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[1] Interconnectivity: DERIVE and TI-CAS Rechner im MU, B. Kutzler & V. Kokol-Voljc,
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[2] Analysis mit DERIVE, H.-1. Kayser, bk-teachware, SR-38, to appear 2004
[3] Parabeln und Co. erforschen mit DERIVE, Rainer Wonisch, bk-teachware, SR-39, to appear 2004

DERIVE Book Bargain

* earning Differential Equations through DERIVE* develops the standard theory of first and
second order differential equations, with applications to the physical and environmental
sciences — supported by Derive for Windows.

We are offering the above title by Brian Lowe and John Berry to DUG readers at the special
price of just 5 GBP + postage (usually 19.95 GBP). 383 Pages.

Chartwell-Yorke, Ltd
114 High Street, Belmont Village, Bolton, Lancashire, BL7 8AL
susan.yorke@cymaths.demon.co.uk

Websites
A very fine designed website presenting online-courses for working with the Voyage 200. It is in

French and could be very interesting for students working with the TI and learning French.
http://www.t3ww. org/france/fonctions.htm

USA TODAY and Texas Instruments alliance to deliver standards-based math materials to classroom
via handheld technology. Visit the following two websites

http://www.education. usatoday.com

A linear Algebra Toolkit (recommended by http: / /www.mathgate.ac.uk/)
http://shorl.com/ fypivovitaho
http://shop .bk-teachware.com

This is the address for DERIVE - & TI-related books. There is also a rich resource of additional soft-
ware and inspiring maths books.

TIME-2004

Montreal Int'l Symposium on Technology and its Integration
into Mathematics Education

15-18 July 2004, Montréal, Québec, Canada

www.time-2004.etsmtl.ca
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LETTER OF THE EDITOR p1l

Dear DUG Members,

First of all I'd like to wish you a happy, healthy and
peaceful New Year 2004. Unfortunately it was not
possible to finalize and ship this DNL in 2003. One
reason was my long — wonderful — stay in New
Zealand, another one that the print shop was too
busy in the last weeks of 2003. But now you have
an XL DNL in your hands. This DNL#52 marks the
end of a remarkable and successful 13-years history
and the begin of a new era as well.

One of my eyes is weeping, because

(and 6?) and converting them into pdf-format by
and by. This should go hand in hand with providing
an extended index for the contents and authors. So
if you have some ideas for improvements for earlier
DNLs then please let me know.

At the occasion of starting the new electronical
future of the DNL I'd like to thank some friends for
their invalueable support during the last years: this
is the DERIVE-team, Theresa Shelby, Albert Rich
and David Stoutemyer — they never let me alone

with any question, might it have been

we stop mailing the printed publication
of the DNL. I made this decision be-
cause of the enormously increasing
mailing charges together with the wish

[ 782 DERIVE - NEWSLETTER #1 |

silly or not. Then I must mention An-
drea Kutzler. She took care for orga-
nizing printing the DNLs and Walter

[V Y | W/ m—)\
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of many members for receiving the | vstr crour

DNL in electronical format. So my

Centents:

Wegscheider and Benjamin Kaineder
who very reliable put the DERIVE-

other eye is laughing announcing that
we will go on publishing the DNL in
pdf-format. This will work much faster
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than surface mail, you will enjoy col- - N

files on the web, thanks folks. And
finally vicarious for all contributors I'd
like to thank Johann Wiesenbauer. His

ors and hyperlinks , will be able to
produce copies of articles of your

Titbits have become an essential part
of the DNL and I hope that he will go

=== | on sharing his intimate knowledge of

interest and surely very pleasant and
welcome: you will save money! As we don’t have
costs for printing and mailing any longer, DUG
MEMBERSHIP IS FREE in the future. All of you
remain members for life time (at least for life time
of the DUG). In the future you can download the
DNL from the websites given below. 1'd like to
invite you to mail your email-address, then I could
inform you about publication date of the future
DNLs. If somebody has no access to internet then
please contact me. We will find a way to resolve
this problem.

I am very grateful for your friendship, loyalty and
cooperation during the last 13 years and I hope that
we can enjoy the future together for another 137?
years. It is my strong intention to go on with the
DUG as long as there are enough contributions to
be published. So I'd like to encourage you to send
your articles — in particular I'd like to invite once
more the TI-CAS-users to share their experiences.

Going on the web with the DNLs I have some ideas:
I intend to revise all earlier DNLs beginning with #1
from 1991, adjusting them for DERIVE version 5

DERIVE (and number theory, of course) with us.

Let me close with some words regarding DNL#52.
This is an extraordinary large issue, as promised in
DNL#51 and it is always the same, I have some
papers on my table and putting them together I find
that I would need some pages more — even with 60
pages. So I had to leave among others Rainer
Geyer’s wonderful contribution on fractal tetrahe-
drons for the next issue. We have some interesting
discussion points in this User Forum, some more
are waiting to be published. Simultaneously with the
release of DERIVE 6 we show some exciting fea-
tures of the new version. Please take care of the
different files for versions 5 and 6. I'll come back to
this important question next tirne.

See you in Canada?? We could arrange a DERIVE
User Group meeting in Montréal!!

Regards as ever /ﬁ

Download all DNL-DERIVE- and TI-files from

http://www.acdca.ac.at/t3/dergroup/index.htm
http://www.bk-teachware.com/main.asp?session=375059
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E D I T O R I A L

D-N-L#52

The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & CAS-TI User Group.
It is published at least four times a year.
The goals of the DNL are to enable the
exchange of experiences made with
DERIVE and the TI-89/92/Voyage 200 as
well as to create a group to discuss the pos-
sibilities of new methodical and didactical
manners in teaching mathematics.

As many of the DERIVE Users are also
using the CAS-77s the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef B6hm

A-3042 Wiirmla

D’Lust 1

Austria

Phone/FAX: 43-(0)2275/8207
e-mail:

nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English
articles will be warmly welcomed nonethe-
less. Your contributions will be edited but
not assessed. By submitting articles the
author gives his consent for reprinting it in
the DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & CAS-TI Newsletter will be.

March 2004
15 February 2004

Next issue;
Deadline:

Preview: Contributions waiting to be published

Finite continued fractions St. Welke, GER

Kaprekar’s "Self numbers", R. Schorn, GER

Some simulations of Random Experiments, J. B6hm, AUT
Wonderful World of Pedal Curves, J. B6hm

Another Task for End Examination, J. Lechner, AUT
Tools for 3D-Problems, P. Lilke-Rosendahl, GER
ANOVA with DERIVE & T/, M. R. Phillips, USA

Hill-Encription, J. Bohm

CAD-Design with DERIVE and the T, J. Béhm

Sierpinski-Tetrahedrons and Octahedrons, H.-R. Geyer, GER

Avoiding Convolution and Transforming Methods, M. Lesmes-Acosta, COL
Farey Sequences on the T/, M. Lesmes-Acosta, COL

Simulating a Graphing Calculator in DERIVE, J. Bohm, AUT

Henon & Co, J. Bohm

Rule 90 and other Cellular Automata, D. Sjostrand, SWE
A Time-Value-Money Solver for DERIVE

and

Setif, FRA; Vermeylen, BEL; Leinbach, USA; Koller, AUT,

Keunecke, GER,

......... and others

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wiirmla, D'Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag.Josef B6hm
Herstellung: Selbstverlag
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Dirk Callens » dirkcallens@hotmail.com

When we solve inequalities, using cartesian co-ordinates or polar coordinates, a certain region of the

plane can be coloured.

2
-1 {x<{2AAaB<y<4a4-x

r {1 + COS{e)

But how can we do this working with curves given in parameter form?
Can you shade the area between the x-axis and the cycloid x =t —cos ¢,y =1 —sin 7 for 0 <¢<2n?

DNL: This is a demanding question. I failed using the relations and tried to fill the area by segments.

It is obvious that by using parameter t for the intervals, the segments are not uniformly distributed.
(Why? Fine question for students!).

shade _parmn_x{p_curve, par, start. end. n) == UECIOR[[p_purue, [p_puruei, @]], par.,

start,. end.

end - start ]
n

shade_parn_x{ [t — COS{t). 1 — SIN{t)]. t. B, 2-n, 5@)

i

. ® & T
T

t_vals{p_curve, par, start, end, n) 3= UECTOR|{NSOLUTIONS(x_ = p_curuei, )y » x_.
1

SUBST(p_puruei. par, start), SUBST(p_puruei, par, end),

SUBSI(p_curuei, par, end) - SUBST(p_puruei, par, stapt)

n
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#9: t_vals([t - COS{t). 1 — SIN(t)], t. B, 2-n, 18)

#18: [@, 8.583984, B.887775. 1.22443, 1.54283, 1.85816, 2.18973. 2.56178. 3.0324%2.
4.00506, 6.28318]

shade2_parn_x{p_curve. par, start. end. n) := APPEND{[p_curve]. UECIOR([p_curue,
f#Hi:
[p_curuei, ﬂ]], par, t_vals{p_curve, par,. start, end. n)))
#12: shade2_parn_x([t —~ COS{t). 1 - SIN(t)]. t. 8. 2-un. 108)

t vals(...) returns uniformly distributed x-values for the area to be shaded.

shade2 parm(...) plots the curve together with n segments shading the area:

1.5
. »
! @.5 .
. jas ]]‘ JLLLL LTULLLTE - e uh .. II[IT]I]IXI]
: 1.5 -1 -85 . 85 1 1.5 2 2.5 3 3.5 4 45
9.5

I applied my function with two other parameter representations but — not unexpected because of the
problems occuring by solving the equation numerically — I was not really satisfied with the results.

2 3
t t
shade2_parm_x}|1 - + Jt, - +t|,. t. 1, 4, 28
4 10

2
3-t 3-t

3’ 3
1+t 1+t

folium :=

shade2_parm_x(folium,. t, -6.9, 8.9, 58)

+

/
|I|||“

I wrote to Albert Rich, who forwarded the mail to Peter Schofield, “the expert on DERIVE graphics”,

with the hope that “'he will have some insights into the matter”. Many thanks to Albert, who is really
busy in improving DERIVE 6, which is a tremendous work.

And many thanks to Peter who sent an extended answer very soon and promised in a later mail an
inproved version.
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Peter Schofield

Hello Josef, Albert and Theresa,
Thank you for your email Albert.

| know of no straightforward way of shading some parametrically defined areas. In some cases, if you
can eliminate the parameter variable to obtain a closed form equation in x and y, then (using this) it is
possible to make up an outline and corresponding Boolean expression to plot the interor area. How-
ever, this does not appear possible for the example of a cycloid below.

Please find attached: ParameterAreas.Zip (my efforts at solving this problem). This uses a variation of
one of my bodyscanning techniques to cut up the required the area into strips - similar to the way one
describes the geometrical interpretion of an integral. | suspect this is like the method tried by Josef,

ParameterAreas.zip contains two mth files:

ParameterAreas1.mth - Plots areas (integrals) in 2D between parametric curves and the x-axis.
(The ORPLOT instruction is thanks to Albert.)

ParameterAreas2.mth - Plots areas (integrals) in the Oxy-plane in the 3D-plot window between para-
metric curves and the x-axis. (Notice that Derive 3D-surface plots are constructed from quadrilateral
panels, and so the strips are easier to define in the 3D-plot window.)

The files use rectangular coordinates and require
Options>Approximate Before Plotting ON (in both plot windows).

Hope you find this helpful.
All the best for Christmas and New Year.
Peter
2
t 3t
ORPLOT | X¥SCAN {UECTOR 5 » 3 . t. 8.2, 6.9, 8.68%
' 1+t 1 +¢t

2
3t 3-t

HYSCAN|UVECTOR —_ o t, -6.9. 6.2, 8.1
1+t 1+t

2
.

-

ORPLOT {X¥SCAN{UECTOR( [COSH{t}. SIMNH(t}]. t, -2, 2, B.1}))

2 3
t
ORPLOT[HYSCHN[UECTOR[[i - 2 + Jt, - P + 1] t, 1, 4, 9. !5]]]

parmn_shade{v_, t_, ti_, t2_, step) := ORPLOT{(XYSCAN{UVECTOR(w_. t_. ti_. t2_, step)))

: , -
parm_shade[[t - GO8{t). 2 + 2-8IN(t)]. t. B, 2-m, o ]

(parm_shade is my invention to make the input easier. Josef)
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n
parn_shade[[t - COS{t), 1 - SIN(t}], t. B, 2-m, e ]

TZ
+1.5

Let’s have a look onto the cykloid in 3D-Plot Window:

n
HYSGRN_3[UECTOR[[1: — C08(t), 1 — SIN(t)]., t. B, 2-n, P ]]

parm_shade 3d{v_, t_, ti_, t2_, step) := RYSCAN_3(UECTOR(v_, t_, t1_, t2_, step))

™

18

parm_shade_Iid[[t - COS{t), 1 — SIN(t)], t, - I-m, 3-n,
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VISUALIZATION OF HYPERBOLIC MOBIUS TRANSFORMATIONS
IN TWO AND THREE DIMENSIONS USING DERIVE (2)

Timothy D. Comar

Benedictine University
tcomar@benedu

Step 6. Plot the geodesic axis A.
We use the command
AXIS(M) = [0, O, t],

The geodesic axis A

which returns the parameterization of 4, where ¢ > 0.

Figure 4 shows the plot of 4, which orthogonally in-
tersects HP(1,0,0) and HP(4,0,0) at the points (0,0,1)
and (0,0,4) respectively.

Figure 4: The geodesic axis 4 of f

Notice that f preserves 4 as a set. In the next step, we investigate how far £ translates points along 4.
To do this, we recall that the hyperbolic arc length element on H® is defined as follows.

Let #8) = (x(1),y(£),2(1)), where ¢ € [a, b], where 0 < a < b < w0, be the curve in H’. The hyperbolic arc
length is

2 2 2 & &y
dsz\/dx +dy” +dz _Na +rt e i
z z(t)

and the hyperbolic arc length of yis

d’x 4y | d
=b Tt
Ly=£ ds:r ' d? ' odt
=q a Z(t)
Step 7. Compute the hyperbolic translation distance of f along A. This distance is the hyperbolic arc
length of the geodesic segment of A from (0, 0, a) to f (0, 0, @) = (0, 0, 4a), where a > 0.
Parameterize the geodesic segment of 4 from (0, 0, a) to (0, 0, 4a) by {#) = (0, 0, £), where
a <t < 4a. The hyperbolic arc length integral reduces to
4-a

1
L := — dt
t

a

which simplifies to 2-LN(2), or In(4). This means that any point on A4 is translated along 4 away
from 0 by a distance of In(4). This is the minimal translation length of fbecause 4 is a geodesic. For

contrast, consider the Euclidean segment joining the points (g, a, 0) and f ((, 0, ) = (4a, 0, 4a).

This segment is not a geodesic segment and will have hyperbolic length greater than In(4). To confirm
this, we proceed to the next step.
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Step 8. Compute the hyperbolic length of the Euclidean segment joining the points (a, a, 0) and
(10 1) = (4a, 0, 4a), where a > 0.

Parameterize the segment by a(f) = (¢, t, 0), where a < t < 4a. The hyperbolic arc length integral re-
duces to

4.3 \[
2

[ —— dt = 2.42-1LN(2).
t

a

We now proceed to illustrate a regular neighborhood of the geodesic axis 4. The e-regular neighbor-
hood of 4 is the set of points

N_(4)={xe H’|d,(x, 4) <&}
and its boundary is defined to be the set

ON_(A4)={x e H’ |d, (x, 4) <€}

where d,(x, A) is the minimum hyperbolic distance between the point x € H° and the geodesic axis 4.
We have created a DERIVE routine RegNbdAXIS (MAT, €) which returns a parameterization of the
boundary of the e-regular neighborhood of the geodesic axis of the (nontrivial, non-parabolic)

Mébius transformation represented by the matrix MAT. Note the creation of the routine itself provides
a challenging exercise in trigonometry.

Step 9. Find a parameterization of the boundary of the 1-regular neighborhood of 4 and plot its sur-
face.

First note that a Mobius transformation and its inverse have the same geodesic axis and that the ma-
trix representation of f 7 is just M'. For sake of plotting, it will be easier to plot this regular

neighborhood in terms of f7! because its attracting fixed point is 0 rather than . We proceed as

follows:

APPROX (RegNbdAXIS(M,1))=[1.175201256-x-COS{6),1.175201256.x-SIN(8) ,k]

or
-1
APPROX (RegNbdAXIS (M ,1))=[1.175201256.x-C0S(8),1.175201256-x-SIN(8) ,x]

where 0 < < 2w and x> 0. By looking at this parameterization, notice that f (ON,(A))=0N,(4). By

substituting the values 1 to 6 for x and plotting we observe that the level curves of this regular
heighborhood are circles at Euclidean height « centered at points on 4. (See Figure 5.) See Figure 6
for the plot of the parameterized surface itself.

We see that this surface is an Euclidean cone with 4 as its axis! To develop a better sense of the
geometry of a regular neighborhood of a geodesic in H’, we conclude by briefly investigating a hy-
perbolic Mébius transformation which has two finite fixed points in C.

21
Step 10. Denote by g the Mébius transformation with the matrix representation MM = [1 1].

Determine the fixed points, geodesic axis B, and a parameterization of the boundary of the
0.5-regular neighborhood of B. Plot B and the boundary of its 0.5-regular neighborhood.
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z Zz
o
e

o] 0

-8 -8

-8 X v
Y R
g 8 8

VECTOR {RegNbdAXIS (M, 1), k, 6)

Figure 5: Several level curves of . ON, (4)

Ele 134 F3 Fyv fs Fav
v §==IR1gebra calc]other Prgml0iClean Up
o =T To— =]

El I rzv—_T T3 T Fuv I S d
I - 2—“—3 RlgebralCalc|0ther| Pr‘gmlDEean Upﬁ

Figure 6: The surface 0N, (4) is an Euclidean cone

r Fiv T 34 T 3 T LA TrsvT 1
Tools|Objects|Window[Projection|Plot

_[2 l]-»nn
11

= axis(m)
u regnbdax(m, 1)
{1.1752 - cos(uy-v 1.1752-sin(u)-v
s regnbdax(m 1, 1)
[1.1752-cos(u)'v 1.1732-5infu)-v vl
regnbhdax<m™~1.1)|
COMAR RAD_ABTO

FHNC 5/30

@ 0

L regnbdax(n -1 N 1)
[1.1752-cos(uy-v 1,1752 sin(u)-v V]
®[1.1752011936438 cos(u) v 1.175281193¢p
[1.1752-cos(u)-v 1.1732-sin(u)-v V]

s poinc(m,[cos{u) - sin(Vw) sin(u)-sinv) b
[4-cos(uw)-sinlv) 4-sin(u)-sin(v) 4 cost
» fplm) [0 «]
B fpfinit(m) [undef undef]

R0 AUTD FONC 9730

FRESENT RAD_AUTD FLNC

See the handheld-realization using TI-functions and a self written3D-plot program. The cone is represented in

isometric projection.

We use the command FP(K) to determine the fixed points of g, which are the two points in C

(reported as an ordered pair)

FP{MM)

1 V5 V5

1

+

2 2 2

2

A parameterization for the geodesic axis B of g is determined using the command AXIS (MM), which

returns

AXIS (MM)

where 0 < ¢ < ©. Hence this geodesic
axis is a semicircle that is orthogonal
to C at its end points. Figure 7 shows

the plot of this geodesic axis.

T 2 F3 oM s 3

-E ngeBra Calvc. Ut'.-her- PramlQ Clear: Up

[ 5-1) 1+5
2 2

5-sin(t)]
2

= £p(nm)

% axis(mm) +1-2 ©

.[E-cos(t)
2

[ﬁwzos(t)
2

+1/2 0
[{5-costt) .y 5 o E'sin(fﬂ

—————ﬁ - szin(t)] + geoax

V5-cos(t) it V5-.8IN(t)
+ » 0,
2 2 2
1.5 ! ‘
= 0
; ‘ ' 1.5
2.5 25 X
Figure 7

ﬁrxvﬁw F Fav Tr’?ﬁsv
Tools{Objects|Window|Projection|Plot.

ans(1)3geoax
RAD AUTD

COMAR FUNC 12/30

PRESENT BAD_AOTD FONC

Ty fey . F3v | fav [ TEv
Calc Other |Pragml0iClean Up
. S.c;s(t.) +1/2 O 5-52:n(’-) » geoax
[E~cos(t.) E~sin(t,)]
2 2

+172 0
¥ regnbdax(mm, .5) # banana
.5000 { costuy v - 3.2783 {2 - . 1604))
cosfuy-v - 18131 (uv2 + . 4208}
regnbdax{mm. .5>*hanana
COMAR BAD AUTO FUONC 13730

»

The TI-performation leads to the final results, too. The functions are collected in the grouped file mobmath. J.
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Now the command RegNbdAXIS (MM, 0.5) approximates to a rather messy parameterization. By
substituting the values x = 0.5,1, 2, 3, 4, 5, 6, 7 and plotting, we see that the level curves are circles
centered along the geodesic axis B. Moreover, larger and larger values of x give circles that become

145
(0]

smaller and smaller in Euclidean radius and closer and closer attracting fixed point

fg.

2

Part of the DERIVE-result (below) and Figure 8:

RegNbdAXIS(MM, B.5)

-6 2 2 17
4.98274-18 -(578%-x -COS(8) + 6.88567-10 -x-COS(e) - 1.6

12 12
6.86191-18 -x-COS(e) - 8.37198-1@
15 -2 19 ¥

X
Figure 8: Several level curves of oN(B)

We now plot the complete surface below in Figure 9. We observe that in this case that a hyperbolic

transformation has two finite fixed points, regular neighborhoods of its geodesic axis are “banana-
shaped”.

. L [ 5 T Fer T F3 T Fuv Tr5v‘|' ]
£ Tools|Objectsindow|Projection|Plot
o I 0% o
r”/#/’ X
2.5
A’y
el e 7 .
x os 2.5
LKESENT RAD AUTO FUMC

Figure 9: The surface 0N, (B) is “banana-shaped.

For further information

Additional activities and the latest version of mobmath.mth [2] can be obtained by contacting the
author directly at tcomar@ben.edu.

References
[11 A.F.Beardon, The Geometry of Discrete Groups, Springer-Vetlag, 1983
[2] T.D.Comar, mobmath.mth, Derive math files, tcomar@ben.edu, November, 2002

[3] T. D. Comar, “Visualization of Mdbius. transformations in two and three dimensions using a
CAS”, Proceedings of the 15" Annual International Conference of Technology in Collegiate
Mathematics (to be published in September 2003 by Addison-Wesley), 2004

mobmath . dfw, which was used for this contribution can be downloaded (in the DNL#51-files).
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Bézier Curves in School

Franz Schitglhofer
Piadagogische Akademie Linz; University Linz

In the origin Bézier curves came into being from motor car industry especially from France (Citroen,
Renault). In the 1960™ there was a demand on good connections between design and production of
cars. The figures produced in the design-studio should be used in a mathematic manner for the pro-
gramming of the machines to produce the cars. Now Bézier curves are also used especially for com-
puter-graphics (graphics-programs, True-Type-Fonts, ...)

The subject of Bézier curves appears to be an interesting field of mathematics for school. Students
can experience modern applications of mathematics. The computer is a useful and necessary tool for
calculating and plotting the curves as well. Until now there is no tradition in school-praxis for these

curves. I believe that one should confront pupils with the phenomenas first and not with the mathe-
matical background.

A Geometric Definition of Bézier Curves

Bézier curves of degree 2
The following figures show two line segments 4B and BC. The segments are divided in ten parts of

equal length. In the center figure the points are connected with lines. With a little bit of phantasy you
can imagine a “curve” from 4 to C.

w

The imagination of a curve between 4 and C will improve if you divide the segments in 50 parts of

equal length. Up to now we have only a imagination of a curve but we need a construction of points of
the curve.!']

[ 1t is not difficult to produce a function which plots these two families of line segments created by two
series of points lying on two segments AB and CD. Josef

¥l yl x3 y3
threads{x1l, vi, x2, y2, x3. vy3, x4, y4,. n) := APPEND . .
x2 y2 x4 uy4

i i
UECTOR[[[xi, yl] + [x2 - x1, y2 — y1], [x3, »3] + —-[x4 - x3, vi1 — y3]], i,
n

)

threads{6, 7. 5, 8, 5. 8. 18, 16. 18}
threads(B, 7. 5. 8, 5, 6, 18, 18, 58)
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Students can use this
function to create nice
pictures.

Bézier curve of degree 2

The Bézier polygon ABC and the Bézier

points 4, B and C define the curve. T?

We get point X of the curve with the fol-

lowing proportions of lengths of segments: T
AT,:AB = BT,:BC =T X:TT, = ¢t:1 CABRI .

Variable ¢ is called parameter. For each t€[0;1] we get one point of the Bézier curve. With £ =0 we
get A, with £ = 1 the point C. If ¢ takes all numbers from [0;1], we get the whole Bézier curve. If f runs
from 0 to 1, X runs on the curve from 4 to C.

In the same way we can define a Bézier curve of degree 3.

A D
Bézier-curve of degree 3
The Bézier polygon ABCD and the Bézier 3
points 4, B, C and D define the curve.

T
We get the point X of the curve with the follow-
ing proportions of lengths of segments:
CABRI
B T2 C

AT,:AB = BT,:BC = CT,:CD =TT,:TT, = T[T,:T,T, = TX:T,T, =t:1

All what was said above about the parameter of a Bézier curve of degree 2 is also valid for a Bézier
curve of degree 3.
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Construction of Bézier Curves with CABRI

First we create two segments 4B and CD (note the “direc-
tion” of the segments in CABRI).

7,isa Point on Object (can be moved on the segment
between A and B). This point is the point of division for
the Bézier curve.

The screen shot shows the transfer of 7} to the segment
CD. This gives the point 75.

THIS SEGMENT

This construction can be saved in a macro. Only with the E y
segments AB, CD and T the point T, can be constructed.
T2
Now we use our macro to create a Bézier curve of C

degree 2.

First we draw AB, BC and T,. Then 7, is transferred to
BC, giving T, and further to 7;7; to obtain X.

The curve is created as locus of the point X depending on .
the motion of 7.

In the same way we can build a Bézier curve of degree 3
(see the figure).

D
An important result of this construction: A

The Bézier curve depends only on the Bézier points (the & 1! "

Bézier polygon). For example: These are the points 4, B, -
C and D for the Bézier curve of degree 3. If these points 5

are moved the curve changes its form. ¢

|ARTS DEG ERRCT FUNC

For practical use it is not necessary to create Bézier curves of higher degree than 3. Complex figures
can be built with more curves.

Algebraic representation of Bézier curves

We use basic knowledge to find formulae for our curves. We don’t need much, the proportions of the
segment lengths is sufficient.

Algebraic representation of a 2" degree Bézier curve
PT:PQ =t:1= AT\ :AB=BT,:BC = 'X: T,

We want to find an expression for point X depending on the points 4, B, C and the parameter ¢.

We use vectors and find easily 7; from 4 and B and then in the same way we derive 7, from B and C:
T=A+tAB=A+t-(B-A)=(1-1)A+t-B and T,=(1-1)-B+¢-C

and finally we find: X=Q1-8)L +tL,=(01-0)[0-t)-A+¢t-Bl+¢t-[(1-¢t)-B+¢t-C]

X=(1-12-A+2(1-#)t-B+2£-C.
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Now we have found an expression for X and can define the Bézier curve of degree 3 by using points
A,B,Cand D.

Algebraic representation of a 3" degree Bézier curve

According the the CABRI-figure we find the following expression:

X=(1-2p-A+3(1-¢¢-t-B+31-0)*-C+t*-D

Tangents toof Bézier curves

If the students are able to work with derivatives of parametric defined curves it is possible for them to
find the tangents. The figures given above give the impression that the lines 4B and BC are tangents
of the second degree curve and AB and CD seem to be tangents of the 3" degree curve. We can proof
this using the first derivatives.

Xt)=(1-£24+2(1-DtB+£C » X(=2(0-H4 +2(1-2nB+2uC
X(0)=-24+2B=2 (B—A)= 4B
X(1)=-2B+2C=2(C-B)= BC

So we see immediately that lines 4B, BC and the tangents have the same direction.
Now it is not very difficult to attach two Bezier curves

having a “smooth” (= differentiable) transition.
They must have one endpoint in common and two “con-

trol points” must lie on a line.

The figure shows a curve composed of a 2™ degree - and
a 3™ degree Bézier curve.

T

Bézier curves with DERIVE

We define the functions — including parameter ¢ as last argument for later use - and then ploto our first
Bézier curves (0 <t <1).

2 2
bez2¢a_, b_, c_, t) == {1 — ) -a_ +2-{1 - t)-t-bh_+ ¢t -c

[p1 := [-5, 3], p2 := [-2, -5]. p3 := [6, 8]]

2 2
bez2{pl, p2. p3) = [5-1: +6-t -5, 21-t —-16-t + 3]

3 2 2 3
bez3(a_, b_, c_. d_, t) == {1 — t) -a_+ 3-¢1 — ¢t) -t-b_ + 3-:¢(1 -¢t)-t c_+t -d

[pt := [8, 7). p2 == [-15., -91. p3 == [12, -5]. p4 := [-7. 8]]

[ 3 2 3 2 ]
bez3(pl. p2. p3. p4) = - 96-t + 160-t - 69-t + 8, — 11-t + 6B-t - 48-t + ?
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What we can do now with DERIVE 6

In DERIVE 6 we can use the Slider Bars to show in a very impressive way the influence of the “free” or

“control” point B (of the tripel A, B, C for 2™ degree Beziér curves) and the two variable (“control-")

points B and C for the 3 degree BC.

[a -5.
bez2{(A, B.
[p == [-5.,

bez3{A, B.

C

C. D)

3], B == [-2 + x_B, -5 + y_B].

3]1. B :=[-2 + x B, -5 + y B], c :=

:= [6, 8]]

[12 + % C, -5 + y C]. D := [-?7, 8]]

x_B,y_B,x_Candy_C are parameters o move poinis B and C around using the slider bars.
Here you can find some positions (initial position and another one):

au

.}
8,
, i = | . /
140 R P %) \’.‘ i 19 fergmeeu .v--:-;::.v:.,,.....,.—: ® l ) " 5
i N - | oyt o 14 ‘ P
-18 -16 -14 -12 -10 -8 -6 -4 -2 2 1 6 8 el /
. PREIREIROR Tt S —— 1
- f R e VI ] A 3
-4 ‘ '
s -18 -16 -14 -12 -0 -8 -6 -4 =2 2 E
B : o D DT
ady 20 -
10 " " 18 ! 3
% ! o fas r {
*-10 N 16!
= —— < i
=1 = .
B ks ’ i : e ot) e -
K 10 P e T ] T“‘MM 10 i ‘\ P ;.:i i
\ A0 T [
: : | BN : i :‘
5 -40 -35 -30 -25 ~20 -15 -10 —;5 k 5 10 15 20 25 30 35 40
ok : : : ; plmmcen e m—— - = p——
B- ?
+
dysl C.

(More about the exciting new features of DERIVE 6 on page 44.)
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Modelling of figures with Bézier-curves
Modelling the letter "D"

It’s obvious that there cannot be only one "solution" in designing a letter. Everybody can create his
own font.For example it is possible to build the letter "D" with two Bézier curves. This is an impor-
tant task for students to learn modelling figures realising their own ideas.

First of all we have to find a consistent way to include line segments. Line segments are Bezier curves
of degree 1.

Two examples for "D" with DERIVE

d1, the "D" composed of two Bézier curves:

bezi{a_., b_, ty = {1 -~ t)-a_ + t-b_

di == [be=3({[@. B]. [3.5. 8], [3.5. 4]. [0. 4]). bezi([B. 8]. [B. 4]}]
and now we use three Bézier curves to create another "D", d2:

d2 := [bez3([B. B8], [1.5. B]. [2, @.5]. (2. 2]). bez3([B, 4], [1.5. 4]. [2. 3.5].
[2. 2]). bezi([B. B]. [0. 4]}]

... and we compare the results:

(left is A1 and right is d2).

These are wonderful open ended problems, because there are many "solutions". Everybody can find
his own design.

ST . .
£ ‘] It is an experience that students are very
creative in modelling figures.

3

) TR
D

&
Transformations of Bézier-curves

—b, g
( TN, ( ‘\\Lb\ \ci-"/f J
\

s,
"l\_\- . /"

In the first example the letter was written in the font size 8 and then enlarged with a

graphic program. This method is not suitable to create letters in different sizes for use
in a text processing system.



D-N-L#52 Franz Schloglhofer: Bézier-Curves in School pl7

It’s better to change the size of letters directly in the word processing system. The let-
ters will be calculated for the new size and keep their form.

An advantage of Bézier curves is that these calculations are easy to perform.

Once more we will use the letter "D" to show how to change its size with DERIVE.

Variable k& has the initial value £ = 1. Using the VECTOR-command we can apply several ks. We mul-
tiply the coordinates in the expressions with & and as result we receive the letter in its new size but
unchanged in its appearance.

As we will use bez1, bez2 and bez3 to create Bézier curves it is recommended to collect these
three functions in a utility file.

Stretching the "D" (or any other Bézier construct, of course)

The list of vectors, which turns out to be a matrix is multiplied by the stretch- or dilatation factor.

stretch{m_. k_) ==k
stretch{(d2, 1.5)
UECTOR{stretch{d2. k), k. 8.5, 2, 8.25)

VECTOR(stretch{d1l. k). k. -1.5, 1.5, 8.1)

How to make “Italics” — Shearing (in German: Scherung)

shear{m_, k_} == UECTOR([U_1 + k_-u_2. 0_2], v_, m_)

[di. shear{dl, B.4)]
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VECTOR(shear(d2, k), k. -1.5, 1.5, @8.1)

Reflection with respect to a point

In the figure the point X shall be reflected on S.
Result is the reflected point X". This can be calcu-
lated with vectors: X

X =285-X

We produce a "B" and plot it with its reflection wrt [2,1.5]
(m_ = object, pt__ =reflection center)
reflp{m_. pt_) := VECTOR{(2 -pt_ - v_, v_, m_)
bi := [bez3{[@. B8]. [2.4. B]. [2.4, 2], [B. 2]). be=3([B. 2]. [2.4. 2]. [2.4, 4].

[8. 4]>. bezi([8. @]. [9, 4])]
_.___;\\ -
‘g).

reflp(bl, [2. 1.5])

SN

(Y

Rotation of a Bézier curve

The point X=(x,y) rotates giving point X'=(x",y").
Rotation center is 0=(0,0).

We know the following expressions for the transfor- P

mation: 0
x'=cos @-x —sing@-y
y' =sing-x + cos-y
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For demonstration of the rotation we use the digit "2" as example. We compose the figure of two
Bézier-curves of degree 3 and one curve of degree 1.

(m_ = object, w_ =rotation angle)
rot{m_, w_) := UECTOR( [v_ -COS{w_) — v_ -SIN{w_), v_ -SIN{w.) + u_ 'COS(W_)]. v_,
1 2 1 2

m_)

13
two == [hezB([. 8], [@. 1.5]. [2.5. 1.5]. [2.5. 3]). bez3[[8, 31. [, —3], [2.5,

13
—3], [2.5. 3]], bez1({[A, B]. [2.5. ]}]

o vm. ). ros . - 522}

Shift by a vector

shift{m_, s_) == UECTOR(v_ + s_, v_, m_)
text := APPEND(d1. shift(b, [3. 8]). shift(d2, [5.5, 8]). shift{two, [-3. 8]))
shear(text,. 8.25)

Using all our characters designed so far, we write a “word” (2DBD) and then transform it into Italics:

P

(. / ‘\.) ™
x"::y

i

Length of Bézier curves

We show a method how to measure the length of a Bézier-curve approximately.
Let’s divide the whole curve in little parts and replace these parts of the curve by line segments. So

we get a polygon. Measuring the length of the polygon we obtain an approximated value of the length
of the curve.
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We want to find an approximative value for the length of the following Bézier curve of degree 3.

cu(t) := bez3([-18, 9], [15. -—261. [?, 28]. [-5. —-6]1. t)

dist{pl, p2) := J({p2 — p1)-{p2 - pl1))

18
Notation 2= Decimal '\\
NotationDigits == 18 S c
99 (o[ i i+1 ) .
E dist|cv ],. cv [—] ™~
i=@ | 100 108 |} N \1

i
39.80989599 1@ -5 / ~_ 5/ 18
' _ﬂ_*

999 i { i i+ 1 ) K
£ dist|ecv|—], cv|——— ) i -5
i=08 | 1086 1060 | !
39.813168875

Finally we use one of the many very helpful USER-files of DER/VE, INT_APPS .MTH in order to
find the analytic answer:

1

4 3 2
PARA_ARC_LENGTH{cw(t), ¢, 8, 1)} 3--12-.[. J(9533-t - 28544-t + 16348-t - 5652-t

+ 733) dt

PARA_ARC_LENGTH(cv{(t), t, 8. 1)

1]

39.81314121

Beziér curves on the VOYAGE 200

We show the representation of a 2™ degree Beziér-curve. First of all we define the curve in the same
way as we did with DERIVE. (1-t)*2*a+2(1-1)*t*b+t*2%c —» bez2(a,b,c). Wesave
one special curve as b1 (t), then in the we choose for Graph:2:PARAMETRIC and define

xt1(t) and yt1(t) by the components of b1 (t). After setting appropriate [WINDOW]-values we
want to plot the curve — but we fail!!

r_x ‘rr- r;T_r-av T’ ¥E T_ 3 I ] 73 :' 1
hd ﬁ léébra catclother Praml0 clean Up i Fe 435 .. ] -ﬁ Zrozgn ]
FL07E tmin=il
tmax=]1.
istep=.05
XMmin=-7
2 = XMan=r.
p(1-t)% a+2:(1-1) t-b+t2-c s bez2(a, V| PHEZ xeells,
Donej yt3= ymax=10.
-51 1-2] [6 3&25 gscl=1,
. =
hezz[[2 ],[ _4],[3]] 7 bi(L) Done) Mie=
L xt2(t =
|nxTs XAD AUTD FAR__2730 ARTE RAD AUTO FAR |a8TE RAD AUTD FAR

— - ——
(- E2bon(rrace Rearaphlitathloraulw £ |
(1-t)%a+2-(1-t)t b+t crbez2(a, b
“ ERROE Ny Done
- - 42464 -
Undefined variable 'bezZ[[ 5],[ 2],[6]] [5 te+e-t-5
2 I'i-4l'Ls, 18-42-12-4+2
2
Frter=EoT -[5'** r6t-s ]» b1t bone
[18:42-12.4+2 RS
ans¢1>»bict)
{AmTs KAD AUTD FAR ARTS FAD_AUTD TAE 3730 ARTS RAD #0TD ¥R

You can see how to do that the procedure works: First simplify the expression and then define
b1(t).
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Summary

Bézier curves can be interesting for mathematics education and provide a welcome extension of the

subject "curves". It is an important example of applied mathematics. In this field the computer is an
essential tool.

Students shall understand the foundations of these curves and also make practical applications. They
shall get knowledge to work with CAS or dynamic geometric software like CABRIL
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Bézier Surfaces (by Josef Bohm)

It is a demanding chalienge to transfer this idea into the 3™ dimension. As Franz wrote in his introduc-
tion these curves were introduced for designing cars — and cars are 3D-objects. So let’s try this.

We define 4 groups of Bézier points, each of them defining a Bézier curve.

15 16 18 i3 -8 ? a -5 3 -18 -12 6

i5 -5 ig -5 -3 8 -3 2 -18 -5
cB:= Lclz= JC2:= Jc3i=

15 5 a 18 5 -3 3 2 -18 5

15 18 18 18 8 ? 8 12 6 -18 6 3

Using these points we create these 4 Bézier-curves.

3 i 3 - i

pB{t) := E COMB{(3., i)}t -{1 - t) -cB
i=8 i+1
3 i 3 -1

pl{t) = E COMB{3. i)'t -{1 - t) -cl
i= i+ 1
3 i 3 -1

p2{t) == E COMB{3, i)-t -{1 - t) -c2
i=8 i+1
3 i 3 -1i

p3{t) == E COMB{3, i)t -{1 - t) -c3
i-8 i+1

For each fixed value t we have another group of 4 points which can be used again as 4 Bézier points
for Bézier curves depending on a 2™ parameter s. So we obtain finally an expression containing two
parameters, t and s, both of them running from 0 to 1. And this turns out to be the parameter represen-

tation of the Bézier surface defined by 16 points. The figures on the next page should illustrate the
procedure.
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t_fam{t) == [pB{t). pi(t). p2{t),. p3(t)]

3 k 3
surf{s. t) == kEE COMB{3, k)-s -{1 - s)

k
-{t_fam{t)}
k+1

Y
15 " 15

The control polygons and the respective 3" degree Bézier curves
Here is the final result:

One could go on and produce a function which delivers this surface in one step.

grid := APPEND{ [cB]. [c1]. [c2]. [c3])

3 3 k i 3 -

I I COMB(3. k)-s (1 - s) -COMB(3, i)-t -1 - t) ~grid

i=0 k=0 k+1.4i+1
2

[ 3 3 3 2 2 3 2
5-(s - 3s -3 +3), -5 -{41-t -21-¢t —15-t + 11) + 3-s -(17-t - 15-t +

3 2 3 2 3 3
3.t +1)-6-s-{(2't -3t +3-t-1)-5-¢{2-¢t -3¢t -3-t+2) -s -{12-t -

2 2 3 2 2
69t + 692t —-8) +3-s (3-t ~-272t +27-t-1) - %-s +10-(3-t -3t + 1)

| am very grateful for a fruitful meeting with a Swiss colleague, who showed me Bézier surfaces. She
wrote a wonderful script "Auch ein Teppich hat Gefiihle" — "Even a Carpet has emotions” —, containing
many interesting tasks and problems which are connected with Bézier-curves!',

"' Baoswan Dzung Wong, Bézierkurven, Orell Fussli Verlag, ISBN 3-280-04021-3
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Lindenmayer Systems
Josef B6hm
In DNL#50 I posed a challenge for a string — rewriting — procedure by iterated replacing of characters in a string

by other strings. Some of you solved the problem, many thanks. Aristide Lindenmayer used this technique to
describe growth-processes of plants.

The fist figure shows the evolution of the initial string "X" by substituting "X" by "X+Y+" and "Y" by "-X-Y".
Steps 0 to 4 are created. Check it, please.
UECTOR( [lindsys{968, [X, Y]. [R+¥+. -K-¥]. X. k)1, k_, 8. 4)
B % :
g+Y+
A+Y++—E-Y+
R+ 4+ -Y+e—+Y¥+——HK-V+

R+¥++—H-Y++—B+¥ +—E -+ +-E Y ++-R-Y+——H+P+——Y-Y+ ]

Now we will interpret the strings as commands for a "turtle". "X" and "Y" brings the turtle one step forward, "+"
and "-" gives order to make a turn in positive or negative direction by a given angle (eg. 90°).

I extended function 1indsys to "translate" the strings into movements and plotting the trace of the turtle (steps
0 — 5 and the result after 12 iterations give the next figures):

UECTOR{1lindsys{98, [X. Y]. [R+¥+, -RB-¥], B, k. B, [-24 + B-k, @]), k. 8, 5)

s m:ﬁﬂjgiée

lindsys(90. [X. ¥]. [X+¥+, —X-¥]. ¥. 12)

PR An

=

The final version of the 1indsys-program, which meets all my expectations is

lindsys4(angle,base,transf,startstr,iteration,startdir,startpt)

angle = turning angle for the turtle (in degrees), eg. 60

base = list of letters which are to be replaced, eg ["F"]

transf =  list of substitutions for each member of base, eg. ["F+F--F+F"]
startstr = initial string, eg "F——F--F"

startdir

direction of the first step (degrees), by default 0
startpt = position of the starting point, by default [0, 0] Which figure are we creating now?
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lindsys4 (60, ["F"], (["F+F—-F+F"], "F—F—F", 3) (Don't forget the quotes "!)

lindsys4(68, [F]. [F+F—F+F]. P——F—F, 3)
lindsys4({68. [F]. [F+F—F+F], F—F--F. 3. 38,

[38. 18])

A)-A-(!Li szAzA

Having visited well known and famous "Koch Island" we continue our journey to "Gosper Island":
lindsys4(68. [F]. [F-F+F]. F-F-F-F-F-F. 5}

The "Sierpinski Triangle" cannot be missed in a contribution treating fractals.
It appears in many shapes (here it is generated first by triangles and then by trapeziumlike polygons):

lindsys4{128,. [F, X], [FF, -FLF+F{F+F8F-]. &. 2)
lindsys4{12@,. [F, X]. [FF. -FXF+FiF+FXF-], X. 6)

lindsys4(68. [F. G]. [+G-F-G+. -PF+G+F-],. P, 1)

lindsys4(68,. [F,. G]. [+G-F-G+, -F+G+F-], F. 2)
lindsys4{608, [F. G]. [+G-P-G+, -F+G+F-], F, 8}

/ B

/

\
SN

Just playing around with strings and angles gives remarkables and surprising results.
The graph of the next experiment can be found together with the promised Sierpinski Triangles on the next page.

JAV.VAN

lindsys4{98. [F].

[F+F—F~-FFF +FF-FF +F +FFF +FF—FFFF-F-FFF +FF-FFF +F +FFFF+FF-FFF-F-FF+FF-FFF+F+F-F] .
F-F-F-F. 1)
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............................

LY ORIORY
7 X

Try the 2™ stage of this pattern. You will be surprised.

The next rule gives another "KOCH Island".

lindsys{98,. [F]. [F+F-F-FF+F+F-F]. F+F+F+F, 1)

This would be a wonderful tiling on my living room floor (quite expensive!).

lindsys4(90, [£]. [RP-F+P-RHF+F+XP-FP+F-X]. F+EF+F+§F. 6)

Then I tried to produce the plane filling Hilbert curve
lindsys4(98, [L. R. Fl. [+RF-LFL-FR+, -LF+RFR+FL-, F], L. 1)
lindsys4(98,. [L. R. F]. [+RF-LFL-FR+, -LF+RFR+FL-, F], L. 2)

(oe?
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This was not so easy using my program and I had to introduce two letters for special purpose: L and R do not
perform a step, they are only to be replaced by strings. So they appear as points and not as line segments.

Until now we don't have plants, because plants have branches. Lindenmayer used brackets to describe branches.
"[" means that a branch starts under a constant angle and "]" marks the end of the branch, and gives order to go
back to the starting point of the branch. I had to implement something like a "stack". And these are my plants:

lindsys3(28, [F]. [F[F]+F-[F11. F, 1)

a.s
,______Jﬁi::__
1 2 3
~8.5 .
lindsys3(28. [F]. [F[F]+F-[F]]l. F. 2)

2
1.5 T
8.5 _’,/

‘__,-h_-_‘
- e

1 2 3 4 5 6 ?

A C

lindsys4(2@, [F1, [P[F1+F-[F1]1. F. &) lindsys4(28, [F]. [F[F]+F-[F]1]. F, 6. 98)

lindsys4{2@, [F]. [F[-FIF[+F][F]]. F. 6)

Merry Christmas
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lindsys4¢45, [F, G, M1, [G[+F+F][-F-F]sM, GG. M]. P. 7. 98)
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The graphs on page 27 impressed me very much and I invite you to create your own Lindenmayer Greenhouse.

All examples (and some more are part of the Lindenmayer-file on the diskette).

Then I wanted to have my plants not so deterministic and developed stochastic L-Plants. In the next function
lindstoch "F" is randomly replaced by one of the three strings "F[+F]F[-F]F", "F[+F]F" or "F[-F]F". You
could change the function to have any special distribution. The argument 90 makes sure that my "Random
Weeds" are growing vertically,

UECTOR(lindstoch(25.7, [F]. [F[+FIF[-F]F. F[+F]F, F[-FIF]. F. 6. 98. [k. B]). k.
-248, 248, 12@)

My Lindenmayer Weed Meadow in Wiirmla

Another interesting investigation with the space-filling Hilbert Curve from above follows: we interpret the

x-coordinates of the points (or the y-coordinates) as function of the point-numbers in the created pointlist. And
then we plot the function graph.

I start with the curve of stage 6 (in black) and superimpose curve of stage 4 (red) — bottom left corner.

hilbert := lindsys4(98, [L. R. F]. [+RP-LFL-FR+, -LF+RFR+FL~. F], L, 6}
DIM(hilbert) = 4896
xhilb == UECTOR([k, hilhertk 1], k. DIM{(hilbert))

hilbert4 := lindsys2¢9@, [L. R, Fl. [+*RF-LFL-FR+, -LF+RFR+FL-, F]. L. 4)
xhilb4 := UECTOR([k. hilhert‘!k 1]. k. DIM(hilbertd})

o

490 8O@ 1260 1680 2008 2490 2800 3200 3600 4080 4400 4
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Here again the fractal nature of this curve can be observed and we have a wonderful visualisation of self similar-
ity. Finally I produce a “HILBERT Curtain” by transfering this space-filling curve into three dimensions.

An appropriate scaling squeezes all points into the unit cube. x-coordinate is the number of the point, y- and
z-coordinates in space are the x- and y-coordinates of the plane curve.

h4 := lindsys4¢(98. [L. R. F], [+RF-LFL-FR+, -LF+RFR+FL-., F]. L., 4)

1
15

k
UECTOR[RPPEND[[ ]. -h4 ].. k. 1, 256]
256 k

h6 := lindsys4(?28. [L. R. P], [+RF-LFL-FR+, -LF+RFR+FL-, F]. L. 6}

k 1
UECTOR[RPPEND[[ ], -hé ], k. 1. 496]
4896 63 k

But take care! Calculating and plotting takes some time!!

Results from another plane filling curve (stage 3 and stage 4).

v 4 i
WAL o

T &lri »w;‘,““ ,'f l'a\."‘
W S
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A rich resource for L-Systems (and for numerous other kinds of fractals) is the freeware program FRACTINT,
version 20, which can be downloaded from the web. My tries are performed with my 3™ version of lindsys,

lindsys4 works, too.
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lindsys3(36. [M. X, ¥, Z]. [YF++ZF—XF[-YF——-UF]++, +YF--ZF[—WF——&XF]+.
“WR++iP [+++YF++ZF] -, ——YF++++|P[+ZF++++8F]——HF], +WF—XF-—YF--ZF, 5)

360
e’ [F1. [FF-[-F+F+F+F]+[+F-F-F]]. ++++F, 3]

lindsys3 [
lindsys3(6@. [L, R], [FL-FR—-FR+FL++FLFL+FR-. +FL-FRFR——-FR-FL++FL+FR], FL, 4)
[1] H. Lauwerier, Fraktale verstehen und selbst programmieren, Bd 2, Wittig 1992

[2] 1J. Peitgens et al,, Fractals for the Classroom, Part II, Springer 1992
[3] T.Wegener et al., Fraktale Welten (Fractal Creations), te-wi, 1992, (Waite Group, 1991)
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Financial Mathematics |

Bond Price and Yield
for Derive 5

MacDonald Phillips
phillipsm@gao.gov
donphillips@starpower.net
October 2003

The Bond(set, mat, cpn, call, yld, price, cf, cal) program will calculate the

price or yield (as well as the coupon or redemption/call value) of just about any bond. The
variables are:

set = settlement date (entered as mm.ddyyyy)

mat = maturity date (entered as mm.ddyyyy)

cpn = coupon (annual coupon as a percent)

call = redemption/call value (amount per $100 of face value)
yld = yield (annual yield as a percent)

price = price (amount per $100 of face value)

cf = coupon frequency (default is 2 for semi-annual coupons,
other values may be 1, 3, 4, 6, 12)

cal = calendar type (default is 1 for Actual/Actual calendar;
enter 2 for 30/360 day calendar)

The bond program, as well as the calendar programs, may be seen by clicking on
Declare/Function Definition and selecting the appropriate program. The program to calcu-
late the last and next coupon dates was adopted from UBONDS-Universal Bond Solver for
the HP LX Palmtops by Tony Hutchins. This program uses the last-day-of-the-month con-
vention for coupons, i.e., if the maturity date is on the last day of the month, the last and next
coupon dates fall on the last day of the month also.

Most bonds have semi-annual coupons, thus the default of 2 for c£. And, in general, most
government bonds use the Actual/Actual calendar for computing accrued interest while cor-
porate, municipal, and U.S. Agency bonds generally use the 30/360 day calendar.

This program works well for typical bond values. It also works for "extreme" values of yield
and price, including negative yields. By extreme yields, | mean yields as low as

ABS (.000001%). All computed values are rounded to 6 decimal places and therefore any
computed yield less than .0000005% is rounded to zero. If you find any cases that the pro-
gram cannot compute, please let me know so | can try and adjust the program. And please

include the variable values you used. And, as usual, any suggestions for improvement are
always welcome.

Note: When solving for any of the variables always Simplify, never Approximate. The calen-
dar programs need to run in Exact mode.
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Example 1:

What price should you pay on August 10, 2003, for a 6.75% U.S. Treasury Bond that ma-
tures on May 1, 2018, if you want a yield of 8.375% compounded semi-annualy? The re-
demption value at maturity is 100, the calendar basis is Actual/Actual and coupons are paid
semi-annually. There is no need to enter anything for cf or cal since semi-annual and Ac-
tual/Actual are the default values.

Bond(8.182003, 5.812818, 6.75. 100, 8.375,. price)

Calendar fictualrfictual
Settlement Date Sunday 8.102643
Maturity Date Tuesday 5.612018
Coupon (%) 6.75
Redemption~Call Ualue 1868
Yield () 8.375
Price 86.376543
Accrued Interest 1.852582
Last Coupon Date 5.681260a03
Next Coupon Date 11 .0126803
Number of Coupons 38
Days from LCPN to NCPN 184
Days from LCPN to SET 181
ficcrual Fraction A.54891304347826 |

The output matrix gives you a lot of information. Most of it is self-explanatory. The calcu-
lated price is $86.38 per $100 of face value. The accrued interest is $1.85 per $100 of face
value. The number of days from the last coupon date to the next coupon date is 184. The
number of days from the last coupon date to the settlement date is 101. Thus the accrual
fraction, for calculating accrued interest is 101/184 = .548913... It should be noted that in

practice a settlement date would never fall on a weekend; it would always fall on a business
day.

Example 2:
What is the yield of the above bond if the price is 88.257?

Bond(8.182803, 5.012018,. 6.75, 160, yield. 88.25)

Coupon (%) 6.75
RedemptionsCall Ualue 188
Yield (%) 8.131156
Price 88.25
Accrued Interest A-852562 The calculated yield is 8.13%.
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Example 3:

What is the price of a 6% corporated bond purchased on May 2, 2003, and maturing on
March 3, 2022, if the yield is 5.7%? If the bond is callabl on March 3, 2006, for a call call
value of 102.75, what is the yield-to-call? Use the 30/360 day calendar and semi-annual

coupons.

First, calculate the price.

Bond(5.022883, 3.6832822, 6, 188, 5.7, price, 2, 2)

Calendar
Settlement Date
Maturity Date
Coupon ()

Redemption/Call VUalue

Yield ()
Price
Accrued Interest
Last Coupon Date
Next Coupon Date

Number of Coupons

Days from LCPN to NCPN
Days from LCPN to SET

Accrual Fraction

The calculated price is 103.43.

38/3608

Friday 5.822883
Thursday 3.832822

6
1008
5.7
103.427958
8.983333
3.632003
9.032803
38
188
59

@.32°99°20000007?

]

Now calculate the yield-to-call. Don't forget to change the call date and call value.

Bond(5.622683, 3.832806. 6, 182.75, yield. 183.4279%8, 2, 2)

The yield-to-call is 5.58%.

Calendar
Settlement Date
Maturity Date
Coupon ()

Redemptions/Call Ualue

Yield ()
Price
ficcrued Interest
Last GCoupon Date
Next Coupon Date

Number of Coupons

Days from LCPN to NCPN
Days from LCPN to SET

Accrual Fraction

38/360
Friday 5.822083
Friday 3.832006

6
182.75
5.581233
183 .427958
@.983333
3.832083
9.832003
6
1809
59

B.327727003077? |
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Example 4:

Calculate the price of a zero coupon bond purchased on May 19, 2003, maturing on June
30, 2007, with a yield of 10%. Coupons are semi-annual and the calendar basis is 30/360.

Bond(5.1920683, 6.302017. @, 160, 16, price, 2., 2)

Calendar
Settlement Date
Maturity Date
Coupon ()
Redemption/Call Value
Yield (z)

Price

ficcrued Interest

Last Coupon Date

38,368
Monday 5.192003
Friday 6.302617

(5]
160
18
25.22744
12.312002

And solving for the coupon using the computed price.

Bond{(5.192883. 6.382017. cpn, 168, 18, 25.22744, 2, 2)

Calendar
Settlement Date
Maturity Date
Coupon (%)
Redemption-/Call Ualue
Yield {x)

Price

368/368
Monday 5.19220883
Fridavy 6.3082017

25.22744

Now for some yields very close to zero and negative yields.

Bond(5.192083, 6.302017,. 6, 188, B.8080801, price)

Calendar
Settlement Date
Maturity Date
Coupon ()
Redemption/Call Value
Yield ()

Price
Accrued Interest
Last Coupon Date
Next Coupon Date
Number of Coupeons
Days from LCPN to NCPHN
Days from LCPN to SET

ficcrual Fraction

fctual/Actual
Monday 5.192883
Friday 6.382817
6
108
9 .960881
184.696112
2.383867
12.3120682
6 .392883
29
i81
139

8.767955806811084972

9
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Solving the the yield using the computed price.

Bond(5.192003. 6.382617. 6. 108, yield. 184.696112)

Calendar
Settlement Date
Maturity Date
Coupon ()
Redemptions/Call Ualue
Yield (x)}

Price

And using a negative yield.

Actual/Actual
Monday 5.192083
Friday 6.302817

6
168
8.8A00681
184.6%96112

Bond({5.1920863, 6.382017. 6. 168, -0.000001. price)

Calendar
Settlement Date
Maturity Date
Coupon (%)
RedemptionsCall Ualue
Yield {x)

Price

And solving for the yield from the price.

Actual/Actual
Monday 5.192683
Friday 6.382617

6

1668
-0 .600001
184.696153

Bond{5.192803, 6.382817. 6. 188, yield. 184.6%6153)

Calendar
Settlement Date
Maturity Date
Coupon {#)
Redemption/Call UValue
Yield {z)

Price

Accrued Interest

And using a larger negative yield.

Bond{5.022803, 3.832686, 6. 188, -5. price)
Calendar
Settlement Date
Maturity Date
Coupon {x)
Redemptions/Call Ualue
Yield {z)

Price

fictual/Actual
Monday 5.192883
Friday 6.382017
6
100
-0 .6888a1
184.696153
2.383867

Actual/Actual
Friday 5.0220883
Friday 3.8328086

6
168
-5
133.994215
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In computing bond prices and yields, | had to develop a set of calendar programs. The main
programs compute the Julian day number of a date and the date from a Julian day number.
JDN (date) computes the Julian day number for dates from Jan. 1, 4713 B.C. Dates B.C
are entered as negative dates, e.g. -1.014713. There is no year 0. The years go from
-1B.C.to 1 A.D. Always remember to enter date as mm.ddyyyy. JDNtoDate () com-
putes the date from the Julian day number. DBD (d1,d2,t) computes the number of days
between two dates. t is the type of calendar used. The default is 1 for Actual/Actual. Set-
ting t to 2 uses a 30/360 day calendar. A360(d1,d2) computes the days between two
dates based on a 30 day month/360 day year calendar. Date (d,days) will compute the

date that is a number of days from the date d. And, DowW (date) computes the day of the
week for any date.

In Financial Mathematics 1l | develop routines for general annuities (TVM) and amortization
schedules. Future articles will cover NPV and IRR for irregular cash flows, the equation of
value, options, stocks, life insurance and life annuities, stochastic interest rates, etc.

(Don provided a DERIVE 5 and a DERIVE 6 version of his file, thanks a million.)

As you might know I was a teacher at a College for Business Adminstriation and our curriculum covers
a wide range of financial mathematics. So | was very happy to see Don’s DERIVE-application. Unfor-
tunately the Ti-Application "Advanced Finance Mathematics” containing a worksheet "Bond" was re-
moved from TI's homepage. | heard about a bug. It is promised that this application will be available
again in the future.

I wrote a TVM-Solver for the CAS-Tls which made use of their CAS-capabilities. The original TI-TVM-
Solver does not, which | cannot understand. It was not too difficult to transfer my Solver to DERIVE.
Don and I will present our Solvers together with a bundle of examples in one of the next DNLs. Josef

The price for a house is 144 720 €. Seller and Buyer agree on a first installment of 30 000 €

followed by monthly payments of 5439 € due at the end of the months. What is the effective
interest rate?

N = 24
Iz = 13.49003483
PU = -114720
PMT = 5439
tum(24, x, -114728, 5439, @, 12, 1) = FU = ]
PpY = 12
Cp¥ = 1
pmt = END
interest: INTEREST
or another one: (What was the problem?)
N = © |
Iz = 8.5
Py = 78085 .84875
PMT = -580
tum{o, 8.5, x, -500, 8. 12, 4, b, d) = FU = a
Pp¥ = 12
CpY = 4
pmt : BEGIN
interest: DISCOUNT
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On Rational denominators

Fritz Mohr fritzemohr-web.de
273
1 1 5
Simplifying % gives the fraction with rational denominator. ] 1/3 c

1
Simplifyin does not simplify anyway.
plifying T plify anyway

Is it not possible for DERIVE to simplify such more complex expressions to a fraction with rational
denominator?

Thanks for any help.

Terence Etchells t.a.etchells@LIVIJM.AC.UK
Hi Fritz,

Does this expression simplify to an expression with a rational denominator? I don’t believe it does,
I think I have a proof but I need to check it.

1 believe there are no flaws in the proof (let me know if there are any) below that #5- cannot be

transformed into an expression with a rational denominator. Does anyone have a simpler proof?
I am sure Johann Wiesenbauer will have one?

i . . . e .
If -1—3\/5 were to have a rational denominator then it would simplify to an expression of the form

a+b-Q
c

, where b cannot equal 0 (as this would make our expression rational) and ¢ cannot = 0 for

the obvious reason. a, b and ¢ are rational numbers and Q is some irrational number.

b-Q

[

a
If we rearrange

=1 1{/3 to make c the subject, then c=a+b-Q—a'~3./§—b'Q'%/§-

In order that ¢ be rational, the expression b-Q—a- Y5-b- Q- 35 must be rational.
In order that this expression be rational we must find a O that makes the term —b-Q-%/g rational
(sucha Qis {/5—2 ). So imagine we have found such a Q then the expression b-Q—a-ifg —b-Q-%/g

becomes b-Q—a .3/5 + R where R is some rational number.

Hence b-Q—a-{/g must also be rational, this can only be the case if Q =%-\3/§ . But this causes a

contradiction as R would thenbe —-56-Q- Y5 =-b- (%) 3535 =-a- i/gz- which is irrational.

Hence there does not exist a O such that c is rational.

a+b-Q

1 . . . .
Hence 1—3‘/—5 cannot be written in the form where a, b and c are rational and Q is some

irrational number.
This is why DERIVE can’t transform it into this form.
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Ignacio Larrosa Caiiestro ilarrosa@mundo-r.com

1
We have that a® —b* =(a—b)(a> +ab+b*). Then leta = 1 and b=5, and multiply and divide for
(@* +ab+b?).

3 3 2 2
a -b=@-bB)G +ab+b)
3 1/3 3 1/3 2 1/3 1/3 2
You get 1 - ) =(@1=-5 )@ +15 +(G ))
1/3 2 1/3 1/3 2
1 1+{/§+352 —4=(1—5 )'(l + 1.5 +(5 ))
— e 4 2 1/3 1/3 2
1 \/5 4 ———— =1 + 1.5 + G )
1/3
1-5
2 1/3 1/3 2
1 1 +1.5 « (G )
/3 -4
1-5
2/3 /3
1 5 5 1
1/3 ST s T a4
1-5
Terence Etchells
Hi All,
Well done Ignacio, I made assumptions about Q that I ought not to have,
Cheers
Terence
Stefan Welke
Hallo Fritz,

We find (1 — 5°(1/3)) * (1 + 57(1/3) + 5(2/3)) = 1 - 5, and as a consequence:
1/(1 = 57°(1/73)) = (1 + 5M(1/3) + 5™M2/3))/(1 - 5)

This is an expression with rational denominator.
Remember: (1 -q) (1+g+g*+¢ +...+¢)=1-g"".

Albert Rich
As other responders to your question have said, DERIVE could rationalize the expression — using
1-5°
1z a-t
[1+b'l +b"+..+b" ]
the transformation ! e
- 1-b
1-b"
However, DERIVE does not do this rationalization because it introduces additional fractional powers.
Hope this helps.
Aloha,

Albert D. Rich, Co-author of DERIVE
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On Factorization Problems
Ignacio Larrosa Caiiestro ilarrosa@mundo-r.com

x =42 + 3 + {5
I get the polynomial correctly

2 2
EXPAND((x - N2) = (43 + \S) )
x* —40x°® +352x* —960x* + 576 2
x -2:§2'x + 2=2-{15+ 8
by squaring from three times, isolating the roots 2 2 2
EXPAND((x = 8) = (2415 + 2:42°x) )
4 2 2
x=y2+3+45. x -12'x + 36 = 8'x + 8:30-x + 60
4 2 2 2
EXPAND((x = 20-x = 24) = 64°30-x )

8 6 4 2 2
x = 40:x + 352-x + 8606-x + 576 = 1920-x

But when I factorize the polynomial in radicals with DERIVE, it gives:
8 3 4 2

FACTOR(x - 40-x + 352'x - 960'x + 576, raDical, x)
(x + J(20:46 + 4-d114))-(x - J(20:46 + 4-§114))-(x + J(20-46 - 4-d114)) (x -

2 2
N(20-46 - 4-J114))-(x + x ' J(40-J6 - 48) + 24)-(x - x-J(40:'J6 - 48) + 24)

Try to expand this expression!!
And in complex,

8 [ L] 2
FACTOR(x - 40-x + 352'x - 960-x + 576, Complex, X)

(x + J(20-y6 + &-J114)) - (x - J(20-46 + &-J114))-(x + J(20-46 - 4-J114))-(x -
J(20-N6 - 4 J118)) (x + J(10-d6 - 12) + 1-J(36 - 16-46)) (x + J(10:46 - 12)
= 1-4J(368 - 10-4y6))-(x - J(10-4d6 = 12) + 1I-Jd(36 - 10-y6))-(x - J(18-Jd6 - 12)
- i-J(36 - 10:Y6))
getting four real roots, none of them V2 +3 +4/5, and four complex conjugate ones.
But substituting x — Jt we get

4 3 2
t -40-t + 352t - 960-t + 576

(t + 2415 + 2-J10 -~ 2:4§6 - 10)-(t + 2:415 - 2:J180 + 2-46 - 18) ' (t - 2-{15 +
2-J10 + 2:46 - 10)-(t - 2°415 - 2-J16 - 2-J6 - 10)
2
EXPAND((X = ¥2 = §3 = {5)(x + §2 + y3 + Y5)) = x =215 = 2-J10 = 2-J6 - 10
which DERIVE factorizes correctly (we can find our root in the 4™ factor!).
Or approximating {t - 0.828457)-(t - 3.67960)-(t - 6.52243)-(t - 28.9695)

getting four linear real factors as expected. My version of DERIVE is 5.06 in Spanish.
Saludos, Ignacio Larrosa Cafiestro
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Ng Tze Beng matngtb@NUS.EDU. SG
Dear All,

this bug seems to be in the previous version of 4.xx, too. I can definitely reproduce the same error
with my DfW 5.06 English version. I hope version 6 would correct this.

DERIVE seems to have this problem. may we know, from the inventors of DERIVE, the algorithm
used for the factoring program? Following Ignacio’s suggestion we should get the following 8" degree
polynomial whose roots are all eight possible sums of +Ja , /b, ++Jc with a, b, ¢ non negative and

real. But if you set @ = 2 and any b and c of form b = p and ¢ = p + 2 which are consecutive primes

then we shall consistently getting errors, first only 4 real roots, the 8 incorrect real roots. The algorith
might have become instable.

8 6 4 2 2 2 2 3 2
X -4x (a+b+c)+2'x (3'a +2a'(b+c)+3'b +2bc+3c)-Ux-(a -a-(b+c)-

2 2 3 2 2 3 4 3 2 2 2
a'(b -19brc+c)+b -b ‘c-bc +c)+a -4a-'(b+c)+2a-:(3'b +2bc+3c)-

3 2 2 3 4 3 2 2 3 4
4a'(b -bc-b'c +c)+b ~-4%b c+6'b'c - H4bc +c¢

I have tried some values with @ = > 2 and prime, b and ¢ any odd integers > 2, DERIVE seems to have
no problem. But with a = even sqare free integer, # and ¢ odd natural numbers, the same problem

occurs. However, with any two of @, b and ¢ even, the third number may be even and odd, factoriza-
tion proceeds correctly.

Can Albert Rich give us some insight into this problem? Thank you.
Ng Tze Beng

Valeriu Anisiu vanisiu@PERSONAL.RO

Hello Derivers,

Concerning the polynomial p0:=x"8-40x"6+352x"4-960x"2+576. It indeed satisfies the very
unpleasant relation expand (factor (p0, Complex,x)) /= poO.

I found a very curious fact in DERIVE 6 with this polynomial. The minimal polynomial in Z[X]
having a root Ja ++/b ++Jc can be obtained as

2 2

2
p3(a, b, ¢, x) == FIRST(GROEBNER_BAS]S([u ~a, Vv -b,w ~¢, x-u-v- w]. [u, v, w, x1))

8 6 4 2

p3(2, 3, 5, x) = x - 40.x + 352.x =~ 960.x + 576

Our polynomial is p3 (2,3, 5, x) . Defining also

testzero(p, x) := EXPAND(FACTOR(p, Complex, x)) - p then shouldbe (2,3, 5, x) is sim-

. ) S
shouldbe0(a, b, ¢, x) := testzero(p3(a, b, ¢, x)) plified to a nonzero poly-nomial!

But for several other values I have
tested shouldbe0 (a, b, ¢, x) sim-
plifies to 0.

shouldbe0(1377, 1112, 573, x) = 0
shouldbe0(2, 3, 7, x) = 0
My question is: what is so special with p0?

{or maybe with 2-3-5). Does some philosophical problem hide here?

Cheers, Vanisiu
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MacDonald Phillips phillipsm@gaoc.gov
Hello Derivers,

I too get the same results with DERIVE 6 Beta as Valeriu. However I also have an HP95LX with

DERIVE 2.5 on it. When I factor p0O I get entirely different factors than with DERIVE 6. The factors
are:

NI SO SN SO S BT B-\EeR
5iBiZ BB BB BavEe2

These are the factors as determined by DERIVE 2.5 but simplified by DERIVE 6 Beta. For instance,

the first factor above was —\/ —2-J6-2-4/10+2-4/15+10 . DERIVE 2.5 was not able to simplify the
factor any further.
—J(- 2.6 - 2.J10 + 2.J15 + 10) = - 5 — 3 + 42 (DERIVE 6)

These of course are the correct factors. And, when expanded, give the original equation. Something,

I don’t know what, seems to be amiss in the factoring routine in DERIVE S and 6. Perhaps Albert will
clear this up for us.

Cheers, Don

On Plotting Functions

Adam Marlewski amarlew@math.put.poznan.pl

How to plot correctly the graphs of the relations « = # — 3¢ + 3 and ¢ = 1> — 3u + 32

Although I set the order variables to #,u,x,y,z the graphs of both relations are identical, while they have
to differ!

In case u = £ — 3t + 3 the parabola is laying along the vertical axis, and it is correct.

In case ¢ = u* — 3u + 3 the parabola has to lay along the vertical axis, but DERIVE shows it laying
along the vertical axis (and it is errorous).

Ignacio Larresa Caiiestro ilarrosa@mundo-r.com
Subsitute £ — x and ¥ — y. Then DERIVE plots a parabola with horizontal axis.

I don't exactly know how DERIVE assigns axes to variables in 2D-plot graphics, but if you use x and
y, x always will be assigned to the horizontal axis and y to the vertical one.

Terence Etchells

A quick work around is to ensure that your dependent variable is y and the independent is x.
ie. x = y*2 - 3y + 3.

This plots properly.

Cheers, Terence
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Adam Marlewski
Hello Derivers, and - in particular — Ignacio and Terence,
once again where is my problem in plotting in DERIVE 5.04.

Case 1
Under standard variable order, i.e. VariableOrder := [x,y,Z]
and if this order is changed to VariableOrder := [y,x,z]
the graph of the relation x*2-3*x*y—y*2+5=0 remains the same.
In particular it means that the horizontal axis is still the x-axis.
Case 2

Now the relation t*2-3*t*u-u*2+5=0 is plotted differerently:

a) if there is set VariableOrder := [t,u,x,y,2], then the graph passes the
point (-1, 3/2-V33/2) and it means that the horizontal axis is t-variable axis.

b) if there is set VariableOrder := [u,t,x,y,2], then the graph does not pass this point and it
means that the horizontal axis is u-variable axis.

The question is:
when does the variable order (stated by the value of state-variable VariableOrder) affect plotting?
In examples above we see it does not effect (case 1) and it obviously does in case 2.

Lottery with DERIVE
Lester

I would like to have a simple expression which will allow me to extract 6 unique numbers from a total
of 49, with no duplicates or zero entries. I tried the following, which gives a sequence of 6 numbers,
but occasionally it will give two of the same number abd also include zero sometimes. How do I re-
solve this point?

VECTOR (RANDOM (50) ,x,1,6)

Terence Etchells

This should do it
LOTTERY(n, list, t_, newlist, counter) := PROG(newlist := [], counter := 1,
LOOP(IF(counter > n, RETURN newlist), t_ := RANDOM(DIM(list)) + 1, newlist

:= ADJOIN(listyt_, newlist), list := DELETE(list, t_), counter :+ 1))
To perform the task you require then simplify
LOTTERY(6, [1, ..., 49]) = [48, 46, 26, 11, 30, 17]

Additional advice: If you want to avoid receiving the same “Random Jackpot” at each new start of
DERIVE first simplify RANDOM( 0 ) or even better include this into the program. See below the first lines
of the program. (Josef)

LOTTERI(n, list, t_, newlist, counter, dummy) :=

Prog
dummy := RAMDOM(0O)
newlist := []
counter := 1
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Misbehaving Voyage 200??

Thomas Himmelbauer

I want to minimize the circumference of a triangle with two fixed vertices and one being variable on
the x-axis.

My students defined a circumference-function using the norm-function and we came across a bad
surprise:

i fpran 0 tein o] |
X
(o]
o
le]
15
o)

" Define w(x)=norm(fl - a)+ norm(fl - {2) +p

MAIN RAD AUTO FUNC 5/ 5

1 Fzv T3v v ~
va AlgebralCalc OtFI:'\er' Prf_:;smIO Cler;n Up
*lo)>° |
o} 0]
Q o]
'[s] S [6]
15 15
'[1@] >f2 [10
8 Define w(x)=norm(fl - a)+ norm(fl - +2)4p

oNne|
fl—aX>+tnern{f1—£2)+nornlf2——a
MAIN RAG AUTO FUNC 4/30

The function cannot be evaluated. It is possible using the with-operator. There are no problems doing
in the same way on the TI-92 PLUS!

1 Fev F3» Fyv F5 F6~
[< £2]A1gebralcatc]other Prantolciean up|
|8=7] LBl
15 15
'[w] . [m]
8 Define w(x) =norm(fl - a)+ norm(fl — £2) +p
Done)|
" u(2) Ix2 =30 % + 325 + {xZ + 36 + [Za1
 w(x) Ix2 - 30 % + 325 + |x2 + 36 + (241
MalM RAD ADTO FUNC 6720

And we don't have any graph, of course.

1 Fewr F3v Fyw F& F6
[« £2n1 gebralcalclother Pram1o/ciean Up
[ |
L1a]” 2 L1e)

E Define w(x) =norm(fl - a)+nnorm(fl - £2) +p
Done

"uw(2) Ix2-30-%+ 325 + {x2 + 36 + [741
= w(x) Ix2-30-x+ 325+ [xZ + 36 + (741

®u(x) [x=2 [265 + [Z41 + 2-[18
W) | x=2

MAIN KRB ALTD FUNC_7/30

ES v 23 v N
va Zrozon EFdzit, v Fﬁl Stf:lle ' :-:e.s T ]
PLOTS
"3%“"(") - ERKOR
g =
3%: Undefined variable
g6= ———
yr=
it | (Enter=60T0) (ESC=CANCED )
¥i0=
2 ()=
h RAD_ALTO FUNC MAIN RAD AUTO FUNC
[ eOR1 aebralcaiclotber Proniofciem us] || If we first simplify the expression and then define
=w(2) Ix2 - 30-x + 325 + {x2 + 36 + [241 the function it works.
" () Ix2 - 30-x + 325 + {x2 + 36 + [741
B u(x) | x =2 [265 + [241 + 2.[10 Can you explain this?
 Define w(x)=x2 - 30-x + 325 +{xZ + 36 + [P
Done
m y(2) J263 + (241 + 210
{mu RAD AUTD FUNC 9730
Dear Thomas,
Your problem can be resolved very easily: Define a as a(x) — first screen shot. Then it works as ex-
pected.

Josef
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The Wonderful World of DERIVE 6

DERIVE 6 offers a bundle of new and exciting features. I"d like to present a selection of them — in
particular those which are very impressive and helpful for CAS-supported math education. I am sure
that Johann Wiesenbauer will focus on "DERIVE Interal” subject matters. See also the Groebner
Bases on page 40.

I"1] start with the "Slider Bars", which have been introduced in the Bézier curve contribution.

~3sume that you want to demonstrate the Taylor expansion for the sine function. I want to present the
graph of the sine function (with variable period length) together with the graph of the Taylor poly-
nomial (of variable degree) for variable locations. I edit a vector (list) containing the function, the
Taylor polynomial and the point on the graph — three parameters, a, n, and x0.

[SINCa-x), TAYLOR(SIN(a-x), X, x0, n), [x0, SIN(a-x0)1]

I switch to the 2D-Plot Window and first Insert three Slider Bars for a, n and x0 (specify Minimum,
Maximum and number of intervals for the variables). Then I plot the list and move the bars .....

_“ 1 _h_‘r e St )

xis -4 -3.7—3 -2.5 -2 -1\5 -1 -0.57 ;

As you can see in the next figures, slider bars can be introduced for 3D-Plots, too. Moreover it is now
much easier to rotate the objects using the mouse.

e T e TN T

z = axx™2+bhsy mon

Let’s go back to the Algebra Window. I don’t know how often I had wished to enlarge the font size in
the Entry line — remembering numerous workshops and classes in large PC-labs. The audience
couldnt follow my typed commands and I had to write them down on the blackboard or even worse,
lacking this "most important technology" I had to spell them letter for letter. But now we can scale not
only the expressions in the Algebra Window but also simultaneously the type font in the entry line.
By the way the Unicode-font is much prettier than the DfW5-font. (But take care mixing up working
with version 5 and version 6 — I'll come back to this in the next DNL.)
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ftest_if(x):=if(

v-gz;x|

"Zer‘o”)

J

x<0,ﬁﬁéagf{v",
if(x>0,"positiv",

ik £ pee S Gegky o Clake Botons Wrdoe He5
Dl £60Y BEfe-ld » v Q% 03 §ET ~F &4 &

"positiv'
"n Ze ro'l

#1: You can read the ENTRY-LINE
“negativ’
#2: If x>0

And I also don’t know how often the audience
had problems to catch a long IF-construction or
any other expression (program, ...) which turned
out to be longer than one line.

Now we have a Multi-Line-Editor. It is not very
large, because restricted for only some lines, but it
is a big step into the right direction.

Concerning editing complex expressions, the Parentheses Matching feature is very helpful.

The 2D-Plot Window offers different styles for plotting point connecting segments (from solid to
dash-dot-dot) and we can let the system automatically present the expressions of the plotted graphs.
The colour of this annotation corresponds with the plot colour of the respective graph.

SN

3 -2.5 -2 -1\5 41 -0.5

o
]
-10

AN

)(/
// 4

A feature which has — in my personal opinion — an enormous eductional potential is the possibility to
load external graphics (in bmp-format) as background on the 2D-Plot Window.

I can imagine that many problems for modelling will achieve a new dimension and quality. You can
load handmade sketches of graphs (provided by a scanner), prepared DERIVE-graphs, graphics from

numerous clip arts collections, from the Internet, -.....
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Which functions describe the given ones in the best possible way?

7
6
5
4(x) .
3
2
1
-n-u-uLU‘wlzia 6 7%y &8 o 10 11
/ ”
-4
-5 ' $00)

(Second question: Which is the best possible way?)

g -7 -6 -

Are you able to reproduce the Snow Flake on your DERIVE screen?
This is the famous Gateway Arch from St. Louis. What is its mathematical representation?

Finally two main improvements:

Display Steps in the simplification with display of the transformation rules or without.

I will not show any differentiation- or integration process, but a transformation with trigonometric
functions. Please follow the screen shots.

#1:  Trigonometry := Expand

#2:  SIN(3-x) + COS(3-%x)

n

cos[z + —J 3 — SIN(2)
2

2 2
#3: 4.SIN(x):COS(x) =— SIN(x) + COS(x)-(1 - 4-(- SIN(xX)) )

2 2
#4: 4.SIN(X)-COS(x) + COS(x)-(1L - 4-SIN(x) ) - SIN(x)
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Now we transform in the "other direction":

#5:  Trigonometry = Collect
#: SIN(3-x) + COS(3-x)

I x-0,

ATAN(y, x) » ATAN[—Z—]

X

a-SIN(z + €) + b-COS(z + d) »
2 2
J(2-a-b-SIN(c - d) + a + b )-SIN(z + ATAN(a-SIN(c) + b-COS(d), a-C0S(c) - b-SIN(d)))

n
#7: SIN[B-X + ATAN[COS(O) + SIN(CO), COS{—] + COS(O)}J-J(2-SIN(O) + 2)
2
cos(0) » 1
n
#8. SIN[3-X + ATAN[l + SIN(CO), COS[—] + COS(D)}J-J(Z»SIN(O) + 2)
2

Now I switch off displaying the rules and set the problem for the students to find the rules which were
applied by DERIVE (or better by Albert Rich, of course.) This will open lots of discussions because

often different rules can be applied in a meaningful way. We might get a glimpse into the program-
mer’s secrets!

Displaying the rules is switched off!!
n

#9:  SIN|3.-x + ATAN|1, COS|—| + €OS(0) | |-/(2-SINCO) + 2)
2

#10: SIN(3-x + ATAN(1, €OS(0)))-Jf(2-SIN(O) + 2)

#11: SIN(3.x + ATAN(L, 1))-J(2-SINCOY + 2)

#12: SIN(3-x + ATAN(L))-J(2-SIN(CO) + 2)
' m N
#13: SIN[3-x + — [-J(2-SINCO) + 2)
L 4 )
e m W
#14: SIN[3-x + — |-J2
4

n
#15: JZ-SIN[3-X + —]
4

And the really big thing, the compatibility beween PC and handheld technology.
On the next page I show my DERIVE 6 worksheet.
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Hy first attempt to transfer a file to the ‘‘oyage 200

2

#1: 2:x +x+4=0

2
#2: SOLVE(2-x + x + 4 = 0, x, Real)
#3: false
2
#4: SOLVE(2'X + X + 4 =0, x)
1 J31.0 1 J31-i
#5: X = - — - VX= = —+
4 4 4 4

2
#6:  test = VECTOR(k , k, 0, 20)

#7:  SELECT(MOD(k, S5) = 0, k, test)

#8: [0, 25, 100, 225, 400]

. and transfer this file to my Voyage 200 - as a textfile (eg. named toti). This text file can be

opened on the 77 and executed step by step (or as a whole, of course). One has the choice to transmit
with or without simplification.

1 Fov 73 2] FS 1T FEv |
-Tﬂ onmandluisulExecutelFind.. !— RAlgebra D
: first atiempt to transfer a file to [F1 31 .
20 = ; —
E=2§¥22¥%EE§§+ j - I SAVE COPY AS NTg Y
tsolue( 2ex 2+x+4=0, x .
CicSolue (2mx 24 s4=0, %) » seq(| Tupei Text
Ciseq(k”2, k, 8, 20)+test . . q:] Folder: mains =) 3
tlarning? SELECT isn't built-into the h 2 Variable:
andheld, VYou can replace this line wi | xe + = Done
th vour oun definition or separately v ESC=CRNCEL
.1a the program editor. " solve =15
Ciselectimod(k,53=0, k, test> X =6,9129 or x=5.0479 or x=1.4788 otp
solve(sin(x™2)+2coa{x2=1 x>
VRN RAD ERACT FUNC 1IN BAD EXACT FUNC 5730

As you can see, the 77 "understands" the DERIVE-syntax (VECTOR (k?,k,0,20) changes to
seq(k*2,k,d,2@), but as its "brain" is much smaller, it does not know all DERIVE-commands.
The SELECT-command is unknown, one has to write his own T/-program to perform a selection.

I proceed on the 77 with defining a function of two variables and solving an equation, save the whole
as another text-file (eg. as toder) and send it back to the PC. The program 7/-Connect is necessary
for the exchange of "messages". It is on the DERIVE 6 CD.

#6: test = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289,
324, 361, 400]

2 2
#7: f(x, yD)i=x +y
2 2
#8: flx, ¥ = x +Y¥
2
#9: SOLVE(SIN(x ) + 2.C05(x) = 1, x, Rea®)
2
#10: SIN(x ) + 2-C0S(x) = 1
2
#11: NSOLVE(SIN(x ) + 2-C0S(x) = 1, x, Real)
#12: x = 1.478772610

Working with DERIVE will become more comfortable and personal by customizing the toolbars in-
cluding creating own short cuts.
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Das Josefspiel — The Josephus Problem
Riideger Baumann, Celle
baumann-celle@t-online.de

This algorithm is named for a historian of the first century, Flavius Josephus, who survived
the Jewish-Roman war due to his mathematical talents. Legend has it that he was one out of
41 Jewish rebels trapped by the Romans. His companions preferred suicide to escape, so
they decided to form a cycle and to kill every third person and to proceed around the circle
until no one was left. Josephus wasn't excited by the idea of killing himself, so he calculated
where he has to stand to survive the vicious circle. The following implementation demands

the input of how many people will stand around a circle and how many shall be passed over
before the next one is killed.

Auf einem Schiff befinden sich zwei Gruppen von Passagieren. Um uns nicht dem Vorwurf der Ras-
sendiskriminierung auszusetzen — in den alten Fassungen der Geschichte handelt es sich nimlich um
Schwarze und WeiBle, bald um Tiirken und Christen — nehmen wir einfach an, es seien 15 Wiener und
15 Klagenfurter. Nun gerét das Schiff bei einem Unwetter in Seenot; Rettung scheint nur méglich,
wenn die Hilfte der Passagiere iiber Bord geht. Der Kapitin schligt folgende Abzéhlmethode vor: die
Passagiere stellen sich im Kreis auf, jeder neunte muss sich opfern. Da der Kapitin Klagenfurter ist,
mdchte er die Passagiere so stellen, dass nur die Wiener ausballotiert werden. Wie macht er das?

Ihren Namen hat die Geschichte von der folgenden Begebenheit: Im Jahre 67 n.Chr. wurde die galilsi-
sche Stadt Jotapata nach lingerer Belagerung vom romischen General (spiter Kaiser) Vespasian ein-
genommen. Dem Historiker Flavius Josephus (37 — 95), welcher sich an der Verteidigung an fithren-
der Position beteiligt hatte, gelang es, unerkannt durch die feindlichen Linien hindurch in eine tiefe
Zisterne zu springen, welche ~ von oben unsichtbar — mit einer gerdumigen Héhle verbunden war. Er
fand dort vierzig Honoratioren vor, die sich verborgen hielten, um der Sklaverei zu entgehen. Nach
zwei Tagen wurde das Versteck von einer Frau verraten, die mit in der Hohle gewesen und bei einem
ndchtlichen Erkundungsgang von den Rémern aufgegriffen worden war. Die Romer forderten Jo-
sephus auf, aus der Hohle herauszukommen und sicherten ihm freies Geleit zu. Da zogen die anderen
jedoch das Schwert und drohten, ihn umzubringen, falls er dem Verlangen der Rémer Folge leisten
sollte; sie wollten sich lieber selbst entleiben als in die Hinde der Romer fallen.

In dieser kritischen Situation verfiel Josephus auf einen Ausweg, indem er folgende Prozedur vor-
schlug: Alle 41 Personen sollten sich in einer Reihe aufstellen. An einem Ende beginnend, sollte dann
jeder dritte durch den rechten Nebenmann getttet werden. Am Ende der Reihe solite die Zihlung mit
dem Anfang der Reihe fortgesetzt werden, bis nur noch einer {ibrig bliebe, der sich dann selbst um-
bringen sollte. Nach diesem Vorschlag wurde verfahren. Josephus plazierte sich an 16. und einen
anderen schwicheren Mann an 31. Stelle, so dass er als Vorletzter und der andere (den er {iberwilti-
gen konnte) an letzter Stelle ausschied. Auf diese Weise rettete Josephus sein Leben.

Das allgemeine Problem lautet: Es werden n numerierte Objekte im Kreis angeordnet; dann wird be-
ginnend mit der Nummer £, jedes k-te Objekt ausgeschieden, wobei sich der Kreis sofort wieder
schliefit. Gesucht ist die Reihenfolge der ausgeschiedenen Objekte; diese Reihenfolge heilit Josephus-

Permutation. Ist beispielsweise n = 10 und k = 2, so ergibt sich (bei Unterstreichung ausgeschiedener
Elemente):
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Die zugehérige Josephus Permutation lautet somit (2, 4, 6, 8, 10,3,7, 1,9, 5).

Rudeger started with an example having 15 Person from Vienna and 15 from Klagenfurt on
a boat, which is in distress on sea (on the Woerther Lake??). The captain gives order that 15
people have to jump from the boat. All passengers form a circle and every nineth has to

jump. How does the captain — himself being from Klagenfurt — arrange the people to save
the Carinthians?

For n = 10 people with every second person killed one obtains the Josephus permutation
shown above. (The underlined “elements” are eliminated.)

Rideger provided a DERIVE-program which in his own words “terribly slow”. So his chal-
lenge for the DERIVIANS (and the Tl-ers, too, of course) to write an efficient program. The
results for the problems from above are given below.

Josef{n, s. Liste := []) ==
Prog
APPEND{[1, .... n])

i Nach seinen eigenen Worten ist das neben-
Logp_+ 1 stehende Programm "fiirchterlich" langsam
If und Riidegers Herausforderung ist es, ein
RETURN REVERSE(Liste) ) .
j =0 effizientes Programm zu schreiben!
Loop
J=gJ=+1
If j > s exit
r 2= IF{(z < n, z +1, 1)
Loop
If vir # B exit
r := JF{(r {n, » + 1, 1)

2 =r '
Liste t= ADJOIN{viz, Liste)
v := REPLRCE(B, v, 2)

Josef{(10, 2) = [2, 4, 6, 8, 18, 3, 7, 1, 2, 5]
Josef{41. 3) = [3, 6, 9. 12, 15, 18, 21, 24, 27, 38, 33, 36, 39. 1. 5. 18, 14. 19.

23, 28, 32, 37, 41, 7. 13, 28, 26, 34, 48, 8. 17, 29, 38, 11, 25, 2, 22, 4, 35,
16, 31]

Josef (38, ?) = [9. 18, 27, 6, 16, 26, 7, 19, 38, 12, 24, 8, 22, 5, 23, 11, 29, 17,
16. 2, 28, 25, 1, 4, 15, 13, 14, 3. 20, 21]

The captain will place the 15 citizens of Klagenfurt on positions 1, 2, 3, 4, 10, 11, 13, 14, 15,
17, 20, 21, 29.

References:
Interesting homepages:

http://mathworld.wolfram.com/JosephusProblem.html
http://www.auto.tuwien.ac.at/~blieb/woop/josephus.html
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Titbits from Algebra and Number Theory (26)

by Johann Wiesenbauer, Vienna

The time since my last column has been a particularly eventful one. The top event for Derivers is, of
course, the advent of the new version 6 of Derive with a number of highly interesting new features.
What I find most exciting is the new extremely versatile unicode, which is freely scalable on the
screen. At last I can adjust the size of the writing such that the students in my lectures can follow the
Derive demos even if they sit in the last row. Great! As for programming in Derive, this version has
finally put an end to the one-line editor (just when I got used to it!) and for the first time allows the
output of intermediate results on the screen while the program is still running. I won’t carry coals to
Newecastle though by raving about the new features of DfW 6, as you certainly have tried them out
yourself in the meantime and also will more read about them in the rest of this issue of the DNL. Let
me only point out once more that I always tacitly assume that you use the most recent version of De-
rive for the programs introduced here, which is Derive 6 at the moment.

Well, another thing (though by far not equally earthshaking - life isn’t fair, is it?) has attracted the
attention of the man in the street even more. As you may have read in the newspapers they found a
new record prime with more that six million digits. Needless to say that it is again a Mersenne prime,
to be more precise number forty in the list of known Mersenne primes, namely

20,996,011
2 - |

and that it has been found by the GIMPS project (for details see http://www.mersenne.org). By the
way, there is an easy puzzle, which put may people on the spot though, as to the computation of the

exact number of digits of this prime. May I ask you to try it using Derive and compare your solution
with the one given at the end of this article!?

What puts me on the spot right now is the fact that I promised to continue with my update of polyno-
mial routines, which I started in the last column, but would rather like to talk about the mathematical
background of that discovery which is an intriguing blend of ideas from algebra and number theory
(hence fitting this series to a T !) Fortunately, two facts come to my help. First, Josef didn’t restrict
the number of my pages this time, so I can cover both topics without arousing his indignation. Second,
there is a close connection between the two topics, since surprisingly efficiently testing Mersenne

numbers for primality has a lot to do with efficiently multiplying two polynomials, as I will explain in
detail later.

For now, let’s continue with the update of the “polyroutines” mentioned above. Note that you will
need some of the routines defined in my Titbits #25, whose definitions I don’t repeat here to save
space. (You will find all routines together in the accompanying DfW-file though!). Furthermore, as a
general reference for the mathematical background [1] comes in handy again in case there is any need.
We have already introduced a routine polyirr?(u,p,x) in order to determine whether a given poly-
nomial u e Zp [x] is irreducible or not, as well as a routine irrpoly(m,p), whose output is a random

irreducible polynomial of degree m in Z [x]. In many applications we need irreducible polynomials
f(x) though, which fulfill the additional condition that x is generator in multiplicative cyclic group of
the field Z _[x]/(f(x)). They are called primitive polynomials and again for every given positive
integer m primitive polynomials of degree m do exist. As a first project, let’s supplement our routines
mentioned above by the corresponding routines for primitive polynomials.

In the routine polyprimitive?(u,p,x) below it is first checked whether u is actually irreducible. If
this first condition is fulfilled, then the second condition is checked whether x"'® # 1 mod u for every
prime divisor q of n=p™ —1, where m is the degree of u.
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polyprimitive?(u, p, x, n_, g_) =
Prog
If = polyirr?{u, p, %)
RETURN false
n_ := p*POLY_DEGREE(u, x) - 1
q_ := (FACTORS(n_)) COL 1
Loop
If TERMS(polypower(x, n_/FIRST(g_), u, p, x)) = [1]
RETURN false
g := REST(g_)
If g =[] exit

primitivepoly(m, p, %, u_) :=
Loop
u_ = Z(RANDOM(p) «x™k_, k_, 0, m = 1) + x*m
If polyprimitive?(u_, p, xJ

RETURN u_
4
polyprimitive?(x + x + 1, 2) = true
4 3 2
polyirr?(x + %X +x + x + 1, 2) = true
4 3 2

polyprimitive?(x + x + x + x + 1, 2) = false

If you want to set up the environment for the calculations in a field Fp,,, , where a generator of the

multiplicative group is known in advance, then you should modify the routine setupfield(q) in the
last Titbits accordingly:

setupfield(q) :=
Prog
If - PRIME_POWER?(q)
RETURN "g must be a prime power!"

p ;= FIRST(FACTORS(q))

miz pi2

p = FIRST(p)

mp = primitivepoly(m, p, x)
l1okl'|

setupfield(16) = ok
p=2

m=4
4 3
mp==x +x +1

Using the same routines plus(u,v,p), minus(u,v,p), times(u,v,mp,p), div(u,v,mp,p) for the
four basic operations +,—,-,/ in a field as in the first part of this paper, you can again perform all
the calculations in the corresponding field you want. The only difference is that the element p, which

corresponds to the polynomial x in the polynomial representation, will always be a generator of the
cyclic multiplicative group of the field now.
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Hence, in our example above 2 is a generator of the finite field with 16 elements, which you get by
the setup above, as you can check yourself by using the following multiplication table. (Again the
usual index row and index column of such a table is not given here explicitly, but it is mirrored any-
way in the second row and column, respectively.)

VECTOR(CVECTOR(times(a, b), a, 0, 15), b, 0, 15)

6 o 0o 0 0 O O O 0 O 0 O 0 0 0 0]
¢ 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0 2 4 6 8 10 12 14 9 11 13 15 1 3 5 7

1 2 7 4 13 14 11 8

0 4 8 12 9 13 1 5 11 15 3 7 2 6 10 14

0 5 10 15 13 8 7 2 3 6 9 12 14 11 4 1
0 6 12 10 1 7 13 11 2 4 14 & 3 5 15 9
0 7 14 9 5 2 11 12 10 13 4 3 15 & 1 6
0 & 9 111 3 2 10 15 7 6 14 4 12 13 5§
0 9 11 215 6 4 13 7 14 12 5 & 1 3 10
0 10 13 7 3 9 14 4 6 12 11 1 5 15 & 2
0 11 15 4 7 12 & 3 14 5 1 10 9 2 6 13
012 1 13 2 14 3 15 4 8 5 9 6 10 7 11

013 3 14 6 11 S 8 12 1 15 2 10 7 9 4
0 14 5 11 10 4 15 1 13 3 & & 7 9 2 12

L0 15 7 &8 14 1 9 6 5 10 2 13 11 4 12 3 |

Now let’s turn to the problem of factoring a given polynomial f(x) e Z,[x]. Since Z [x] is a facto-
rial ring, we can assume that f(x) has a representation of the form

£(x) = £,(0F, (x)..£.(x)"

where f, (x) is simply the product of all irreducible factors of f(x) with multiplicity k, k=1,2,....r.
This is called the squarefree factorization of f(x), since all the factors f, (x) are obviously squarefree,
and it is obtained by the program below..

In order to demonstrate its simple idea let’s assume for the moment that r=3 and p>3, which will make

things a little easier. It may also help you to visualize the factorization f(x) = f,(x0)f,(x)*f,(x)* asa
set of dominoes arranged in the following way:

£,(x) £,(x) f,(x)
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Let’s do it step by step:
1. Step:

How can we get hold of the part hatched in the figure above? Well, it is simply the part that f(x) and
its first derivative f’(x) have in common, i.e. f_(x) :=gcd(F(x),f’' (x)), isn’t it?

7

How can we get hold of the part hatched in the figure above. Well, it is simply the quotient
g_(x):=F () /F_(x), isn’t it?

3. Step:

How can we get hold of the part hatched in the figure above? Well, it is simply the part that f (x) and
g_(x) have in common, i.e. h_(x) :=gcd (F_(x) ,g_(x)), isn’t it?

4. Step:

How can we get hold of the part hatched in the figure above? Well, it is simply the quotient
u_(x)=g_(x) /h_(x), isn’t it? Note that we have found f,(x) so far!

5. Step:

How can we reduce the original problem to a simpler problem, i.e. to a problem with a smaller value
of r than r=37

Well, we actually revert to the figure in step 1 by modifying f (x) accordingly and the new g_(x) be-
comes h_(x). Actually, we have thus the same situation as at the beginning but with =2.
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sf_factors(f, p, %, k_=1, f_, g_, h_, u_, v_:=1) :=

Prog
If NUMBER?(F)
RETURN f
f_ 1= polyged(f, S(F X), p, %)
g_ = polyguot(f, f_, p, %)
Loop

If NUMBER?(g_) exit

Tyquot(f, v_, p, %)

po
2({POLY_COEFF{f, x, 1_): XA(1_,*’p). i_, 0, POLY_DEGREE(F), p)
sf_factors(f, p, x)*p

h_ := polygcd(f_, g_. P, %)
u_ = po'lxquot(g_. - Py XD
v_

g- = h_

f_ = polyquot(f_, h_, p, x)
k_ + 1

< hh

16 11 9 & 7 6 4 P
sf_factors(2.«x + 2% + X 4+ 2:% + X +X + X + 22% + 2:2x + 1, 3)

3 2 2 2 4
20 + L) +2) (x +1) o (x 4+ 2x + 2)

If you have a look at look at the program above you will see that it performs exactly those five steps
again and again. But you will also find out that I haven’t yet told you the whole truth. In fact, if p<r
and f(x) has irreducible factors of a multiplicity that is divisible by p then things are slightly more

complicated. If, for example, p=2 then f,(x) has the same multiplicity in f(x) and £'(x) and as a con-
sequence the “top layer” h_(x) in step 2 has a “hole” in the place of f,(x). I leave it to you to show

that after performing the same cycle of 5 steps as before the column of f,(x) won’t get smaller but
stays always the same size. Hence, after some time we arrive at a polynomial that consists only of
irreducible factors with multiplicities divisible by p. This is not really a problem though: We simply
compute the p-th root of that polynomial (see the line before the last in the program) and apply the
routine sf_factors( ) recursively to the result. Again see the program for details!

Okay, for a complete factorization we are left with the task of splitting up those squarefree factors
f, (x) as well. In view of the previous results we may assume that f(x) is squarefree from now on.
The next and comparably easy step is to find a factorization of f(x) into a product of polynomials
Ay(x) with the property that each of its irreducible factors of A,(x) in Z [x] has the same degree

for some fixed d with 1 <d< |_m/ 2_] , where m is again the degree of f(x). We simply use the fact here
that the polynomial x”"' x contains all irreducible polynomials in Z [x] of degree d exactly once.
Hence, we can get A (x) by computing the ged(f(x), X" x) for the above values of d=1,2,...,
I_m/ 2_] , and removing the found factors from f(x) after each step. There is a small subtlety though as

regards the computation of the gcd above. Of course, before computing it the term x”" should be

replaced by its value mod f(x) using our polypower( ) again! For the other details I refer you to the
following program. (Note that “dd” in its name stands for “distinct degree”.)
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dd_factors(f, p, %, d_ =1, m_, u_:=1, v_, w) =
Prog
_ iz X
Loop
m_ = POLY_DEGREE(T, x)
If d_ = m_/2
RETURN fou_
w_ = polypower(w_, p, f, p, %)
v_ =z polygcd(f, w_ - %, p, x)
U_ e V_
f = po1yquot(F v, P, X)
d_

16 2 12 9 (& 3
dd_factors{x - x, 2) = x+(x + 1)e(x +x +1):{x +x +x +x + 1)

As you may conclude from the example above x'® —x splits up into two linear factors, one quadratic
factor and 3 factors of degree 4, where the latter are not yet separated. This separation is the hard
work in practice and everything we have done so far has been child’s play by comparison. There are
many different methods to achieve this goal (see for example Berlekamp’s method in [1]) and all have
different advantages and drawbacks, but to cut a long story short I’ll only update the method by Can-
tor-Zassenhaus already introduced in my Titbits #13. Note that for the following programs it is tacitly
assumed that the given polynomial f consists only of irreducible factors of some fixed degree d.

po.lysp-"'t('f:n d| P. X, t_) =

Loop
I POLY_DEGREE(f, x) =
RETURN T
t_ = Z(RANDOM(p) x™k_, k_, 0, 2:d - 1)
t_ = polyged(f, polypower(t_, (pd - 1)/2, f. p, x) - 1, p, ¥)
t_ = [t_, polyquot(f, t_, p, x)]
If SELECT(NUMBER?(u_), u_, t_) = []

RETURN polysplit(t_sl, d, p, x)polysplit(t_y2, d, p, x)

12 9 6 3 4 4 3 4 3 2
polyspTit(x  + % +x%x +x +1, 4)=( +x+1):( +x +1):{x +%x +% +x+1)

Let’s tumn to promise now I gave in the introduction, namely to show how testing Mersenne numbers,
i.e. numbers of the form M = 2P —1, where p is a prime, for primality, is connected up with the

problem of multiplying two polynomials as fast as possible. First, let me remind you that if exclude
the prime p=2 then there is the incredibly simple Lucas-Lehmer test for those numbers (see e.g. my

Titbits #22). All you have to do is to set s:=4 and perform the assignment s:=s® —2 mod M, exactly
p-2 times. Then Mp is prime if and only if s=0 for the resulting value of s. I have also already men-

tioned that the reduction mod M, is simply a matter of shifting and adding for a binary computer.

Hence, what remains to be done and is the really hard part is the squaring of s. (Remember that we
are talking about an s that has the size of several million digits currently!)

Assuming that s is represented as a polynomial in the base B, that is

s= S, +§B+...+s, ,B"
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where B is the word size of the computer, say B=2* or B=2% and n is large enough to cover all
numbers below M, then we have indeed the problem of a fast polynomial multiplication. Experts in

this field already know that this is the point where FFT (=Fast Fourier Transform) inevitably comes
into play. The basic idea behind it is very simple. Instead of multiplying the polynomials using the
school method, i.e. the Cauchy multiplication for which O(n®) multiplications are needed, we evalu-
ate the polynomials we want to multiply in 2n-1 suitably chosen places X,,X,,..,X,,_, , carry out the

pointwise multiplication for those places and solve the interpolation problem afterwards to get the
product of the given polynomials.

In the case of the DFT (=Discrete Fourier Transform) we choose X; = coi, 1=0,1,..,2n-2, for some
fixed primitive n-th root of unity ® in the given ring R of coefficients. For example, in the classical

case where R=C, the field of complex numbers, we could take ® =e”™™ or @ =¢e ™" . In more
general rings R, the statement ® is an “n-th primitive root of unity” means that ® is a is an n-th

root of unity in the ring R. Moreover none of the values ®* -1, 0<k<n, must be a zero divisor in R and
n must be invertible in R.

Ok, let’s start with the classical case R=C in order to see what I'm talking about. The evaluation for a

polynomial for the first n powers ®*, k=0,1,..,n-1, is simply a multiplication with the matrix
Q) whose definition be seen in the following initialization routine. What is less obvious, but can be
proven without great efforts, is the amazingly simple form of the inverse matrix, called Q _in the
following program, which looks very similar to {2 apart from the fact that it uses the inverse root of

unity o' and has also got a constant factor 1/n. (By the way the latter fact is why we require the
invertibility of n.)

nitln, =1, ) =
Prog
OMEGA := IDENTITY_MATRIX(n)
OMEGA_ := OMEGA
Loop
J—:=1
Loop
OMEGALI_43_ 1= EXP(2+ i+ (i - 1)«(3_ - 1) «r/n)
OMEGA_yi_tJ_ 1= EXP(- 2:&+(i_ - 1)« (j_ = 1) «m/n)
J- o+ 1
If j_ > n exit
1o+ 1
If i_ > n exit

DFT(a) := a.OMEGA

1
DFT_inw{a) = ——————+a+OMEGA_
DIM(a)

In1t(&) = true



p58 Johann Wiesenbauer: Titbits 26 D-N-L#52

1 1 1 1 1 1 1 1
$2 J2.i g2 J2-i J2 J2.i 2 J2.
1 + L= + Al - — - — i —— -
2 2 2 2 2 2 2 2
1 L -1 -t 1 L -1 -t
$2 J2.i 2 J2- i £2 J2:i 42 J2i i
1 - + -t + -1 — - L o= — -
2 2 2 2 2 2 2 2
OMEGA =
1 -1 1 -1 1 -1 1 -1
S J2ii 42 J2ii $2 J2.i 42 J2-i
1 - —- L — - -1 — ¢ -L - +
2 2 2 2 2 2 2 2
1 -t -1 L 1 - -1 L
2 J2.0 JS2 J2.i £ J2.i 2 J2.i
1 — - L - — - — -1 - + ¢ +
L 2 2 2 2 2 2 2 2 J
a:=1[1, ..., 8]
b = DFT{a)

[36, -4 - t+e(4:J2 +4), ~4 - 4L, -4+ L(4-4f2), -4, -4 + L:(4:4f2 - 4), =4 + 44i, -4+ ii(4f2 + )]
DFT_inv(b) = [1, 2, 3, 4, 5, 6, 7, 8]

Let’s turn to the FFT, what might be called the “fast version” of DFT although it works only if n is a
power of two. It is basically a “divide-and-conquer” algorithm which reduces the problem of finding
the value of DFT(a) w.r.t. to chosen ® to the problem of finding DFT(a,,.,) and DFT(a_,) w.r.t

®®, where a_,, and a oaa denote the subvectors of a with even or oddnumbered indices, respectively.

(For the details see the following program.) The important point about FFT is that the complexity is
now only O(n log n) multiplications and hence considerably better than the corresponding complexity
O(n?) for the ordinary DFT.

even

o=

FFT(a, w, f_, f_, n_, %) =
Prog
n_ = DIM{a)
Ifn_=1
RETURN a
f_ = FFT{VECTORCay _, 1_, 1, n_, 2), «™2)
®x_ = ITERATES(w_.w, w_, 1, n_/2 - 1)
f__ = FFT(VECTORCayi_, 1i_, 2, n_, 2), «*2)
f__ = VECTOR(x_yi_f__1i_, 1_, 1, n_/2)
APPEND(F_, f_) + APPEND{(f_, -f_)

1 -1
FFT_inv{a, w) = —————FFT(a, w )
DIM{a)
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a:=1[1, ..., &]

2ibam
FFT|a, EXP| ———
&

[36, —4 - i:(4:f2 + 4), -4 -4, -4+ L.(4-4.J), ~4, -4+ £.(4-2-4), —4 + 4i, -4+ L-(4:f2 + D]

2rbeT
FFT_inv|b, EXP| ——— || = [1, 2, 3, 4, 5, 6, 7, &]
&

Maybe I shouldn’t close this topic before giving an explicit demonstration how these ideas can be
used for a fast multiplication of two numbers. For this we need another version of FFT working in a
residue class ring mod m for a suitably chosen m. We use in the following the fact that ®=2is a
primitive

n-th root of unity if n =2"*' and m=2""% +1

fftla, w, m, f_, f__, n_, %) :=
Prog
n_ := DIM(a)
Ifn_=1
RETURN a
f_ = FFL(VECTORCayi_, i, 1, r_, 2), «™2, m)
x_ = ITERATES(MOD(w_+@, m), w_, 1, n_/2 - 1)
f__ = FFLQVECTORCayi_, i_, 2, n_, 2), o2, m)
f__ = VECTOR(x_yi_T__yi_, i, 1, n_/2)
MOD(APPEND(f_, f_) + APPEND(f__, —-f_), m)

o
it

fft_inv(a, w, m) := MOD(INVERSE_MOD(DIM(a), m).fft(a, INVERSE_MOD(w, m), m), m)
([, ..., 8], 2, 17) = [2, & 14, 6, 13, 3, 12, 1]
fFe_anv([2, &, 14, 6, 13, 3, 12, 1], 2, 17> =1[1, 2, 3, 4, 5, 6, 7, 8]

For the conversions of the number representation to the polynomial representation and vice versa I
have written the following routines:

tovector(x, b:= 10, T:=1, d_:=[1]) ==
Prog
Loop
If x = 0 exit
d_ = INSERT(MOD(x, b), d_, O
x = FLOOR(x, b}
Loop
If DIM(d_) » 1
RETURN d_
d_ := INSERT(D, d_, O

tonumber(v, b= 10, x_ = 0, y_:=1) ==
Loop
It v =1[]
RETURN x_
X_ o+ wiley_
y_ = b
v = REST(v)

And finally a simple example to see those routines at work:
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1324563472323451.243272343213275 = 322229659646837853175477012025

¥ 'z tovector(1324563472323451, 10, 32)
[L, 5, 4,3, 2,3 2,7,413,6,5, 4 2 3 1, 0,0,0,0 0,0,0, 0, 0,0,0,60, 0 0,0, 0]
y iz tovector{243272343213275, 10, 32)

[5,7,2,3,1,2,3,4,3,27,23 4,200,000 00000000000 0]

prod(u, v) iz VECTOR(u' o 1, 1, DIM{u))
1 1

frt_inv{prod(fft(x, 2, 65537), fftly, 2, 65537)), 2, 65537)

[5, 32, 57, 56, 55, 54, 61, 91, 125, 112, 135, 167, 165, 167, 170, 169, 135, 153, 130, 120, 133, 115, 93, 76, 71,
45, 27, 19, 10, 2, 0, 0]

tonumber ({5, 32, 57, 56, 55, 54, 61, 91, 125, 112, 135, 167, 165, 167, 170, 169, 135, 153, 130, 120, 133, 115, 93,
76, 71, 45, 27, 19, 10, 2, 0, O1)

322229659646837853175477012025

Whow, it works! Note that the vectors x and y corresponding to the two numbers that are to be multi-
plied have to be filled up with that many zeros such that there won’t be any “overflow” due to the
polynomial multiplication. This procedure is called zero-padding.

Of course, only the principle could be shown here and many subtleties are involved in practice. In
particular, it goes without saying that programming in assembler code is mandatory. Would you be-
lieve that those programs are so highly sophisticated that certain versions are used to test Pentium
chips before delivery?

Okay, let’s turn to a more down-to-the-earth question at the end of the Titbits namely the number of
digits for the new record prime. (The length of this article is also a new record by the way, but after
all Josef has asked for it and you should write letters of complaint to him!)

Here is the Derive routine that computes number of digits for a Mersenne number Mp, no matter

whether it is prime or not.

digits(p) := FLOOR(p:LOG(2, 10)) + 1

dig1ts{20996011) = 6320430

Well, this computation should be rather obvious. Nevertheless, just to be on the safe side, I checked
this number on the Internet site quoted above, as you should in turn check everything I said on the
preceding pages. (But this you did anyway, didn’t you?)

Hope you enjoyed the programs as much as I did when writing them. And as always, any comments,
questions or suggestions (to j.wiesenbauer@tuwien.ac.at) are welcome!

[1] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, FL, 1996 (cf. also http://www.cacr.math.uwaterloo.ca/hac/)

Additional note: together with Titbits #25 you have a very complete collection of functions and pro-
grams for polynomial arithmetic. You can find Johann's files for DERIVE versions 5 and 6 on the disk-
ette, Josef




