |

HMRIN RAD_EXACT FUNC §/30

I recommend to differentiate f{x) twice and then substitute for x = a. But what is the reason for the

"wrong" result? The answer is not so difficult to understand. Obviously the 77 first evaluates fla) and

then differentiates with respect to a.

We will confirm this;

1 Fe¥ F3v Fyv FS F6v
- a Algebra|Calc|Other PrngOIClean Up I

1 Fev Fav | Fuv G I3
'7;2 AlgebralCalc|CtherPrgmi0 Clear: Up

a2

o 2

= £{a)

a

22

(a4-az+2]~e 2
a3

[a4 -aZ+ 2]~eT
a3

B ddf(x) |x=a

= ddf(x) |x=t
-t
at -t
(12-2-a-t+a2-1)-e 2

a

We obtain the "wrong" result
again predefining the 2™ deriva-
tive as you can see. ddf (x)
seems to be ok, but substituting
for x leads also to the not ex-

FUNC 2/30 3&’:{3(1 ) I t=ﬁ%mT FUNC 5/30 peCted outcome'
DERIVE does it well.
2
ax — x /2
#t: g
f{x}) ==
a
2 2
a-x — x /2 2 2 a /2
#2: g “{x —2-a-x +a - 1) 8
£’ (x). £2'(a)] = . =
a a

I sent an extended answer to the students but ............ I never heard if it arrived!!??




D-N-L#50

The New Challenge

p39

In the Scientific American (German Edition) I found an interesting article on "Ethnomathematics". In
detail the contribution was about south Indian "Kolams". One of them could be represented using the
Lindenmayer System. Fortunately I worked out DERIVE-procedures for applying L-Systems (next

DNL) and tried my program — it worked. (This a partial copy of the SA-article.)

[rsezyngensgal -

Loasyngse sawendec.

Bunki = —_— -'x;-'-ﬂ'-s-_»j
“y ,'" B b )

F -F Pl (00

| pt=T

1 tF] (R

j—
Food ST
pa r:

r ;:.1-&

Sl

r

As an introduction for L-systems I pose the

Transformation of a string according to the following rules must be performed:

Given is an initial string (say "ab")
n a n __) " b "

n b " % n ac 1

n C 1" ﬁ 1 abc n

Applying this rule five times we will have the following list of results:

following challenge:

hac

achabc

Write a program —as generalized as possible — for performing such transformations.

babcachacabec

achacabchahcachabchacabe

| habcachabchacabcacbacabcbhbabcachacabcachabcbhacabe |
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Titbits from Algebra and Number Theory (25)

by Johann Wiesenbauer, Vienna

You may have already read in the editorial that this issue of the DNL is a very special one, being
number fifty. Let me take this opportunity to congratulate Josef on the occasion of this anniversary
and wish him all the best for the next 50 issues of his beautiful journal, which has served for more
than twelve years as a “communication center” for the Derive-community. I would also like to express
my gratitude and my pride about the fact that this column — the twentyfifth by the way and hence also
sort of special — is by far the longest DNL-series.

On this occasion, I have also scanned all my columns so far and old memories came back when I
wrote the very first articles still using Derive 2.56 or something like that. Many routines that first
appeared in this series are now included in NUMBER.MTH and COMBINAT.MTH, which I'm very
proud of. On the other hand, many programs in older issues of the DNL are now totally obsolete from
a programming point of view, as they were written in the old clumsy Derive-code before version 5. In
some cases that’s no great loss, but there are a few notable exceptions, at least in my opinion. One of
them is my column about polynomial arithmetic in the DNL # 30. I think most of these routines are
quite useful and deserve an update to Derive 5. This is exactly what I’'m going to do in the following.
It might be a good idea to have that paper (Titbits #13) at hand, if you can get hold of it, as I will refer
occasionally to its contents.

The first two routines with which I started then could be used to reduce a given polynomial u with
integer coefficients mod n. There is no need for a conversion though, as those functions are built-in in
the meanwhile under the names POLY_MOD(u,n) and POLY_MODS(u,n). (The latter is used by the
way, if you want the smallest absolute residues rather than the smallest nonnegative residues mod n.)
Pretty much the same goes for the next function

d
polydeg{u, x} == x-— LN{DENOMINATOR{PACTOR{ lim wu, Trivial, x)})
dx x*1/x

which can be used to compute the degree of a polynomial u in the indeterminate x. Frankly, this jewel
of programming is still one of the functions I'm very fond of, because it’s both very tricky and in-
credibly fast. As you might know though, Albert Rich himself has written an equally powerful library
function POLY_DEGREE(u,x) in the meanwhile, which has replaced the old obsolete version in
MISC.MTH at last. What follows is his “masterpiece of logical deduction”, as I called if at one time
during a discussion on the Derive-forum, which gave birth to this really nice function.

POLY_DEGREE{u, x}) ==
Prog

If uw=208
RETURN -1

If IDENTICAL? {u,. x)
RETURN 1

If SUM?{u)
RETUEN MAX (UECTOR{POLY_ DEGREE{v_. x}. v_, TERMS{u}))

If POWER?{u} v PRODUCT? (u)
E(POLY_DEGREE{v_d1. x)-v_12, v_,. FACTORS{u)}
8

In that discussion I also suggested a new function for the computation of coefficients of a polynomial,
whose definition is also given here for the sake of completeness. (Believe it or not, the old function
POLY_COEFF(u,x,n) in MISC.MTH computed those coefficients in the same way, as one would

compute the coefficients of a taylor series of a function u, that is it didn’t make any use of the poly-
nomial form ofu!)

n
POLY_COEFF{u., x, n} := SUBST(QUOTIENT{u, x . %), x. @}
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As for the next function from my Titbits(13) , which computed the leading coefficient of a polynomial
u in the indeterminate X, I only exchanged polydeg(u,x) by POLY_DEGREE(u,x) in the following
definition:

u

POLY _DEGREE{u. x}
x

leadcoeff{u, x} = lim
WHE0

It shares with POLY_DEGREE(u,x) (and polydeg(u,x) for that matter) the nice property that u must
not necessarily be given in expanded form without any significant loss of performance, as you can see
in the following computation:

188
leadcoeff{{2-x + 1} » x3 = 12676586860228229481496703205376

This function is often used when we want to transform a given nonzero polynomial u over Z, into a
monic polynomial by multiplication with a constant ¢ # 0 mod p. Exactly this is done by the follow-
ing routine:

polynorm{u, p, x) ==
Prog
u = POLY_MOD{u, p)
If u =8
RETURN u
POLY _MOD{INUERSE_MOD({leadcoefffu. x), p)-u, pd

3 3
polynorm{3-x + 2-x + 4, 5% = x + 4-x + 3

The next three functions are more or less self-explanatory. They can be described as the counterparts
of the built-in functions QUOTIENT(u,v,x), REMAINDER(u,v,x) and POLY_GCD(u,v,x), but with
one additional parameter p, which is supposed to be prime. The small, but crucial change is that all
those operations are carried out mod p as far as the coefficients are concerned!

pollnyquot(u, v, p. X) :=

rog
u == PACTOR¢QUOTIENT (u, POLY_MOD{v, p), x)¥, Trivial, x)
POLY_MOD{INUERSE_MOD{DENOMINATOR{u},. p)-NUMERATOR{u}, p)

po%yrem{u, VU, p, X) ==

rog
u == PACTOR{REMAINDER{u. POLY MOD{v. p). x), Trivial, x)
POLY_MOD({INUERSE_MOD{DENOMINATOR{u). p)-NUMERATOR{u), p)

polugecdfu,. v, p. x. »_}) ==
Loop
If POLY_MOD{v, p) = 8
RETURH polynorm{u, p. x3}
r_ := polyrem{u, v, p, x)
u
v

v
»r_

3 2
polyquot{x + 1. I-x + 3, 2y = x

3 2
polyrem{x + 1. 3-x + 3, 2% = x + 1

2 3

POLY MOD{x-¢{3-x + 3) + x + 1, 2) =x + 1

3 2
polyged{x + 1, 3-x + 3, 2) =x + 1
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Furthermore, we’ll need occasionally for a polynomial u the inverse of u as well as powers of u,
again all mod p, which are computed by the following routines:

poelyinudu, v, p. X. . »_, s_, u_ =1, v_ = 8) :=
Loop
If v =0
RETURN IF(NUMBER?{u}y ~ u # 8, polyguot{u_,. u, p, x}}
g_ == polygquot{u, v, p, x)
r_ = polyremu, v, p. x}
s_ = POLY _MOD{u_ - g_-v_, p)
u =
U = p_
u_ == u_
U_ = §_
2 3

polyinuv(x + 1, 2-x + 2-x + 2, 3) = 2-x

polypower{u, n, v, p, x, w_ = 1) ==
Loop
If n = 8
RETURN w_
If ODD7{n)
w_ = polyrem{u-w_, v, p, x)
u = polyrem{u-u, v, p, x)
n == FLOOR{n, 2)

2 16008 3 2
polypower{x + x + 1. 1A X Fx + 1, 2 =x +1

A simple application of polypower( ) is the following routine, which determines for a given polyno-
mial u e Zp [x] of positive degree d whether it is irreducible, i.e. not a product of two polynomials of

smaller degree, or not. This is done by checking for all i=1,2,...,[d/2] the condition
gcd(xpi -xu)=1
because according to theorems of the theory of finite fields, if u is reducible, i.e. has got a divisor of
degree <d/2, this would cause one of these gcd’s to be unequal to 1.
polyirr?{u, p, x. d_, i_ =1, w ) ==
Pro
:= POLY_MOD(u. p)
== X
:= POLY_DEGREE{u. x)
If d_=8
RETURN false
Loop

u_
If

u
u_
d_

:= polypower{u_. p, u, p, x)

= NUMBER? {polygcd{u. u_ — x. p, x})
RETURN false
i+ 1
If i_ > d_/2 exit

4 3 2
polyirr?{x + x + x + x + 1, 2) = true

As for irreducible polynomials, there are a number of interesting facts. In the first place, for every
degree d there is always an irreducible polynomial u e Z ,[x] of degree m. To be more precise, the

number of monic irreducible polynomials of degree m in Z [x] is given by the formula

N, (m)==> p(d)p™*

1
m dlm

where 1 denotes the Moebius u - function (cf. [11, p 155)
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The Derive-implementation of this formula along with an example looks like this:

1 nsd
irrcount(m, p} = — Z(MOEBIUS_MU{d}-p . d. DIVISORS{m))
m

irrcount{4, 2) = 3

As this example is so small, we can afford it to check the outcome by the following brute-force com-
putation:

4 3 2 4
DIH[SELECT[pulyirP?[x +a -x + a3-x + az-x + a ., 2]. a, {8, 1} ]] =3
4 1

From the formula above the probability of a random monic polynomial of degree m in Z [x] being

irreducible is at least 1/(2m) and roughly 1/m. Hence, if we want to find an irreducible polynomial in
Z ,[x] of degree m by testing a number of random monic polynomials of degree m in Zp [x], then we

should expect about m failures. The following Derive-routine will do all this testing for you.

irrpoly{m,. p, x. wu_) =
Loop
u_ == E{(RANDOM{p) -x*k_. k_. B. m — 1} + x™m
If polyirr?{u_, p. xJ
RETURN u_

18 5 3 2
irrpoly{id, 2) = x +x +x +x +1

If you studied my paper, which I recommended in the beginning, you will already know that every
irreducible polynomial f(x) of degree m in Z [x], can be used to generate the (up to isomorphisms

unique) field F_, where q=p™, due toF, = Z_|x|/(f(x)) . In order to make computations in such a
q p q P

field Fq easier, it might be a good idea to encode the numbers 0,1,2,..,q-1 as polynomials of

degree < m representing the residue classes in that factor ring.

topoly{n. p. x. g_ == 1, s_ 1= @) ==
Loop
If n =8
RETURN s_
t+ g_-MOD{n,. p)
FLOOR{n. p)
X

=¥

S_
n =
g_

3
topoly{ll, 2) = x + x + 1

You might wonder, why I didn’t care about the conversion in the other direction, i.e. from polynomi-
als to numbers. Isn’t it important enough? Of course, this is needed as well, but all we must do is to
simply substitute p for x to get this kind of conversion:

3
SUBST(x + x + 1, x, 2) =11

Okay, we are ready now to write sort of a “set up program” for the parameters of a field.

setupfield{g) :=
Prog
1f - PRIME_POUWER? {(q)
RETURN “"g must he a prime power!"

p := FIRST(FACTORS(q}}
m := pd2

p = FIRST{p}

m H

= irrpoly{m, p. x}

D
‘ak
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setupfield(25) = ok
p =25
m =2

2
mp = x + 2

Note that p, m and mp are used as global variables in the following and you have to consider them
kind of “protected”! On the other hand, using these “standard parameters” you are allowed to omit
them in the call of the routines dealing with the basic operations of a field, which we are going to
define now.

plus{u. v, p) := SUBST(POLY MOD{topoly{u, p. x) + topelylv, p. x). p}, x, p)

minus{u,. v, p) = SUBST(POLY _MOD(topoly(u. p, x) — topoly{v. p. x). p). x. p)

times{u., v, mp, p)} 3= SUBST(polyrem{topoly(u, p, x)-topoly{v, p. X}, mp, p. x), x. p)

div{u, v, mp, p) := SUBST(polyrem(topoly{u. p. x)-polyinu{topoly{v, p. x}. mp, p. x), mp, p. XY, X. p)

Okay, you want to see the multiplication table of the above field with 25 elements in all its glory?
Here you are !

UECTOR(VECTCR{times{a, b}, a. 8. 24). b, B, 24)

# © B B 8 6 B8 B8 8 8 8 8 ® B 8 6 B ® @ B8 @ 8 @6 ©6 8
5 6 7 8 ¥ 18 11 12 13 14 15 16 17 18 19 20 21 22 23 24
18 12 14 11 13 20 22 24 21 23 5 7 9 6 8 15 17 19 16 18
15 18 16 19 17 5 8 6 9 7 28 23 21 24 22 18 13 11 14 12
20 24 23 22 21 15 19 18 17 16 18 14 13 12 11 5 9 8 7?7 6
18 15 28 3 8 13 18 23 1 6 11 16 21 4 9 14 19 24 2 ? 12 1?7 22
12 18 24 8§ 14 15 21 2 11 1?7 23 4 5 19 28 1 ? 13 22 3 9 18 16
14 16 23 13 15 22 4 6 21 3 S 12 19 ? 11 18 280 2 1?7 24 1 8 1@
11 19 22 18 21 4 7 18 6 14 1?7 28 3 24 2 S5 13 16 12 15 23 1 9
13 17 21 23 2 6 18 19 16 20 4 8 12 14 18 22 1 5 7?7 11 15 24 3
20 15 1 11 21 6 16 2 12 22 ? 17 3 13 23 8 18 4 14 24 9 19
22 19 6 1?7 3 14 20 12 23 9 15 1 18 4 18 21 ? 24 5 16 2 13
24 18 11 23 5 17?7 4 22 9 16 3 18 8 15 2 14 21 19 1 13 28 7
21 i7 16 4 12 28 8 ? 15 3 11 24 23 6 19 2 16 14 22 5 18

23 16 21 5 19 3 12 17 1 18 24 8 13 22 6 15 4 9 18 2 11 28
28 18 4 1% 9 24 14 3 18 8 23 13 2 17 7 22 12 1 16 6 21 11
23 14 9 28 11 2 18 13 4 15 6 22 1?7 8 24 18 1 21 12 3 19

21 13 14 1 18 5 22 23 18 2 19 6 7?7 24 11 3 15 16 8 28 12 4
24 12 19 ? 28 13 1 8 21 14 2 15 22 1B 3 16 9 11 4 1?7 5 23
22 11 24 13 2 16 5 18 ? 21 18 4 12 1 15 9 23 6 28 14 3 17
15 1@ 22 1?7 12 ? 4 24 19 14 9 1 21 16 11 6 3 23 18 13 8
17 13 7 3 24 15 11 14 5 1 22 18 16 12 8 4 28 23 19 18 6 2
19 11 12 1 23 15 24 16 13 S 2 6 3 28 17 14 18 1B 7 4 21
16 14 17 18 8 1 24 9 2 20 18 11 21 19 12 &S 3 13 6 4 22 15
24 18 12 22 16 18 9 3 19 13 ? 1 28 11 5 4 23 1?7 8 2 21 15 14

2
4
i
3

2 0 0 ® 8 8 ® ® @ @ 0 6 @ O 8 0 & @ & T o 6 6
L T N T N S e S S = S ~ S S SO T
W N O @ W 0 AU A W N R OE YW 0 A M A W N
B o v A tn
POV I I, N b MW
MM W b

o 3 @& W

(Note that the usual index row and index column can be seen in the second row and column, resp.)

Oh no, space is running out again! So I have to continue this topic in the next column. (Hope you
don’t consider this a threat!) And as always, if you have any comments or suggestions, please let me
know! (j.wiesenbauer@tuwien.ac.at)

[1] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, FL, 1996 (cf. also http://www.cacr.math.uwaterloo.ca/hac/)




