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By the end of October the new Derive 6 will be released. Currently, Derive 6 runs only under
Windows2000 and WindowsXP.

New Features in Derive 6:

- display the steps in the simplification of an expression with optional display of transfor-
mation rules

- communicate with TI CAS calculators: import data from and export data to TI-89,
TI-92+, Voyage200 calculators

- make plots dynamic: animate expression plots with shider bars
- let plots be labelled with defining equations

- rotate 3D plots with mouse

- get support via improved and extended online help

- customize menus, toolbars, and shortcut key

- profit from numerous other improvements, including
* optional multi-line editing
* fully scaleable Derive Unicode font
* state variables now saved in DfW files
* parentheses matching
* different styles for connected points
* controllable display of 3D mesh lines
* controllable point size of 3D data-pont plots
* function for computing Groebner bases
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LETTER OF THE EDITOR p1l

Dear friends,

after the summer of the century at least for most of
the European countries we are heading fall 2003.
This DNL#51 provides a smaller content than usual,
only 32 pages instead of 44. The reason is the fol-
lowing: Very surprisingly the Austrian Post in-
creased mailing charges for sending books and
Journals by approx 100% in June. So I decided to
produce a smaller DNL#51 to keep the mailing
charges lower now and to add the missing pages to
DNL#52 in December which will be sent together
with the traditional diskette. I hope that you will
understand to my decision.

Three colleagues faced the Lindenmayer-Challenge
from DNL#50. Phillips MacDonald was the first to
answer, Stefan Welke sent the most extended con-
tribution and Riideger Baumann presents his own
way to produce the Snake Kolam = Sierpinski
Curve. Many thanks to you all and congratulations
to your success. My own full program will be given
in DNL#52. There is a wonderful website treating
among others L-Systems, which I strongly recom-
mend to visit:

www. fh-lueneburg.de/ul/gym03/homepage/
faecher/mathe/chaos/linde/linde.htm.

As promised in the last DNL, Tim Comar presents
Mbobius Transformations, which I tried to transfer to
the TI-CAS. This is one more example that in most
cases ideas are not fixed on one platform and that it
is often not very difficult to realize a DERIVE-
contribution on the handheld and vice versa.
I do not know the reason, but TI-CAS contributions
for publication in the DNL are very rare.

On pages 3 and 4 you can find an extended abstract
of Paul Drijvers PhD paper which appeared in
printed form. The whole DUG-family congratulates
Paul to his academic success. Paul has been a
DERIVIAN and CAS-enthusiast from the very first
hour. And what is much more important: he has
been a very good and cooperative friend for years.
Many thanks, Paul, and the best wishes for the fu-
ture.

2004 is the year for the next big DERIVE & TI-
CAS-Conference which will be hold in the time 15
— 18 July in Montreal, Canada. Michel Beaudin and
his team are busy to install a website. It would be
great to meet many of you next summer in Maple-
Leaf-State.

The last important point which I have to address in
my letter is the release of DERIVE Version 6.
DfW6 will be released very soon. Bernhard Kutzler
provided an overview of the most exciting new
features of version 6.

From my point of view the most innovative and
impressing feature is the connectivity between PC
and Handheld CAS. This could initiate a new era of
CAS-supported Maths education. We are no longer
fixed on either using the PC or the handheld device,
but we can easily switch between the platforms with
no syntax and other problems and difficulties.

Best regards

Josef

Dear DUG-members,

please inform us about new publications on the use of DERIVE and/or the CAS-TlIs.
We also appreciate all information about interesting websites.

http://shop.bk-teachware.com

This is the address for DERIVE - & Tl-related books. There is also a rich resource of additional

software and inspiring maths books.

Download all DNL-DERIVE- and TI-files from

http://www.acdca.ac.at/t3/dergroup/index.htm
http://www.bk-teachware.com/main.asp?session=375059
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It is published at least four times a year
with a contents of 44 pages minimum. The
goals of the DNL are to enable the ex-
change of experiences made with DERIVE
and the T7-89/92/Voyage 200 as well as to
create a group to discuss the possibilities of
new methodical and didactical manners in
teaching mathematics.

As many of the DERIVE Users are also
using the CAS-T7Is the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef B6hm
A-3042 Wiirmla

D'Lust 1

Austria

Phone/FAX: 43-(0)2275/8207
e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TT Newsletter will be.

December 2003
15 November 2003

Next issue:
Deadline

Preview: Contributions waiting to be published

Finite continued fractions St. Welke, GER
Kaprekar’s "Self numbers", R. Schorn, GER

Some simulations of Random Experiments, J. Béhm, AUT
Wonderful World of Pedal Curves, J. Béhm

Another Task for End Examination, J. Lechner, AUT
Tools for 3D-Problems, P. Lilkke-Rosendahl, GER
ANOVA with DERIVE & T/, M. R. Phillips, USA

Hill-Encription, J. B6hm

CAD-Design with DERIVE and the Tl, J. Bohm

Sierpinski-Tetrahedrons and Octahedrons, H.-R. Geyer, GER

Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL
Farey Sequences on the Tl, M. Lesmes-Acosta, COL

The “Joseph-Game”, Rideger Baumann, GER

Simulating a Graphing Calculator in DERIVE, J.Béhm, AUT

Lindenmayer-Systems, J. B6hm, AUT

Cellurar Automata - "Rule 90" a.o., D.Sjéstrand/J.Béhm, SWE-AUT

and

Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,

Keunecke, GER, ......... and others
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Learning Algebra in a Computer Algebra Environment

Design research on the understanding of the concept of parameter
Dr. Paul Drijvers

On 25 September 2003, Utrecht University (the Netherlands) awarded Paul Drijvers a
PhD degree for his thesis ‘Leamning algebra in a computer algebra environment’. The fol-
lowing abstract provides a brief overview of his work.

1t is well known that algebra is a difficult topic in the school mathematics curriculum, and is often
experienced as a stumbling-block. One of the directions in which solutions to the problems with the
learning of algebra can be sought is the integration of information technology (IT) into mathematics
education. Although originally not developed for educational purposes, a computer algebra system is
an IT tool that seems promising because of its algebraic power: it expands expressions such as (a +
b)2 and solves equations such as 3x + 5 = 7. By doing so, a computer algebra system carries out
operations, which are seen as the core of mathematics, and which students so far have to master by
hand. The basic aim of this study, therefore, is to investigate whether computer algebra use can con-
tribute to the understanding of algebra. This leads to the following main research question:

How can the use of computer algebra promote the understanding of algebraic concepts and opera-
tions?

To answer this question, the concept of parameter was chosen as the central topic. A teaching se-
quence for high-ability students in ninth and tenth grades (14- to 16-year-olds) was developed, in
which the use of computer algebra was integrated. Following the research paradigm of developmental
research, this sequence was tested in three cycles of teaching experiments, in which over one hundred
students were involved and over one hundred lessens were observed. During these teaching experi-
ments the students all had a TI-89 symbolic calculator at their disposal. The data consisted of observa-
tions, interviews, tests and written student work. These data were analysed to investigate how the use
of computer algebra influenced the students’ learning, how the students developed thinking schemes
for machine techniques and how this supported their algebraic insight.

The analysis yielded mixed results. On the one hand, computer algebra turned out to be a complex
tool for students of this level, which puts high demands on the user: students had to explain to the
machine exactly what should be done, and in some cases got results that were hard to understand.
Also, computer algebra sometimes seemed a black box to them. On the other hand computer algebra
use offered opportunities for the learning. The computer algebra system could be used as an environ-
ment for algebraic experimentation, which induced the discovery of algebraic relations. Furthermore,
the use of computer algebra required that the student was aware of the problem solving procedure and
the sub-procedures that are part of it. Entering formulas and interpreting results contributed to the

development of ‘symbol sense’, the for algebra so important feeling for the structure and meaning of
expressions and formulas.
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These findings underline the relevance of the dual learning process which students go through while
using computer algebra: they have to learn machine techniques for solving types of problems, but this
is related to a conceptual development. This so-called instrumental genesis can be promoted by ap-
propriate student assignments and by teacher behaviour that pays attention to the possibilities of the
machine in relation to the conceptual insights behind it. There is no reason to fear that students no

longer need to think while using computer algebra: technical skills and algebraic insight develop si-
multaneously.

The thesis is structured as follows. Chapter 1 contains the research questions and explains the aims
and backgrounds of the study. In Chapter 2 the research design and methodology are described. Key
words are design research and hypothetical learning trajectory. Chapters 1 and 2 together indicate
what the research is about and how it is conducted. Chapters 3, 4 and 5 form the theoretical part of the
thesis. They treat the main themes of the study: algebra in general, the concept of parameter in par-
ticular and the possible roles of computer algebra. Chapter 3 concerns algebra in general. It sketches
different views on algebra and describes the standpoint of this study. The theoretical issues of symbol
sense, symbolizing, the process-object duality and Realistic Mathematics Education are addressed.
Chapter 4 zooms in on the concept of parameter. After a brief historical perspective, a conceptual
analysis of the parameter is given. Then the higher level understanding of the concept of parameter is
described. This is connected to the theoretical notions from Chapter 3. Chapter 5 deals with the tool
that students use in this research project: computer algebra. Besides an overview of previous research
in this domain, it contains a description of the theory of instrumentation that will be used in Chapter
10 in particular. Chapters 6 - 10 form the empirical part of the dissertation. Chapters 6, 7 and 8 de-
scribe the development of the hypothetical learning trajectory and the classroom experiences during
the three subsequent research cycles. Chapter 9 concerns the contribution of computer algebra use to
the understanding of the concept of parameter. In Chapter 10, the results concerning the instrumenta-
tion of computer algebra are presented.

Chapter 11, finally, answers the main research question. After that, the results and the methodology
are discussed. Also, the relevance of the theoretical framework and the generalizability of the findings

are evaluated. The chapter ends with recommendations for teaching, for software design and for fur-
ther research.

Drijvers, PH.M. (2003). Learning algebra in a computer algebra environment. Design research on the under-
standing of the concept of parameter. Utrecht: CD-3 Press. ISBN 90-73346-55-X

For an extended summary, downloads and hard copy see www fi.uu.nl/~pauld/dissertation.

Two results of cellurar automata — "Rule 90" and others
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A not well-known Interaction between CAS and Dynamic Geometry

on the TI-92/Voyage 200

We will design a dynamic geometry model (CABRI), which plots the graph of any function defined in
the [¥=]-Editor for further use with special respect to possible animations as

(1) to plot the function graph,

(2) to move a point on the graph and simultaneously visualize the slope,

(3) to move the point together with the tangent (or the perpendicular to the tangent),
(4) to transfer the slope for simultaneous plotting the derivative as a locus,

(5) to plot the envelope of the perpendicular lines,

(6) to plot pedal curves as a locus,

After changing the function in the [Y=]-Editor, the model will immediately be adapted.

See an example:

At first we show a polynomial

function of degree 5 together
with the slope and tangent in
the moving — or animated —

uF=93CY2(x))
ye=

point creating pointwise the

graph of the derivative.

30 =sin %072
MAIN RAD ERACT EAD EXACT FUNC

—1
FUNC HMAIN

Then we change the function

and we can see the same
model applied on a sine func-

7 tion. Here we plotted the lo-
94=92(93(x3) THIS Locus i K . .
Has 26O i cus of the derivative points in
I T~ A—110%x™ X :
\ilz}l(X) x*(n§l1 E:(RCT4 110 F¥N52+225)/2 MAIR RAD EXRCT FUNC th]Ck Style'

How can we achieve this? I assume that you have some experience in working with the CABRI-
Application on the TI. If not the I strongly recommend to discover this wonderful tool.

(1
)

3)
4
)
(6)

(7)

Define an appropriate function in the [Y=]-Editor, e.g. y1(x) = sin(2x)/2.

Switch to the Geometry-Application, draw a horizontal segment on the bottom of the screen
and fix point X on it. This point is moveable and forms the reference point for all appearing
function arguments.

Draw a vertical line through X and intersect with the x-axis giving auxiliary point T.

Show coordinates of X ( [Fg] ).

Via[f6): Calculate calculate the function value y 1(x-coordinate of X).

Check: Grab point X with [§], move it along the segment and you should observe the resepctive
on the screen.

Transfer this function value to the vertical line passing T ([F4): Measurement Transfer),

which results in a point P of the function graph. Check: Drag or Animate X and observe the run
of point P.
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(8) [F4): Locus, Plot the locus of point P. You should see the function graph. If necessary increase
the number of locus points ( [#] [F] ). Check: Define another function as y1 (X) and go back to
the Geometry Application and hopefully you will see the changed graph.

(9) Hide the function Value ( [F7] ).

Now CAS enters the stage — we visualize the slope:

(10) Draw a horizontal line through P.

(11) With [Fg):Calculate “calculate” the value 1 and transfer this measurement from P to the
right on the horizontal line, giving point Q.

(12) Draw a vertical line through Q.
(13) [FBl:Calculate d(yl(x),x)|x =x-coordinate of X.
(14) [F4): Measurement Transfer this number on the vertical line from Q, giving Q.

(15) Hide the auxiliary lines, draw the (F3]: Triangie P, Q, Q" and draw the tangent which is the
line defined by P and Q.

(16) Animate X ([F7): Animat ion ) on the segment and the tangent should move along.

Produce the graph of the derivative:

(17) The value of the 1* derivative is still on the screen and can be transferred from T on the vertical
line, giving P’ which is a point of the first derivative.

(18) Hide the vertical line and create two segments ([F2) ) TP and TP’
(19) For P’ setting :Trace On, the graph of the 1* derivative will appear pointwise while

moving X along the segment on the bottom of the screen. You can individually add some
changes. I plot the two segments QQ’ and TP’ both [F7]: Thi ck to underline their equivalence.

(20) Applying (F4]: Locus on P’ you will find the graph of the first derivative.

(21) 1Itisno problem to add the second derivative, and, and, and

N ' - —A g J'v_'.u

D C D&C
MAIN KA EXACT FUNC MAIN BBD ERACT FUNC MAIR EAD EXRCT FUNC
Derivative of a quadratic Visalization of the influence of parameters a,b,c and d on a f(b(x+c)+d
PO el
N \\
S :
\k]% 5\ d e + / ’ n
i 0.5 P el A 0.5 + X
Al 4
5 N ¢ u

MAIN DEG EXACT FUNY

o
MBIN VEl' MAIN DEG ERRCT FUNC

Vertical rays are reflected on various graphs. What is the envelope of the reflected rays?

The figures can be downloaded. Don't forget to define a function as yl(x). Otherwise the model would not work.
It makes sense to save the fist part (Plotting the function graph) separately as initial point for other purposes.
Many thanks ro P. Frachebourg for valueable hints. http://www.stmaurice.ch/pfrache.
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VISUALIZATION OF HYPERBOLIC MOBIUS TRANSFORMATIONS
IN TWO AND THREE DIMENSIONS USING DERIVE

Timothy D. Comar
Benedictine University

Department of Mathematics
tcomar@benedu

Introduction

We describe an activity using DERIVE to illustrate the beautiful geometric behavior of Mdbius trans-
formations in both two and three dimensions. The activity is designed to meet several important goals:
geometric visualization, hands-on activities, reinforcement of basic mathematics, and the establish-
ment of connections between several areas of mathematics. We also provide a brief review of Mébius

transformations and hyperbolic geometry and illustrate some DERIVE routines from the package
mobmath.mth [2] created by the author.

A wonderful aspect of DERIVE as a pedagogical tool is that it is a versatile computer algebra system
that still requires the user to perform a fair amount of basic precalculus mathematics to create more
sophisticated examples and explorations. The activity described here can be presented to students at
several levels. At a higher level, students could be expected to create from scratch the DERIVE rou-
tines to construct the examples. At a lower level, the instructor can provide the students with a copy
of the collection of the routines in the file mobmath.mth [2] and more detailed instructions about
constructing the examples. Even though the activity is designed for DERIVE, it is easily transferable
to any computer algebra system with graphing capabilities.

Geometric Visualization

The primary goal of the activity described in this paper is to obtain deep geometric intuition about the
behavior of hyperbolic Mébius transformations. In particular, the activity focuses on developing the
inter-relationship between the two and three-dimensional behavior of Mébius transformations.

Hands-on Activities, Reinforcement, Connections

The activity approaches new mathematical content by investigating concrete examples that require the
students to perform basic calculations using familiar mathematics: basic geometry, trigonometry, and
parametric representations. Even though DERIVE is used to perform the necessary calculations, the
student must demonstrate a sound understanding of the basic mathematics to be able to enter the ap-
propriate expressions into DERIVE. This dependence on precalculus mathematics can help demystify
the abstraction of new mathematics as well as reinforce and re-integrate this basic mathematics in
advanced courses outside the calculus sequence.

The novel aspect of this investigation between the two and three-dimensional geometry is that the
activity introduces the mathematics in a suitable manner for undergraduates, whereas the three-
dimensional geometry of Mdbius transformations is not part of the standard undergraduate course in
complex analysis and is not introduced, if at all, until graduate courses in topology or hyperbolic
manifolds. In particular, this activity illustrates connections between the advanced mathematical top-
ics of complex variables and hyperbolic geometry as well as notions from topology and algebra.
Moreover, the activity provides a nice illustration of applying basic mathematics, which can help pre-
service secondary education students form deeper connections between undergraduate mathematics
and the concepts that they will teach in secondary school.
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Maibius Transformations
Let M denote the group of Mébius transformations z -f—j:—jacting on C=Cu{w}, where a, b, ¢, d

are complex numbers such that ad — bc = 1. The group M is the group of orientation-preserving con-
formal automorphisms of Cand is called Mobius Group. We can further identify M with the group
PSL(2,C) (Projective Special Linear group), the group of 2 x 2 matrices with complex coefficients,
determinant 1, modulo the equivalence relation 4 ~ — 4. By using the 2 x 2 matrix representation for

Mébius transformations, we can easily create short routines in DERIVE to calculate properties of the
Mbius transformations and obtain parametric representations which we can plot.

In the upper halfspace model of hyperbolic three-space H’, hyperbolic planes are either vertical planes
or hemispheres which are orthogonal to its boundary at infinity, C. In both cases, the boundary at
infinity of a hyperbolic plane is either a circle or line, which we consider as a circle through oo; For
simplicity, we refer to both circles and lines as generalized circles. Each element in M is the product
of an even number of reflections in circles in C. We can extend the action of each element in M to an
orientation-preserving isometry of the upper halfspace model of hyperbolic three-space H’ by reflect-
ing the corresponding hyperbolic planes bounded by the generalized circles in € which generate the

Mgbius transformation. This extension is called the Poincaré extension and takes the following form
in the upper halfspace model:

f’(z,t):((“ZJfb)m_HaEtz lad —be|t j

lez+d [P +1cPt® fez+d P +|cf £

where f(z)= ‘:Z;’ . (See [1] for details.) We thus can identify the goup Isom’(H’) of orient-tion

preserving isometries of H® with PSL(2,C). Using the Poincaré extension, we have created a DERIVE
routine Poincare Ext Image [2] to obtain parameterizations of images of hyperbolic planes
under Mé&bius transformatsions to geometrically investigate the three-dimensional geometric aspects
of Mébius transformations. For ease of exposition, we will freely represent points in the plane either
as ordered pairs of the form (x, y) or as complex numbers of the form x + i y, as convenient. Similarly,
we represent points in H* either as ordered triples of real numbers of the form (x, y, £) or as ordered

pairs (x + i y, f) consisting of a complex number in the first coordinate and a positive real number in
the second coordinate.

Classification of Mdébius Transformations

Note that every element of M has at least one fixed point on C, and that any element of M fixing
more than two points is the identity. For M — {id}, we have:

1. A hyperbolic transformation has two fixed points in H’ U C, both of which are in C. Any ma-

12

. . . . . 0
trix representing a hyperbolic transformation can be conjugated to one of the form { /2} ,
0 4"

where |A| # 1. This particular matrix acts on H® by (z,t) > (1z,| 1|f). The hyperbolic transfor-

mation is purely hyperbolic if A is real and positive and is otherwise loxodromic.
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2.  An elliptic transformation fixes two points on C as well as each point on the geodesic axis in H’

joining these fixed points on C. Any matrix representing an elliptic transformation can be con-

172

jugated to one of the form {
0

2:\ , where |A| = 1, A # 1. This particular matrix acts on H® by
ll-lf
(z,) > (Az,| A |0).

3. A parabolic transformation fixes one point on C and none in H’. Any matrix representing a

1 1
hyperbolic transformation can be conjugated to one of the form [ } This particular matrix

1
acts on H’ by (z,1) > (z +1,2).
The Activity: Visualization of Hyperbolic Transformations

The transformation that we primarily use in the activity is the pure hyperbolic tranformation f{z) = 4z,
which has a matrix representation
20
M- [O }

Step 1. Express the hyperbolic transformation f(z) as the product (composition) of two reflections.

Let r, be the reflection in the unit circle, centered at the origin of the plane, and let 7, be reflection
in the circle of radius 2 centered at the origin of the plane. Then

1 4
n(z)= =7 (2)= =t and f(z) =1, (1 (2)).
Step 2. Let C(r, x, y) denote the circle of radius r centered at the point x + i y in the plane. Plot the
circle C(0.25,0.5,0), its image, f{C(0.25,0.5,0)), under the mapping f(z), and then f({C(0.25,0.5,0))).
To plot C(0.25,0.5,0), we use the parametric representation

[0.25-COS(t)+0.5,0.25-SIN(t) ],

where 0 < f < 2n. We can obtain the image of C(0.25,0.5,0) under f{z) using the user-defined DERIVE
routine Plane Circ_Image (r,a,b,M) which returns the image of the parametric representation
(r cos t + a, sin ¢ + b) of the circle of radius r centered at the point (a, &) in the plane under the 2 x 2
matrix representation M of the M6bius transformation f{z). Now the command

Plane_Circ_Image(0.25,0.5,0,M)

returns a parametric representation of £C(0.25,0.5,0)):
Plane_Circ_Image(0.25,0.5,0,M) = [cOosS(t) + 2, SIN(t)],

where 0 <t < 2n. We then use the command
Plane Circ_Image(1,2,0,M) to find AAC(0.25,0.5,0))) = AC(1,2,0)), which is
Plane_Circ_Image(1,2,0,M) = [4.COS(t) + 8, 4.SIN(t)],

where 0 < ¢ < 2rn. Graphs of ((0.25,0.5,0), f(C(0.25,0.5,0)) = C(1,2,0), and A{C(0.25,0.5,0))) =
= f{C(1,2,0)) = C(4,8,0) are shown in Figure 1.
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Figure 1:

The circles €(0.25,0.5,0), C(1,2,0), and C(4,8,0)

T ARG
graphiiathiDraw|~

1 f2v Fiv Fyv F§ Fiv
hd ;‘—iﬁ;lgebra Calr,[ocher PranlQ|Clean Up

®circ((.25 .5 OB

cos(t) sin(t)
[T*‘ 12 T]

0205 Lo ity ¢+ 2D 5 ey
vxt2=cos(t) + 2

Done| | gt2=sin(t)

sploc_im(.25,.5,0,mm vxt3=4-{cos(t) + 2)
fcos(t) +2 sin(t)]] [+gt3
pl_c_im¢_25, .5 0,.mnd yt3C(t)=4%¥sint)

COMAR RAD EXACT FAE_ 3730 COMAR RAD_EACT FAR

The TI-CAS-Realisation

Step 3. Now consider the image of the circle C(r, a, b) with center (a, b) and radius r under f and
draw a conclusion about the image of a circle under f.

The command Plane_Circ_Image(r,a,b,M) produces
Plane_Circ_Image(r,a,b,M) = [4-r-COS{t) + 4-a,4-r-SIN(t) + 4-b],

where 0 < ¢ < 2n. We can now conclude in general that f{z) = 4z dilates a circle by a factor 4 and
scales the center of the circle by a factor of 4.

We can draw further conclusions from this observation. First, note that / has an inverse, which is
f7'(z) = z/4. The nth iterate of fis f“)(z) = 4" z, and the nth iterate of £~ is £7(z) = (™) (@) =
= (f")"(z) = 4™ z. If R is the closed annulus in the plane bounded by C(1,0,0) and C(4,0,0) (see Fig-
ure 2), and int(R) is the interior of R, then f(int(R)) M int(R) = @, for each nonzero integer n. More-
over, £(C(1,0,0)) = o and £™(C(1,0,0)) — 0 as n — ooThe points 0 and « in € are the fixed points
of /. More specially, 0 is called the repelling fixed point of fand w is called the attracting fixed point
of f. (By convention, let f “(z) = z be the identity transformation.) We now have
U,z f"(R)=C—{0} . This means that R is a fundamental region for the action of the infinite cyclic

group {fy on C — {0}. Finally, note that the surface obtained by gluing the two boundary circles of R
together is a torus.

X'
The region R J[
Figure 2: B

The closed annulus R bounded by C(1,0,0) and C{(4,0,0).

We now turn to the three-dimensional viewpoint. Recall that hyperbolic planes in the upper halfspace
model of hyperbolic three-space H’ are either vertical planes in the upper halfspace or hemispheres
orthogonal to the boundary plane at infinity (C), which meet C along their (eqitorial) boundary cir-
cles. As mentioned earlier in this note, Mébius transformations can be extended from (conformal)
Mappings of the plane to isometries of H’ by reflecting in the hyperbolic planes bounded by the gen-
eralized circles in C. To visualize this notion through our example, we continue with the next step in
our activity.

Step 4. Plot the hyperbolic planes HP(1,0,0) and HP(2,0,0) that lie over the circles C(1,0,0) and
((2,0,0). Compute the product (composition) of the reflections in these two hyperbolic planes.
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To plot the hyperbolic planes, we use the command HP (r, a,b) to plot the hyperbolic plane whose
boundary at infinity is C(r, a, b). Hence
HP(1,0,0) [COS(s)SIN(t),SIN(s)SIN(t),COS(t)] and

HP(2,0,0) [2C0S (8) SIN(t) ,2SIN(s)SIN(L),2C08(t)],
where 0 <s<2mand 0 <t < m/2.

The formula for the reflection in HP(r, a, b) is

2
7

(x—a) +(y-b) +2*
We can verify (using DERIVE, for instance) that

2
¢(r,a,b)(x’yaz):(aabao)"'( ) (x—a,y—b,z).

¢(2,o,0) (¢(1,o,0) (x, ¥y, Z)) =(4x,4y,4z),

which is indeed the Poincaré extension f of f to H>. As the transformation fis a dilatation by a factor

of 4 away from the origin of points in the plane C = R?, the extended transformation is an Euclidean
dilatation by a factor 4 away from (0,0,0) of points in H>.

Step 5. Confirm the behavior of | by computing f (HP(1,0,0)).

To do this, we use the command Poincare Ext ImageV(A,vec), which produces the image of
the ordered triple vec under a 2 x 2 matrix representation of a Mobius transformation 4. The matrix

representation for f is indeed the same matrix M representing f. Now

Poincare Ext_ImageV (M, [COS(s)SIN(t),SIN(s)SIN(t),COS(t)])
gives

[4COS(s)SIN(t) ,4SIN(s)SIN(t) ,4C0S(t)]), where0 s 2mand0 ¢ m/2.

Arguing as before, we can see that the closed region
D in H’ bounded by HP(1,0,0) and HP(4,0,0) 1s a
fundamental region for the action of ( f Y on H'. (See
Figure 3.)

Now, by gluing the boundaries AP(1,0,0) and
HP(4,0,0) together, we obtain an open solid torus V.
The boundary of V at infinity is called the conformal
boundary of V and is just the torus constructed above!
This boundary at infinity is called the conformal
boundary because Mobius transformations, which
behave as hyperbolic isometries, act as conformal
maps on the boundary at infinity of H®, which can be

identified as C.

Recall that every nontrivial, non-parabolic Mgbius transformation has a geodesic axis joining its two
fixed points on C.

Let us denote by 4 the geodesic axis of f’ joining 0 to .

to be continued in DNL#52
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Visualizing a Special Envelope in 3-D:
Sometimes you have to assist your mathematical assistant

Nurit Zehavi
Department of Science Teaching, The Weizmann Institute of Science

Rehovot 76100, ISRAEL

nurit.zehavi@weizmann.ac.1il

In DNL#23 we visualized a special line in the 3-D space (Zehavi and Ben-Chaim, 1996). The special
line, [t, -2t — 1, t + 2], happened to be the line of intersection of all planes that when written in the
standard form, ax + by + ¢z = d, the coefficients a, b, ¢, and d are consecutive terms of arithmetic
sequences. At that time Derive version 3 did not allow superimposing surfaces. This limitation moti-
vated us to develop an alternative method for visualizing a specific line in the 3-D space, namely plot-
ting one surface obtained by applying the MIN (or MAX) function on a pair (or more) of explicit
equations of planes that intersect in this line. In Derive version 5 it is easy to illustrate the span of
planes for a two-parameter family of planes where the coefficients form an arithmetic progression,
ax + by + (2b — a)z = 3b — 2a as shown in figure 1.

UVECTOR(VECTOR(a-x + b-y + (2-b — a)-2 = 3-b - a, a, -5. 5, 3). b, -5, 5, 3)

. Q)
o 2

.ﬂ‘
B Lt e i
o —

Figure 1. A family of planes intersecting in the special line

When mathematics teachers discover the special line obtained by “arithmetic” linear equations, they
most frequently suggest exploring “geometric” equations, namely linear equations in which the coef-
ficients form a geometric sequence (Sawada, 1993; Ben-Chaim, 1997). We start with the 2-D plane;

for simplicity we explore a one-parameter “geometric” family of equations by x + ¢y = ¢. We can
2
show and prove that the parabola x + yT =0 is the envelope of the family x + cy = ¢’.

In general, for a given family of curves, a curve that is tangent at each of its points to a curve of the
family is called the envelope of the given family of curves (Boltyanskii, 1964).
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Can we see an envelope when we move on to the 3-dimensional family of planes? It is hard to even
imagine the envelope in Figure 2.

UECTOR{x + c-y + ¢ 2 = ¢ , e, -3, 3}

]

5
z
g -
! I
FRSC -5
o3 ‘.&;ﬂ?ﬁ@*

Figure 2. Visualizing a special family of planes
However, we can see three planes intersecting in one point. And indeed,

[ 2 3 2 3 2 3]
SOLUTIONS{lx + a-y * a ‘2 =a ., x +by+h -z =h.,.x+ecy+c 2 =c |, [x. 9 2])

[[a-bc, —a-hb—-a¢c —bhbc, a+h +c]]

Let us look for a visual pattern when we plot a long list of such intersection points (Figure 3):

UECTOR(YEGCTOR{UECTOR{[a-b-c, — a-b — a'¢c ~ b-c, a + b + ¢].
a, -3, 3. 8.4), b. -3, 3, 8.4), ¢, -3, 3. 8.4)

-25

| -25

25

-28

Figure 3. Connected intersection points of triplets of planes
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It is worth trying to make conjectures on how the shape of the envelope of the planes should look
before proceeding to the formal manipulations.

The method used in deferential geometry for finding the envelope for a given family (if it exists) is
d

solving simultaneously the two equations [ f(x, y,z,¢) =0, = f(x,y,2,¢) = 0] and eliminating c.
c

2 3
f{x, ¥y, 2, €c) == x * c'y+c ‘2 —¢c

d
f(x, y. 2. ¢c) =B, — f(x. y, 2, ¢) = ]
dc

[ 2 3 2 ]
x +cry+cgc cg2—¢c =6, y+2-cz-3-c =8

Derive (version 5) does not have an eliminate command. We could use another CAS for that matter,

or we could “help” Derive in the manipulations as demonstrated in Figure 4.

[ 2 3 2 ]
SOLVES{|x + c-y + ¢ 2 —¢c =8, y + 2-¢c-2 -3¢ =808]. [x. vl>
[« - ¢ ]
x =¢ (2 —2¢)y ~ny=c-{3'c — 2-2)
To eliminate ¢ we solve vy = ¢c-(3-¢c — 2-2) for ¢
SOLVE{y = ¢-{3-c — 2-2), c)
2 2
z2 -~ J(3-y + 2 ) N{3-y + 2 ) + 2
c = ve =
3 3

Substitute the two solutions in x = ¢*2-{z - 2-c)

2 2 2
z — N3y + =z 2 - J3-y +2 )
X - lz - 2-
3 3

2 2 2
N3y +z ) +z N{3-y + 2 ) + =
x_[ 3 ]'[2'2’ ]

3

]
=

Denote the ’roots’ hy x1,. x2

2 2 2
z - N3y + =z ) z — N{3'y + 2 )
x1 == |z - 2-
3 3

Sm———r

x2 :=

2 2 2
N{3-y + 2 ) + =z N3y + 2 ) + =
Az - 2-
3 3

t—

Expand the equation 2?7{x—x1){x—x2)=0
2?7-{x — x1)-({x - x2) = 8

2
27-x%x +18-xy'z + 4-xz -4y -y z =0

Figure 4. Finding the envelope

Now that we have an expression for the envelope, we want to visualize it; but Derive so far cannot
plot an implicit expression in 3-D. This is the time to use DPGraph as suggested in DNL#46 (Won-

isch, 2002). In Figure 5 we see the surface determined by the equation of the envelope. How is it re-
lated to Figure 3?
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2 3
27-x + 18-x-y-z +4xz2 -4y -y 2z =8 —

Figure 5. Visualizing the envelope

We return to Derive to make sure that the equations of tangent planes to this surface belong to the
“geometric” family of planes. For example:

2 3 3 2 2 5
TANGENT _PLANE |27 -x + 18-x-y-z2 + 4-x'z2 - 4-y -y -z , [x, y, z]. —'7—. 1. 1
2

2?7-x - %-y + 3-2z = -1

A nice graphic feature of DPGraph is the options to change parameters interactively and prepare an-
imations. In Figure 6 we added the parametric equation x + ¢y + ¢’z = ¢, and set ¢ = 0.33 to fit the
tangent plane above. In the scrollbar menu we marked the variable ¢, thus enabling changing the val-
ues of the parameter using the scrollbar. Finally we chose to color the graphs BySteepness (by the
gradient) to create a didactic animation wherein the color of the animated plane is changing to match
the color of the envelope where the animated tangent touches it.

[\
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\ i‘ L Ty
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p“\"m?\,.:‘!'b' I A TSI
',’,"o‘v’.‘,’,v’; 5.'!‘0...‘0.5..5
N7 S Sy SV
<t LTI
A
e Y S Sy S
e LI

A
13
i/
e,
LAY
Wi

d
4
i
~,
m,':f,'
v
J
%

Figure 6. Animating tangent planes

An additional didactic animation can be designed by plotting in DPGraph three planes:

x+ay+a’z =a’, x+ by + bz =b,x+cy+cz =7,
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In figure 7we seta = 1.5, b = -1, ¢ = 0.5. Their intersection point is at [-0.75, 1.25, 1]. We can ani-
mate each plane and follow interactively the new intersection point.

" i\'&:%: ,
% LA i

NS A \\\

\\\\\§\

A'",' Y, 6‘
AR aﬁ,‘"%'%‘ 5
A \\\\\ SR TAYA

v' S" il e '&

TSRt
\ S

'ﬂ
'A""" 'A\\\\“\T\ RN \\‘\\\
vsSensl Ve %\i\i‘;\}g\‘t\\\"‘*
A

3

Figure 7. Animating three intersecting planes
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DERIVE AND BOSON ALGEBRA

Francisco M. Fernandez
Cequinor, Facultad de Ciencias Exactas, Universidad Nacional de La Plata
framfer@isis.unlp.edu.ar

Boson algebra is suitable for solving many problems in theoretical physics. It is spanned by the so-

called creation &' and annihilation @ operators that satisfy the commutation relation

[4,a'1=aa'-a'a =1 )
where 1 is the identity operator that we will omit from now on. In order to make this letter suffi-
ciently self-contained we outline some of the well-known properties of the boson algebra.

There is a set of eigenvectors {{n >, n=0,1,...} of the number operator 7i = d'4 that satisfy
fz|n>=n|n>,&|n>=\/;|n—l>, atln>=+n+1jn+1> )

In standard bracket notation, the second and third equalities in equation (2) are equivalent to
<n|&f=\/;<n—1|,'<nl&:\/n+1<n+1| (3)

The set of vectors {{n>, n=0,1,...} is orthonormal and complete; we write the scalar product
between two of them in terms of the Kronecker delta function:<m |n>=4,,, .

Normal order greatly facilitates many calculations involving boson operators. Normal order
means to write the creation operator to the left of the annihilation operator everywhere in a given ex-
pression. To achieve this goal one simply applies equation (1), rewritten as dd' =1+4a'a, as many
times as required.

In what follows we specialize in powers of the operator

A ~ at
s=¢a+c,a 4

For example, to write §° in normal order we proceed as follows:
n n Ant | omen nt2 . At A sl
§?=cla* +ec,(@aT +aa)+cia" =cfa’ + e, (1+2a7a) + cla”
)

~ ~ At
=c’a* +cc,(1+2A)+c2a’

. nk . . R
For higher powers §° this straightforward procedure soon becomes tedious and error-prone as .
increases.

It would be useful to have an algorithm to do such ordering automatically using Derive. Here
we propose a recursive procedure based on the following expression:

§ =858 = c,a"§" " + 8 a+c[a, 8] .
_ . ATak- ak=1 2 k-2
=c,a's" +¢8 a+cc,(k—-1)§

In the second equality of equation (6) we have used the result [4,§]=(k —1)5*" that follows

from induction on [4,5*"] =[4,815** + §[4,5**]. Equation (6) tells us that if §*”' and §** are in

N . . . . .
normal order, then §° will be in normal order, too. This conclusion enables us to write a Derive func
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tion to obtain §* in normal order without bothering ourselves about the noncommutativity of the-

boson operators. Therefore, we simply substitute variables a and & for the operators a and a,
respectively.

The following simple Derive function does the desired calculation recursively:

no(k, cl, c2) :=

If k <0
0
#1: If k=0
1

c2:-b-no(k - 1, cl1, ¢2) + cl:no(k - 1, cl, c2)-a + cl-c2-
(k = 1)'no(k - 2, cl, c2)

We set
#2: VariableOrder := [b, a]

in order to have the variable b that represents the creation operator to the left of a that represents the
annihilation operator. For example
#3: no{2}

2 2 2 2
f14: c2 ‘b + 2-cl-c2-h-a +c1 -a + cl-c2

gives us the first line in equation (5). For the cubic power we have

#5: no(3)

3 3 2 2 2 2 2 3 3 2
fi6: c2 ‘b + 3F-cl-c2 -b ra + 3¢l ¢c2-bh-a +3-clc2 -b+ci -a + 3-¢cl 'c2-a

after expansion in terms of the variables @ and b .

Another interesting and useful application is the calculation of matrix elements

~k . . . . .
<m|§" | n>.Inorder to obtain a suitable expression for Derive we write

<m|§* |n>=<m|(ca+c,d")s" |n>

)
=¢Nm+1<m+1|§" |n>+c2\/;<m—11§"‘l |n>

that follows from equations (3). The following function gives the desired matrix elements

matel(m, k, n, cl, c2) :=
If k =0
#7: KRONECKER(m, n)
cl-y(m + 1)-matel(m + 1, k - 1, n, cl, ¢2) + c2-ym-matel(m ~ 1,

k -1, n, cl, c2)

It is interesting to see how Derive simplifies some expressions for arbitrary m and n:
#9: matel{m, 1, n)
#18: ci1-J(m + 1) -IF{m
#11: matel{m, 2, n)

n-1,1, B +c2-dm-IFm = n + 1, 1, B)

2 2
#12: c1 -J(m + 1)-d(mn + 2)}-IF{m = n - 2, 1, B8) + c2 -Jdm-¥{m — 1}-IF(m = n + 2, 1, B) +

2-cl1-c2-m-IF(m

n, 1, 8) + c1-c2-1F{m = n, 1, 8)
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We get more compact expressions if we write » in terms of m; for example, for the first and second
powers of § we have

#14: matel{m, 1. m} = B

#15: matel{m. 1, m + 1) cl-J{m + 1)
#i6: matel{m, 1. m + 2) = A
2
2

#17: matel{m.
#18: mateli{m.

~ M) =cl-c2-€2-m + 1)
»,m+ 1) =8
2
#192: matel{m, 2. m + 2) =cl -dJ(m + 1)}-J(m + 2)

The operators for the dimensionless coordinate and conjugate momentum in quantum
mechanics are

O S SR
g=—=(a+a’), p=—=(a" -a) ()
V2 V2
and the dimensionless Hamiltonian operator for the harmonic oscillator is
~ 1. .
H=—(p"+q) ©)

If we use our Derive function to calculate matrix elements < m | H | n > for arbitrary m and n, we

obtain

1 i i 1 1 1
#28: ———-matel[m, 2, n., — - ] + ———-matel[m, 2. n, —, —

2 J2 2 2 J2 2
41 N{-m — 1}-4(—m — 2}-IF{m = n — 2, 1, B)-SIGN{{(m + 1) -{m + 2))

: +
4
J1 - m) -J{-m) -SIGN{(m-{m — 1)) -IF{m = n + 2, 1, @)
+
4

J{m + 1)-d(m + 2)-IF{(m = n - 2, 1, 8) + In-J(m — 1)-IF(m = n + 2, 1, @) + 2-2-m7

4 ~
+ 1)-IF{m = n, 1. B)

In order to produce a simpler expression we substitute a variable i for the imaginary number and then

substittute the latter back:

1 i i 1 1 1
#22: —-matelfm. 2, n, - . + ———-matel[m- 2, n, —, ————]
2 J2 J2 2 J2 J2
2 2 ~
23 (1 +1Y-4(m + 1>-4(m + 2)-IF(m = n - 2, 1, B) + dIm-{di + 1)-J{m — 1}-IF{m = n + 2:
H p "
2
1.8 + {1 - 1)(2-m+ 1) IF{m =n, 1, @)
{2-m + 1)-IF{(m = n. 1, @)
#24:

2

L 2m+
This is the well-known result <m | H | n >= m+1

%)

mn*
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Finally, I would like to mention another application of Derive to Boson Algebra. It is well-
known that one can write

k
$ = (1) + Y| (3" + B, (0" | (10)

As before, we write §° = §*7'§ and assume that §*”' has been previously written in the form (10).

Then, we take into account that the right multiplications 4’a' = (A+ j)a@’™ and

ava = (A—j+ 1)4:"1”—1 have the following counterparts in terms of variables a and b :
i 0 j+n - j— n+ 0 i~n— : :
(n+ja’ =a™" a—a’ and (n—j+1)p"" = -p"" %b’ ', respectively. The other two possible
a

. . . . - AT oA AJ n j ~ ~ .. ] ~ ~ . .
right multiplications are simpler: a’a = a’*"', a”at =a"" 1f P(a,3") is a polynomial of the form

(10) and we substitute variables a and b for the operators & and @', respectively, then
P(a,a")a — P(a,0)a-b"" %[P(O, b) - P(0, O)] !
(11)
P(a,a")a" — P(0,b)b+a™ —a?—[P(a, 0)- P(0,0)]a"
a

should give us the correct coefficients of the polynomials resulting from the indicated operator multi-
plications. The Derive functions

n+14d 1
ta(x) = a-SUBST(x. h. B8) - b -— |——(SUBST{x, a, @) - SUBST{(x. [a. b].
#25: db n +1

8, 81))

d n
426 th{x} == b-SUBST(x, a, 8) + d_ (a -{(SUBST¢(x. b, @) — SUBST{(x, [a. b]. [B. 8]1)))
: n a

a

perform the operations in the right-hand sides of equations (11), and
nno{j,. cl, c2) ==
If g =B

#27: If j =1
cl-a + c2-b
cl-ta{nno{j — 1, c¢1, ¢c2)) + c2-th{nno{j — 1. cl. c2})

applies them recursively to the powers of §. For example, after expanding in terms of a and b this
function gives us

2 2 2 2
#28: nmno{2) = 2-¢cl-c2-n + ¢c2 -b + ¢l -a + cl-c2

which agrees exactly with the second line of equation (5). Analogously, for §° we obtain

3 3 2 2 2
#29: nned{3) =¢2 ‘b + 3-c1-c2 -n-bh +cl ra-{cl-a + F-c2-(n + 1))

#38: UVariahleOrder := [b. a, b]
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In order to have the correct order @ and a' to the right of 7 we should expand the outputs in terms

of the three variables a, b, and n. However, we have expanded them only in terms of the first two
variables in order to show the polynomials of n explicitly.

We clearly appreciate that Derive is suitable for carrying out some simple but tedious operator
algebra in quantum mechanics.

Albert Rich’s answer on a question raised in DNL#50

Hello Josef,
Thank you for the timely delivery of the DNL#50 as a pdf file. | used it to look up Benno Grabinger’s
article on random number generators to understand the question you raised in TI_RANDOM.dfw. You

wondered why

VECTOR (RANDOM (1) ,1,1,5)
produced each second random number generated by

VECTOR (RANDOM (2°32) ,i,1,5)/2%32.
If you reduce the precision from 10 to 6 digits, the first expression above will produce each of the ran-
dom numbers produced by the second. This phenomenon is due to the fact that when producing ran-
dom numbers between 0 and 1, the result must have at least the digits of presision number of random

digits. Therefore, at 10 digits of precision, the random number generator is called twice in order to
generate that many random digits. At 20 digits of precision, three calls are regired.

Hope this explanation helps.

In the attachment you find an exercise that causes problems when [ 365 ]1/ 3 ales

computing with Derive 5.04. 5 + V6

Approximating the first expression to three digits of precision, 365 |13

you get three digits. So that's not the problem of course. 180- [5—»,—«,-] - 3659
365 13

Approximating the second expression to three digits of precision, LU [W] = 365

you get four digits. I don't like that!

Can you explain me what's happening ?

Approximating the second expression to two digits of precision,
you get three digits. I could accept this result, because there are
three digits before the comma in the result.

Hartelike groet
Marie-Jeann Aspeele

Albert Rich’s answer which gives another insight to illuminate DERIVE's interior:

Internally Derive uses binary arithmetic. However users specify digits of precision in decimal digits.
Therefare, Derive has to convert the number of decimal digits to the number of binary bits required to
achieve the precision. Since this conversion from digits to bits of precision can only be an approxima-
tion, Derive conservatively rounds up the number of bits. This may result in slightly more digits of pre-
cision than requested.

In addition to the digits of precision, another factor to consider is the digits of notation used to display
results. In decimal notation, the digits of notation is normally the maximum number of digits displayed.
However, no matter how few digits of notation are requested, Derive displays all the integer digits of
noninteger, rational numbers plus at least one digit following the decimal point. This is done to make
clear that the number is not an integer.
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Macdonald Phillips: Answers to Challenge #2 (1)

D-N-L#51

Josef,

Here is my answer to your challenge.

Transform() takes 3 arguements: s-

—the string to be transformed, tm--the transformation matrix, and n—-the

number of times the string is transformed.

In this version, if a given

element of the string is not to be transformed, it DOES NOT have to be
included in the transformation matrix.

#1:

6=

#14:

Transt
Prqg

Jd
k
Lo

orm{s, tm, n :=1, 1, pnew, i, Jj, k. m, a) ==
=1
= DIM{tm)
op
If jd >n
RETURN s
iz=1
1 := DIM{s)
new == "V
Loop
If i > 1 exit
m =1
a == false
Loop
If m > k exit
If sli = tmimil
[niw := APPEND{new, tmiml2),. a = true]
m =+
If a = false
new = APPEND(new, sii)
i+ 1
ji+ 1
s = new
a b
h ac
¢ abhc

Transform{ab,. t,. 5)

babcachabcbacabcachbacabchabcachacabcachabechacabe

UECTOR( [Transform{ab, t. n})]. n. 5}

Transform{a_¥_bh.

hac
achabe
babcachacabc

acbacabcbhabcachabchacabe

| babcacbhabchacabcachbacabechbabcachacabcachabebacahbe |

52

habcachabcbacabc_X_acbacabchabcachacabcachabebacabe

t.

UECTOR( [Transform{a_X_h. t. n}], n, 5)

b_HR_ac
ac_H%_babc
babc_¥_acbacabc
achacabc_X_babhcacbabchacabc

| babcacbhabcbhacabc_¥_achacabchabcachacabecacbabchacabe |

MacDonald Phillips
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Hallo Josef,

I programmed the curve which you presented in DNL#50 (page 39) in traditional way using the
“Turtle”: (The result is the classic Sierpinski Curve — see Sagan, H.: Space-filling curves, 1994, p 51).
Best regards

Riideger Baumann

#1:
#2:
#3:

#4:

#5:

#6:

#7:

#8:

#9:

Angle:=Degree
[posX:=, posY:=, Richtung:=, Spur:=]
neu:=PROG(posX:=0,posY:=0, Richtung:=0, Spur:=[[0, 0]])

vor(s_) :=PROG(
posX := posX + s_-COS(Richtung),
posY := posY + s_-SIN(Richtung),
Spur := APPEND(Spur, [[posX, posY¥]]))

links(w_) :=PROG(
Richtung:=MOD(Richtung + w_, 360))

rechts(w_):=links(-w_)

Kolam(n, s):=
IF(n > O,

PROG(
Kolam(n - 1, s),
rechts(45), vor(s), rechts(45),
Kolam(n - 1, s),
links(90), wvor(s), 1links(90),
Kolam(n - 1, s),
rechts(45), vor(s), rechts(45),
Kolam(n - 1, s)))

Sierp(n, s, i:=0):=PROG(

neu,

LOOP(
i:r=i o+ 1,
IF(i > 4,RETURN Spur),
PROG(

Kolam(n,s),
rechts(45), vor(s), rechts(45))))

Sierp(3, 1)

#10: Sierp(4,1)
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You can download also the English version of the file.
Riideger wrote one special program for one special Curve. (See also “TURTLE GRAPHIC in
DERIVE” by Lechner & Roanes & Roanes & Wiesenbauer, DNL#25, 1997).

Aristide Lindenmayer’s Rewriting technique makes possible to use one program to produce various
forms of Curves.

See the following illustration: We start with the square (FBFB) and then replace the Bs by
(BFBFBFB) and the Fs by an F. In this figure the Bs and the Fs are substituted in the same way

m
(w1]
=
M,
m
m
+
SN A

F]F F — RJ

The rules are as follows (one important additional rule will be introduced in DNL#52):
B and F: go one step forward and plot the segment,

+ make a 45° turn in positive direction,

—make a 45° turn 1n negative direction,

lindsys(45,[”"B”,”F”], ["B+F+B~~F--B+F+B” ,”F"] ,"B—~F—-B—-F" ,4)

delivers the 4™ stage of development of the “Snake Kolam”. You will recognize the explanation from
above. The syntax of the program is:

lindsys (turning angle, list of elements to be substituted, substitution
rules, starting figure, number of steps, [starting direction, default = 0],
[starting point, default = [0,0]]).

See DNL#52, Josef



D-N-L#51 Stefan Welke: Answers to Challenge #2 (3) p25

Solution to the “New Challenge” from DNL # 50

Stefan Welke, Bonn, Germany, spwelke@aol . com

1 L-Systems

My solution is a straightforward exercise in functional programming. The main part of this exercise is
to replace characters in a string by characters or strings, e.g."a"—"b", "b"—>"ac", and
"c"— "abc" as given by the actual “new challenge”. Thus we start with two functions, (1) to split a
string into a vector of its characters, and (2) the inverse functions.

#1: string2vector(str) := VECTOR(CODES_TO_NAME(k), k, NAME_TO_CODES(str))
vector2string(vec) := CODES_TO_NAME (NAME_TO_CODES(vec)' )

#2: 1

Examples:

#3: string2vector(”Lindenmayer”)

#4 . [IILI! R I!i’l N Ilnll , Ifdll , Ilell s Ilnll , Ilmll . ”all , Ilyfl , Ilell s llrll

#5 . vector25tring( [NLH s myr s 't R rqr R rar s n" , m s "ar S IIYII s ne" ) "r"] )

#6: ”"Lindenmayer”

The core idea is to (I) replace the given initial string by its vector of characters, (II) then to substitute

the characters according to the given rules, and (III) finally to transform the resulting vector of charac-
ters into a string;:

nabn Step | ; ["a“,"b“] Step II ["b",["a","c"]] Step II' ["b","a","c"] Step 11 ; "bac"

There is just one minor problem left, as is indicated in the diagram above: We get a vector, with char-
acters and vectors as elements. So we have to remove the inner square brackets and this is exactly,
what the following function does. The function £latten(v,n) flattens out nested vectors up to
level n. This function proves to be useful in itself apart from our actual problem, the inspiration comes
from Mathematica, where this is a built-in function.

#7: flatten(v, n := 1) :=
ITERATE(IF(VECTOR?(v_), PROG(w_ := VECTOR(IF(VECTOR?(k), k, [k]), k, v_),
APPEND(w_)), v_, v_), v_, Vv, n)

#8:  flatten([3, [a, b, v 1, [2, [t, s]]D)

#9: [3, a, b, ¥, 2, [t, s]]

#10: flatten([3, [a, b, v ], [2, [t, s]]11, 2)

#11: [3, a, b, vy, 2, t, s]

Now we are in the position to define the function replacement( . . .), which combines the steps

(IT) and (II°):

#12: replacement(expr old, new) := flatten(SUBST(expr_, old, new))

—0

#13: replacement([”a”, a, 3], ["a”, a, 3], [["a”,”b”], x, 7-y])
#14: [”a”,”b”, x, 7-y]
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The so called L-Systems are named after the biologist Aristid Lindenmayer. This is also the reason for
the name of the following function, that combines steps (I) to (1II):

lindenmayer(str_, old_, new_, n := 1) :=
Prog
#15: w_ := string2vector(str_)
ww_ := ITERATE(replacement(z_, old_, new_), z_, w_, n)

vector2string(ww_)

The following examples are self-explanatory:

#16: lindenmayer(ab, [a, b, c], [b, [a, c], [a, b, <]])
#17: bac

#18: lindenmayer(ab, [a, b, ¢], [b, [a, c], [a, b, <]], 3)

#19: babcacbacabe

In order to produce a nested list, which represents the intermediate iterations too, we need a slight
modification of the last function:

lindenmayer_list(str_, old_, new_, n := 1) :=
Prog
#20: w_ := string2vector(str_)
ww_ := ITERATES(replacement(z_, old_, new_), z_, w_, n)

VECTOR(vector2string(k), k, ww_)

Examples:

#21: 1lindenmayer_list(ab, [a, b, c], [b, [a, ¢], [a, b, cl], 3)

#22; [ab, bac, acbabc, babcacbacabc]

#23: [lindenmayer_list(ab, [a, b, <], [b, [a, c], [a, b, <]], 5)]"
= W
bac

acbabe

#24:
babcacbacabe

acbacabcbabcacbabcecbacabe

| babcacbabebacabcacbacabcbabcacbacabcacbabebacabe

This is the solution to the “new challenge”.

II 2D-Walks

It is fairly easy to create fractal figures with the aid of L-Systems that are iteratively created with an
initial string and a set of replacement rules. As an example we use the set {1,i,~1,—i} of complex

numbers instead of the characters of the alphabet because we can interpret complex numbers as rota-
tions. For example: The sequence {1,7,i,—i,—1,1} tells us to start at the origin, then to move one step

forward (1), then turn left (i) and move a step forward, turn left again (i) and move a step forward,
now turn right (-i) and move a step forward, then (-1) move a step back, and finally move a further
step forward (1) in the actual direction. We can use the function replacement(. . .) to produce
this sort of turtle graphics:
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#25: walk(start, old_, new_, n) := ITERATE(replacement(z_, old_, new_),

z start, n)

-—

#26: walk([l) i]s [15 is _i]’ [i) [1’ _i]' [1, i) _i]]a 5)

#27 [i; 1: i: _i! 1’ —i, i, 13 i; —ia ia 1) _i) 1) i) _i) 1) —i9 1’ 1s
—i; 1: is _i) i’ 1: i, _i’ 1: -i) i: 1: -is 15 is _is 1: —is i) 1|
i, -%, £, 1, -1, 1, 1, -1l

The next two functions are necessary to translate a sequence of complex numbers, the in-structions,
into a set of vertices of the corresponding 2D-walk. The third one is the translation function:

k
#28: prod_list(v) := VECTOR[ n v, k, 1, DIMENSION(V)]
=1 3
k
#29: sum_list(v) := VECTOR[ Z v , k, 1, DIMENSION(v)
=1 3
#30: two_d_walk(start , old_, new_, n) := sum_list(prod_list(walk(start_,

old_, new_, n)))
#31: two_d_walk([l, 2], [1, %, -], [z, [1, -21, (1, 1, -21], 5)

#32: [%, 2-%, -1 + 2-%, -1 + 3.5, -1 + 4.3, 4.5, 5.2, 6.9, -1 + 6.8, -1 +
7.2, -2 + 7.2, -3 + 7-£, -3 + 8.8, -3 + 9.5, -4 + 9.5, -4 + 10.1,
-4 + 11-%, -3 + 11.%, -3 + 12.%, -3 + 13.%, -2 + 13.8, -1 + 13.%,
-1 + 14.%, 14.%, 15.%, 16.-%, -1 + 16.1, -1 + 17-f, -1 + 18-.1,
18.%, 19.%, 20-%, 1 + 20-%, 2 + 20.%, 2 + 21.%, 3 + 21.%, 4 +
21.%, 4 + 20-%, 5+ 20-%, 6 + 20.%, 6 + 21-%, 7 + 21-T, 7 + 22.%,
7 + 23-1, 8 + 23.%, 9 + 23.1, 9 + 24-f, 10 + 24.%]

So far we have got a sequence of complex numbers that must be converted to ordinary points:

#33: to_real_points(z_) := [RE(z_), IM(z_)]®

#34: to_real points([i, 2.2, -1 + 21, -1 + 3.1])

0 1
0 2
#35:
-1 2
-1 3

Let us close with a final example:

#36: old:= [1, £, -f]

1 -1 £ £ 1 - -1 1

#37: new:

f{i -1 £ £ 1 -1 -1 £

-i - 1 %1 1 -1 -1 1
#38: to_real points(two_d_walk([1, %, £, 1], old, new , 1))
#39: to_real_points(two_d_walk([1, i, £, 1], old, new , 2))

#40: to_real_points(two_d_walk([1, i, 1, i], old, new , 3))
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]

Stage 0

Stage 1

y |

Stage 2

Stage 3

96

{more than 220 sec)

Again I use my rewriting technique shortly described on page 29 together with the plotting routine to

obtain a very similar figure. Calculation time differs enormously: Siefan’s stage 3 plot takes nearly
4 minutes, my figure takes an instant to be plotted. Josef.

lindsys

(
lindsys (90
lindsys (90

(

lindsys (90

[
(
(
[

rs FII
IIFII

"

”

”

]
]
F”]
]

14

3

3

2

k]

["F+F-F-FF+F+F-F"] ,
[“F+F-F-FF+F+F-F"] |
["F+F-F-FF+F+F-F"] ,
["F+F-F-FF+F+F-F"] ,

"F+F+F+F"
"F+F+F+F",
"F+F+F+F",
"F+F+F+F7,

Ty

0, 0, [~12, 0])
1, 0, [-8, -2])
2, 0, [4, -8])

3, 0, [48, -32])

A

<

e




