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D-N-L#40 INFORMATION - Book Shelf D-N-L#40

[1] Using the TI-89 in Physies, A textbook with examples for students,
George Adie, bk-teachware, no SL-14, ISBN 3-901769-31-5 (+ diskette).

[2] Experiments in Motion Using the CBR and TI-83+, A manual of Activities and their Analysis,
Heinz-Dieter Hinkelmann, bk-teachware, no SL-13, ISBN 3-901769-29-3.

[3] Exploring Integration with the TI-89/92/92+, From Counting Raindrops to the Fundamental
Theorem, J Bshm & W Propper, bk-teachware, no SL-12, ISBN 3-901769-28-5 (+ diskette).

[4] Exam Questions and Basic Skills in Technology-Supported Mathematics Education,
Proceedings of the 6th ACDCA Summer Academy in Portoroz, Slovenia, Jul 2-5, 2000,
bk-teachware, no SL-15, ISBN 3-901769-33-1.

[S] Abituraufgaben losen mit TI-89/92/92+, Praktische Anleitungen und Losungen aus Analysis u.
Analytischer Geometrie, G Raup & W Scheu, bk-teachware, Nr SR-18, ISBN 3-901769-30-7.

All titles can be ordered at http: //www.bk-teachware.com No more valid in 2018

Important note on TI-92 programs: Unfortunately changes in the TI-92+ Operating System’s
source code (2.05) can cause problems running programs delivered on the diskettes which accompany
some bk-teachware books. The same can happen as a consequence of localizations (German or other
menus) for the PLUSes. In that case please send an e-mail and I'll send an update.

% New DERIVE discussion group installed ™=

David Halprin, a very enthusiastic DERIVE User and DUG member from Australia established a
DERIVE discussion group eDUG. David and I would like to invite you all to join eDUG by clicking
on

http://www.egroups.com/group/edug.

To post a message: the groups e-mail address is: eDUG@egroups.com.

Many thanks to David for his efforts to improve communication within the DERIVE-family.

ICTMT5 Klagenfurt, August 6 - 10, 2001*)

In the frame of this Conference Bernhard Kutzler, Vlasta Kokol-Voljc and Josef Béhm will together
chair a Special Working group

DERIVE, TI-89/92 and other CAS

Education has become one of the fastest growing application areas for computers in general and com-
puter algebra in particular. Computer algebra teools such as TI-89/92, Derive, TI Interactive, Mathe-
matica, Maple, Axiom, Reduce, Macsyma, or MuPAD make powerful teaching tools in mathematics,
physics, chemistry, biclogy, economy, ..... at all grade levels (schools and universities).

The goal of this session is to exchange ideas and experiences from various CAS, to hear about
classroom experiments, and to discuss all issues related to the use of computer algebra taols in class-
room (such as assessment, change of curricula, new support material, ...).

If you have anything of the above which you would like to share with colleagues in the inspiring
atmosphere of a conference in one of Austria’s most famous holiday regions then please make a
submission using the submission and registration forms presented on the Conference’s web site.

Deadline is 31 January 2001

b.kutzler@eunet.at or nojo.boehm@pgv.at’

&) Conference web site: http://www.uni-klu.ac.at/ictmt5/
We hope to meet many of you in Klagenfurt.




thanks for your cooperation.

Wir ersuchen unsere Mitglieder aus Osterreich und Deutschland, den beige-
legten Zahlschein zu benutzen. Herzlichen Dank.

Find all the DERIVE and TI-files on the following web sites

Dear DUG members,

End of 2000 is approaching and we are
completing the first DNL-decade. DNL#40 is
ready and the last work for me is writing the
Letter of the Editor. 1 have to start with an

apologize. In the last DNL some problems

with my (PC’s) memory caused
an uncomplete print of Johann
Wiesen-bauer’s Titbits#18. The
printer refused to print the
mathematical symbols and the
formulae as well. As they were
not very large 1 didn't realize
that. T beg your pardon. On the
diskette accompanying this DNL
you can find Johann's file in his

original version.

L

This DNL contains among other exciting
contributions a really extraordinary one. One
month ago Mr Schiller sent a heavy letter and
wrote that he had produced a DERIVE com-
piler which enables to produce DERIVE pro-
grams for DERIVES using an editor and sev-
eral user friendly instructions instead of the
very tight DERIVE code.

I tried his tool and was more than sur-
prised. I called Mr Schiller and made some
proposals for possible extensions and two
weeks later the improved version was back in
Wiirmla.

You can find some examples how to ap-
ply TOM.EXE in this DNL and on the diskette

as well. (TOM is from to mth) Unfortunately
Mr Schiller is not reachable by Internet, so if
you have some questions then please send an
email to my address or contact Mr Schiller
directly.

It is always a pleasure to have memories
i on meetings in the DNL. So we
are very grateful for Josefine
Sjostrand and Terence Etchells
Reflections on the Liverpool Con-
ference.

By the way, please take into
account the announcement of the
ICTMTS 2001 in Klagenfurt. 1
would be very happy to meet
many of you in Austria in one of
our loveliest regions.

Concerning the training program for
DfWs on page 39: I try to produce a very
similar program for DERIVE4 and DfD, too.
Please look for it on the diskette.

There are a lot of new materials on our
ACDCA / T? homepage (see address below).

My wife Noor and 1 wish you all a

Merry Chrisimas and a
Happy Rew Year 2001

and we hope to meet you next year again in the
DERIVE and TI-92 User Group.

Josef
;

Don’t forget to renew your DUG - membership. Please use the included form to
send or fax your data. You can also use email. Please avoid cheques if possi-
ble. This is the most expensive way to settle the dues for both partners. Many

thanks for your cooperation.

Wir ersuchen unsere Mitglieder aus Osterreich und Deutschland, den beige-
legten Zahlschein zu benutzen. Herzlichen Dank.

Find all DERIVE and TI files on
http://www.austromath.at/dug

http://www.acdca.ac.at
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The DERIVE-NEWSLETTER is the Bulle-
tin of the DERIVE & TI1-92 User Group. It
is published at least four times a year with
a contents of 44 pages minimum. The goals
of the DNL are to enable the exchange of
experiences made with DERIVE and the
TI1-92/89 as well as to create a group to
discuss the possibilities of new methodical
and didactical manners in teaching mathe-
matics.

As many of the DERIVE Users are also
using the T1-92/89 the DNL tries to com-
bine the applications of these modern tech-
nologies.

Editor: Mag. Josef Bohm
A-3042 Wiirmla

D’Lust 1

Austria

Phone/FAX: 43-(0)660 3136365
e-mail: nojo.boehm@pgv.at

Preview: Contributions for the next issues

Contributions:

Please send all contributions to the Editor.
Non-English speakers are encouraged to
write their contributions in English to rein-
force the international touch of the DNL. It
must be said, though, that non-English arti-
cles will be warmly welcomed nonetheless.
Your contributions will be edited but not
assessed. By submitting articles the author
gives his consent for reprinting it in the
DNL. The more contributions you will
send, the more lively and richer in contents
the DERIVE & TI1-92 Newsletter will be.

March 2001
15 February 2001

Next issue:
Deadline

Inverse Functions, Simultaneous Equations, Speck, NZL
A Utility file for complex dynamic systems, Lechner, AUT
Some examples how to work with DfW5, Lechner, AUT

Examples for Statistics, Roeloffs, NL
Quaternion Algebra, Sirota, RUS

Sand Dunes, Halprin, AUS

Type checking, Finite continued fractions, Welke, GER
Kaprekar's "Self numbers", Schorn, GER

Flatterbandkurven, Rolfs, GER

Comparing statistics tools: a pie chart with DERIVE, a stem & leaf diagram

on the Tl, Bbhm, AUT

Errors occurring presenting graphs on the TI-92 compared with DERIVE

and Tl-Interactive, Himmelbauer, AUT

Some special Integrals for DERIVE, Magiera, POL
VECTOR is my favourite DERIVE-function, Bohm, AUT

and

Setif, FRA; Vermeylen, BEL; Leinbach, USA; Aue, GER; Koller, AUT, ......

Impressum:

Medieninhaber: DERIVE User Group, A-3042 Wiirmla, D'Lust 1, AUSTRIA

Richtung: Fachzeitschrift
Herausgeber: Mag.Josef Bohm
Herstellung: Selbstverlag
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Reflections of an Organiser of the 4th International Derive-T189/92
Conference, Liverpool John Moores University, July 2000.

There was an eerie feel to the University when the last of the delegates had left the conference. Walk-
ing around the building, taking down the signs and notices, it felt like being on a set of a deserted town
in a spaghetti western. I was half expecting tumbleweed to rush past me as the wind swirled around.
After the rush of activity throughout the previous days the silence was deafening and my emotions of
relief and exhaustion were quickly overcome with those of emptiness and sadness. All those old and
new friends had gone. The party was over.

Five days earlier, it was all hands to the pumps. I entered the conference office Tuesday morning to
find Wade and Jane Ellis, who had just flown in from the USA, stuffing information into the confer-
ence bags. lan Malabar was on the phone finalising the arrangements for the conference trips. Paul
Cartwright and his team of technicians were setting up the last of the computers, projectors and TI
view screens in all the lecture rooms. Pat and Carl Leinbach were at Lime Street Station meeting con-
ference delegates and Dave Pountney was printing the final version of the delegates list. There were a
few other niggling jobs that had to be done, but we were ready. The conference rooms were set, the
catering organised, the delegate information collated, the trips were booked. The roller coaster had
reached the top, it was ready to drop, I held my breath ........

The registration of delegates was hectic, every few seconds familiar faces would arrive, lots of hugs
and handshaking. No time to catch up on the last two years, catch you later, next delegate “Hiyaaa
..... . Soon it was time for the conference opening and the first keynote lecture. Time seemed to
speed up as I began frantically running around, checking that every speaker was happy with the tech-
nical equipment, this manifested itself in anxiously peering through door windows, all seemed well.
As the hum on the corridors subsided I managed to sneak in the back of Pat and Carl Leinbach’s talk
on “Estimating time since death” only to be confronted with a picture of a dead body, Jeez I had to get
out of there!

In the evening we had a brewery trip and a Beatles magical mystery tour, all seemed to be going well.
Thursday we had trips to AltonTowers, Chester and Liverpool with a quiz in the conference bar in the
evening. Friday morning started with registration again, this time for the teachers day. The confer-
ence committee had invited local school teachers to attend the conference for the day to experience
computer algebra at an international level. Boy, what a busy day! The Friday evening was, by many
peoples accounts, the highlight of the conference, with the conference banquet and the rock band “The
lounge lizards” (who was that little guy on keyboards and acoustic guitar?). The evening ended with
dancing, with the conference team really letting their hair down and Bernhard Kutzler gracing us with
his quite magnificent dancing. Saturday morning came with some rather sore heads!

Conference ended at noon and people drifted away. We took down the signs; cleared the equipment
and went to Dr Duncan’s pub for (as Karen Stoutemyer calls them) a repair beer.

Without doubt the conference had been a success, made so in no small part by my great friend Carl
Leinbach who was on sabbatical with us for the year. Carl was the real workhorse of the conference
and who I owe a great debt of gratitude, for his experience and shear hard work during the build up
towards the conference.

Would I do it again? We’ll I surely enjoyed it, it was hard work but very rewarding. “Yes, but would
you do it again?” . Erm!!! Not for at least ten years and only if I had Carl and Dave Pountney as my
partners in crime.

Good luck to the conference organisers of the next conference in Vienna 2002.
Cheers

Terence
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Lovely Liverpool

Liverpool was an excellent place for the 4™ Derive/TI-89-92 conference. After the first time I went
there as a fifteen-year-old beatle fan, I always wanted to come back, and this conference was a perfect
reason for it. Things just couldn’t be better: A bunch of intelligent, nice people coming together to
exchange ideas and have fun in a city most of all known as the birthplace of the Beatles!

This time it was slightly difficult to get to the conference. My parents and I had to wait for eight hours
at the airport before we could fly to London, since the British Airways flight we were going on was
cancelled due to problems with the fuel system. As soon as we landed at London Gatwick, we realised
that we had missed the last train to Liverpool. Vexation! We desperately wanted to come to Liver-
pool, and the very thought of having to stay one night at an airport hotel was slightly depressing.

Even though we hardly believed it, we found ourselves on a northbound train the day after. We were
travelling through a beautiful landscape, and the farther north we came, the nicer became the people’s
accents. After nearly four hours, we were in Liverpool! We were totally happy for a few minutes,
before we realised that we didn’t know where to find the hotel. A second after that, we realised that
there were only ten minutes before the registration desk at the conference would close....and even
worse, we didn’t know where the conference was!

We had obviously forgotten all the information at home! After about ten minutes, we knew that Liv-
erpool John Moore’s University wasn’t just one building. There were several, spread all over the city.
That’s pretty bad when you don’t know where you’re supposed to go. After that we had asked a few
people about the way and they all had given us different answers, we found one building that clearly
belonged to the university. Perhaps this was the place we were looking for? No, it wasn’t. But a
friendly lady told us the way to the right place, and soon we were there, in the same room as our
friends from all over the world. It was wonderful to see everyone again, and we had soon forgotten all
the trouble we had had while we were travelling.

I have loads of lovely memories from these four days in Liverpool. From early morning to late at
night, there was always something going on. On the first evening, mum, dad and I had decided to go
on the Magical Mystery Tour to see all the places in the city that had something to do with the
Beatles. While we were sitting there on the bus, I came to think of the fact that it was exactly three
years since I was on my first Magical Mystery Tour. That added some extra magic to an already ex-
cellent trip.

I also remember the lovely day in Chester, with all its Roman remains and medieval houses and the
boat trip on the river that allowed us to catch a glimpse of the magnificent home of the Duke of
Westminster’s. Later that night, many of us enjoyed a difficult quiz, which was also an excellent
opportunity to get to know people better. I had a great time with both old (yep, Uncle Terence admit-
ted he was already 40©) and new friends, and I can still recall the feeling of total happiness that came
over me that night. It was going to remain with me for a long time after I left Liverpool.

The last evening in Liverpool was a splendid one. We had a lovely dinner and conversations that were
perhaps even nicer than the excellent food. After that, it was time for the Lounge Lizards to enter the
stage. Terence Etchells, Phillip Yorke and friends had a great band and they had picked some great
songs that they performed. I helped them a little with the piano playing on “Get Back” and additional
vocals on “Can’t buy me love”. I also sang Queen’s “You take my breath away”. After a while, people
began to dance, especially Bernard and Andrea Kutzler. They were both brilliant dancers and it was
truly enjoyable to see them dance together.

Since all these events took place in Liverpool, birthplace of The Beatles, I would like to give these
four lads the last words of this text:

Though I know I’ll never lose affection

For people and things that went before
I know I'll often stop and think about them
In my life
I'll love you more.
See you in Vienna!

Josefine Sjostrand
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A Brief History of the muMATH/DERIVE., CASs

Albert Rich, Soft Warehouse, Honolulu, Hawaii

On 1 January 1979, a partnership named The Soft Warehouse was founded by Albert D. Rich and
David R. Stoutemyer. At the time computer algebra systems (CASs) were only available on large
mainframe computers, usually at academic institutions. Our goal was to make computer algebra wide-
ly available to the masses on small computers (note that this was well before the term "Personal Com-
puter” had been invented).

MUMATH-79 was released in 1979 and ran on 8080 and Z80 computers with as little as 48K bytes of
memory running CP/M, and on Radio Shack TRS-80 computers running TRS-DOS.

MuMATH-80 was released in 1980 and ran on the above computers as well as the 6502 based Apple
IT computers.

MUuMATH-83 was released in 1983 and ran on the above computers as well as the 8088 based IBM
PC and XT computers with as little as 300K bytes of memory.

On 5 February 1985 the company was incorporated under the name Soft Warehouse, Inc.

DERIVE was released in October 1988, had an easy to use menu-oriented CAS interface, 2D and 3D
graphics, and ran on PC compatible computers running MS-DOS with a minimum of 512K bytes of
memory.

DERIVE for Windows was released in October 1996, had a GUI Windows interface, a 32-bit math
engine kernel, and ran on PC compatible computers running MS Windows and NT.

The "mu" in MUMATH is the Latin name for the Greek letter mu, which is used to represent micro in
the Metric system of units. Since our math program ran on the micro-processors used in small com-
puters, the name MUMATH seemed like a natural.

MUMATH was written in a surface language for LISP that we named muSIMP. muSIMP stands for
micro Symbolic IMPlementation language. While semantically equivalent to LISP, muSIMP pro-
vides a more conventional syntax than LISP (e.g. infix notation for math operators instead of LISP's
Cambridge prefix notation, etc.). MUSIMP starts out as MuLISP, and then the first thing that is load-
ed is a parser (written in MULISP) that replaces the LISP parser with the more sophisticated
MuSIMP parser.

For example, in LISP (or muLISP), you would write (+ 2 3) whereas in muSIMP you would write
2+3. As another example, in muLISP you would write

((ZEROP x) y)
whereas in muSIMP it would be

When x=0, y Exit,

Rather than just refining and improving MuMATH, we decided that an entire re-write was needed.
DERIVE is the result. Instead of being written in muSIMP, DERIVE is written directly in LISP,
specifically muLISP. More importantly, in DERIVE expressions are represented in an implicit form
that makes for much more compact storage and efficient algorithms.

We agonized over the name for the successor to MUMATH for a long time. We wanted a name that
suggested the dynamic, creative process of doing math on a computer. So we finally converged on the
verb "DERIVE", rather than a static noun beginning with "M".
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SOME CLASSROOM EXPERIMENTS WITH DERIVE IN A CHEMICAL
ENGINEERING UNDERGRADUATE COURSE.

José M.M. Cardia Lopes, Gilberto Pinto, IPP/ISEP, Oporto, Portugal e-mail: cardialopes@mail.telepac.pt

DERIVE is a valuable learning tool in teaching not only calculus and algebra but also numer-
ical analysis. With DERIVE we can make evident the differences and the complementarities
between the two approaches (calculus and numerical). Let us report some examples.

Example 1 - Townend and Pountney (1989, p.77)

“A horizontal cylinder closed at one end and fitted with a piston, contains an ideal gas,
initially at pressure p:. The gas undergoes a reversible isothermic expansion, throughout
which the outer face of the piston is exposed to atmospheric pressure p, and is acted upon
by a variable external applied force for wich the net work done is zero. If the final pressure of
the gas is p2 then, by the first law of thermodynamics, p. satisfies the equation

&h{&] P
pa pZ p2
If p1 =124 KN m? and p. = 103.5 KN m? are given, compute p, from the equation.”

Introducing the equation in canonical form and solving for p, we get p,=124 KN m. It is not
the solution for our problem: after expansion it is obvious that we will have p,< ps .

Bl: pl == 124
B2: pa == 1683.5
B3: p2 € Real

pl pl pl
4= -LM - +1

pa p2 p2
pl pl pl
B5: SOLUE -LN - + 1, p2
pa p2 p2
Be: [p2 = 124, p2 = w, p2 = —w]

A glance on the graph can help us (we need some trials to get the adequate scales): we
have evidence that the problem is almost ill conditioned, with two roots, and then we must
solve (numerically) for the lower root. The answer is p~87.3 atm.

|sa

5@ 160 158
5@ 1008 159

58

+ 1, p2, 58, 188

pl pl pl
B?: SOLUE -LN -
pa

p2 p2

H8: [p2 = 87.2882]
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Solving the equation with DERIVE 6: (we proceed with DERIVE 6)

#1: [pl := 124, pa := 103.5, p2 :=]

pl pl pl
#2:  SOLVE .LN - +1, p2
pa p2 p2

Result for Simplify #2

207/(2.p2) 207/248
#3: p2-e = 124.e

Result for Approximate #2

#4: p2 = 124
pl pl pl

#5: NSOLVE LN - + 1, p2
pa p2 p2

#6: n? = 87.28048688

Solving the equation with TI-NspireCAS:

©Example 1
1 1| p1 2=87.2805 or p2=124.
A LolvelZ— ln[*z— L 1=0p2|p1=124 and pa=103.5 P P
a 2] p2
Example 2:
Ks C
K, /
Consider a reactor where the following «—A B
chemical reactions take place: k2 \
K4 D

The rate equations are:

dC
th =-k,C, +k,Cq
dC
dtB = kch _(kz + k3 + k4)CB
dC
dtc = k3CB
dC
dtD = k4CB

Ca, Cg, Cc, Cp are the concentrations of materials A, B, C, D respectively, and ki, k, ks, ks are
the rate constants. We know the concentrations at t=0 and the values of the rate constants:

Cao =50 g mol/l k= 2hour?
Cso =5 g mol/l k.= 1hour?
Cco = 0 g mol/l k; = 0.2 hour?
Coo =0 g mol/l ks = 0.6 hour?

If we want to obtain the product B, what will be the reaction time?
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We have a set of linear ordinary differential equations Y = AY, for wich the solution may be

given by the matrix equation Y=Xe"X'Yy, (X is a matrix where the columns are the eigenvec-
tors of A, A is a diagonal matrix with the eigenvalues of A, Yy is the initial conditions vector
and Y is a functional vector with the solution).

The students first enter matrix A and calculate the eigenvalues (#1 to #2). We get only three
distinct eigenvalues and we must have four: a glance at the characteristic polynomial and its
graph and we see that w=0 is a double eigenvalue.

Matriz A
5 1 0 0 Characteristic Polynomial {g.1
2 -1.8 0 0 /\
#1: A= ; - : - : : ;
0 0.2 0 0 -1 -0.8 —D.;yf—ﬂ.4 -0.2 0.2 0.4
0 0.6 0 O
J201 19 J201 19
#2: ELIGENVALUES(A) = | O, - . - -
10 10 10 10

#3: EIGENVALUES(A) = [0, -0.482255, -3.31774]

2 2
w (5w + 19w + 8)

#4: CHARPOLY(A) =
5

The eigenvectors are obtained in #5 to #10 (we need different DERIVE commands because
the eigenvalue w=0 is exact but w = - 3.31774 and w = - 0.482255 are approximate eigenval-
ues).

#5: EXACT_EIGENVECTOR(A, 0)

0 0
0 0
#6:
-1 0
0 -1

#7:  APPROX_EIGENVECTOR(A, -0.482255)
#8: [0.370995, 0.563076, -0.233518, -0.700554]
#9:  APPROX_EIGENVECTOR(A, -3.317744687)

#10: [0.597661, -0.787566, 0.0474756, 0.142428]

Therefore the solution of the differential equations (with arbitrary values to p1 and p2) is:

0 0 0.370995 0.59/661

0 0 0.563076 -0.787566
#11: X =
-1 0 -0.233518 0.0474756

0 -1 -0.700554 0.142428
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Matriz exp(AT)

EXP(0.1) 0 0 0
0 EXP(0.t) 0 0
#12: L =
0 0 EXP(— 0.482255.t) 0
0 0 0 EXP(— 3.31774.t)

Vector condicioes iniciais
#13: [50, 5, 0, 0]

-1
#14: X-L-X -[50, 5, 0, 0]

[ — 0.482255-t - 3.31773-t - 0.482255-t - 3.31773-t -
#15: 25-e + 25.e , 37.9436.e - 32.9436.e , — 15.7359.e

0.482255.t - 3.31773-t - 0.482255.t - 3.31773-t ]
+ 1.98589.¢e + 13.75, - 47.2078-.e + 5.95772.e + 41.2500

The graph of #15 shows the four functions Ca=Ca(t), Ca=Cas(t), Cc=Cc(t) and Cp=Cp(t) for t >0.
We can see that the concentration of product B has a maximum near t = 0.6 hour.

Product B

|

In lines #16 and #17 we get this value of t maximizing the function Cg=Csg(t) (the second
component of vector #15):

d - 0.482255-t - 3.31773-t
#16: SOLVE|— (37.9436-e - 32.9436-¢e ), t
dt

#17: [t = 0.630320 - 2.21592-i v t = 0.630320 + 2.21592-i v [HENNERE)
The answer is t = 0.63 hour (we don't verify the 2" order conditions because the graph
shows that Cg has effectively a maximum).

With DERIVE we can solve the same problem numerically, for example applying the fourth
order Runge-Kutta method. We define the vectors r (differential equations in canonical form),
v (variables) vo (initial values), step size and number of steps and the commands Simpli-
fy/Approximate give the numerical solution as a matrix (#19 to #21).

#19: r=[-2.a+b, 2.a - 1.8:b, 0.2.b, 0.6:b]

#20: [v = [t, a, b, ¢, d], v0 = [0, 50, 5, 0, 01]

#21: RKsol := RK(r, v, v0, 0.1, 120)

0 50 5 0 0
0.1 41.7649  12.5141 0.180205 0.540617
0.2 35.5780  17.4867 0.483815 1.45144
0.3 30.8738  20.6549 0.867784 2.60335

0.4 27.2463 22.5471  1.30160  3.90482

0.5 24,4034 23.5415 1.76375 5.29127



p 10 | J. M. M. Cardia Lopes & G. Pinto: Classroom Experiments | D-N-L#40

From matrix #21 (121 rows) we can extract pairs of columns (EXTRACT_2_COLUMNS or
using ||) to study the graphs of the different functions in the solution Ca=Ca(t), Cs=Cs(t),
Cc=Cc(t) and Cp=Cp(t) or to find the trajectories in the phase space.

3l
Product A
2
Product D
0 Produc
5 - \ Product B -
10 /- . . Product C.

Frequently in chemical engineering we need to solve stiff problems where numerical meth-
ods such as Runge-Kutta are inadequate. Frequently the matrix equation Y=Xe"'X'Y, allows
us to solve these problems without the need of special methods such as the finite differences
Gear’s method.

The matrix equation Y=Xe"X'Yy is obtained from calculus but usually we need some help
from numerical analysis to determine the eigenvalues of matrix A. It is an equation wich is not
very popular between the old generations of students because it implies a lot of hand calcu-
lations. With DERIVE the calculations are immediate.

References:

« Constantinides, A., “Applied Numerical Methods with Personal Computers”, NY, McGraw-Hill In-
ternational Edition, 1989

o Edgar, T.F., Himmelblau, D.M., “Optimization of Chemical Process”, NY, McGraw-Hill International
Edition, 1989

« Townend, M.S., Pountney, D.C. “Computer-Aided Engineering Mathematics”, Chichester, Ellis
Horwood, 1989

We can perform the same procedure with . EE) *Lopes Pinto < rao 41| A
TI-NspireCAS — with one advantage: as you can seroslwde3.8 w3 +1.60 w2 )
see on the screen shot, we will get the Eigenvec- {-3.31774,-0.482255,0.}
tors (matrix X) in one singe step. mxi=eigVe(a)
) 0. 0. -0.507662 -0.370996 I
On the next page I will solve the DE-system 0. 0. 0.787566 -0.563077
using a tool provided by Michel Beaudin’s great 1. 0. -0.047476 0.232518
0. 1. -0.142428 0.700554
Nspire-library ets_specfunc.tns (see DNL102). ox .
€ =
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ets_funcspec.tns is a file in my MyLib-folder where all my favourite libraries are stored. You can

easily follow the syntax of the function simultd( ):

_____________________________________________________]

©Example 2
%[ca(_t)]rz- ca(_r}+cb(_t) %[ca(.r)]=cb(_r)—2- ca(_r)
f[cb{_r}FZ' ca(_t)—{1+0.2+0. 6)' cb{.t) %[cb{_rJFZ' ca(_t)—l .8 cb{.t)
mat:=| 42X x
%[cc(t)]#) 2 cb(.\') %[cc(t)]#) 2 cb(\)
_\[Cd(l}]=0 6 cb(.\'} %[Cd(\}]=0 6 cb(\}
ca(.l‘) 50 ca(.r) 50
ini:= Cb(—") 5 cb(.r) 5
cc(.l’] 0 CC(I) 0
cd(.l’] 0 cd[.l’) 0
ets_specfunc\simultd (mat,in i) )
1
(-2 (eﬁ'ﬁ“"] 5 . 25
calx) 0 . 1 1
le" 10 [.e"'] 10 (’e E . ﬁ 1] 10

As the solution functions are pretty bulky in exact mode, I approximate and transfer them into the

Graphs-application.

- ]
N 8 ' 8 8 55 i
CC(.‘I; f f
i 19 14
1) ) - lofe7 4]
1
RN
N 8 ' 8 8 165
cd(i; i i
D S R
\_ ) EENNCRIEL.

calv)=25.- (0.617389)"+25 - (0.036234)"
cblx)=37.9436 (0.617389)" ~32.9436- (0.036234)"
celx)=-15.7359- (0.617389)"+1.9859- (0.036234)"+13.75
cdlr)=-47.2077- (0.617389)" +5.95771- (0.036234)" +41.25

filx):=25.- (0.617389)+25.- (0.036234)" :2(x):=37.9436- (0.617389)}" —32.9436- (0.036234)" Done

f3lx):=-15.7359- (0.617389)*+1.9859- (0.036234) +13.75:/4(x):=-47.2077- (0.617389)'+5.95771- (0.036234)
Done
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The function graphs with the maximum point of cb(t) — without using Calculus but Nspire’s Analyze
Graph Tool. Then you can see how to solve the system using the Runge-Kutta numerical method.

e T o —————— |

80.98 | ¥
m(t)
cd(f)
0.63,23.9)
cb(t)
cc(i)
5 t
-3.41 0.5 8.93
-20.12
-2 ca+ch '
2-ca-1.8-cb
rkt:=rk23{~ %Y 1 {caeb.eced),{0,20},{50,5,0,0},0.1
0.2-cb
110.6- cb |
0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
50. 41.7629 35.5744 30.8695 27.2399 24,3944 22,1232 20.2717 18.7388 17.4365 16.317¢
5. 12.517 17.4914 20.6608 22.5557 23.5534 23.9238 23.8647 23.5034 22.9503 22.261¢

2

2
0. 0.180037 0.483534 0.867438 1.3011 1.76305 2.23824 2.7159 3.18946 3.65332 4.1050¢
0. 0.540112 1.4506 2.60231 3.90329 5.28915 6.71471 8.1477 9.56837 10.96 12.315Z
Iime:=matblist(rkf[l]]:caFmatblist(rk![Z]]:chmatblist(rkf[S]]:CCFmatPlist(rkf[-i])
{0.,0.180037,0.483534,0.867438,1.3011,1.76305,2.23824,2.7159,3. 18946, 3.65332,4. 10506,4.54158,4. 96 30

| "Rl |
5351 t ¥

(time,cc)

fime

15.11

Lo
—_
[ %]

-14.08
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Plotting 3-Dimensional Curves with SPACE TUBE(,,,)
by Steven Schonefeld

Suppose we wish to perform a 3-D plot of the helix #1 for the parameter S ranging from -5 to 5.
This is easy to do using DERIVE 5 or 6. You simply highlight #1, click on the 3-D plot icon, tap
function key F4 in order to set the Plot Parameters (only for parameter S), and click on the 3-D plot
icon in the graphics window. The settings and the plot are shown below. Since #1 contains only one
parameter t, the settings for parameter S make no difference (0 < s < 1 recommended).

Plot Parameters [&J
Minimum Maxdmum Number of Panels
t
#1: 2.C0S(t), 2-SIN(t), — s i i
2 t |5 |2pi |20
[
| Weiter > | Abbrechen Hilfe
24
| E
-24 25
-2.5
W
X

25 g9

As the reader may know, the helix #1 is part of the cylinder having radius 2 with center
along the z-axis. Such a cylinder is given parametrically by #2. It would be nice to illustrate the
connection between the helix and the cylinder by plotting both #1 and #2 in the same graphics win-
dow. However, when we perform this plot, the helix nearly disappears into the cylinder. This result is
less than desirable. One way to make the helix stand out is to change the plot color and slightly shrink
the size of the cylinder.

Perhaps a better alternative is to use the function SPACE_TUBE(V,S,r,t) contained in
the DERIVE utility file Graphics.mth (see comment next page). The arguments for this function are:
v = a vector representation for the desired curve (such as #1), S = the parameter used in v, r = the
radius for the space tube (usually a small, positive number), t = a second parameter. The function
SPACE_TUBE(, , ,) creates a surface composed of circles having radius r which enclose the given
curve. It adds thickness to the curve. We illustrate the use of this function below. After loading the
file Graphics.mth, we author #4 and simplify to get #5.
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The Plot Properties for the cylinder #2 are: S ranges from -2.5 to 2.5 with 20 panels;
t ranges from O to 2m with 40 panels. For the space tube #5, the Plot Properties are: S from -5 to
5 with 40 panels; t from 0 to 2n with 10 panels. The results of these plots are shown below #5.
In this graph it is clear that the helix is part of the cylinder, yet we can clearly see the path of the helix.
With DERIVE 5 and 6, we may easily view this figure from any possible angle with a few clicks of
our mouse. Notice that we can see the path of the helix both inside and outside the cylinder. On top
of all that, we may put the figure in motion (it rotates about the z-axis.) This truly brings 3-

Dimensional figures to life!

#2: [2-C0OS(t), 2-SINCt), s]

#3: LOADCC:\Program Files (x86)\DfW5\Math\Graphics.mth)

s 1
#4: SPACE_TUBE[lz-CDS(s), 2+:SIN(s), ———], s, —, t]
2 5

SINCt) ] J17-SIN(s) -COS(t) SINCt) ]
+ — —

, SIN(S)-[2 -
5

#5: lCDS(S)-[Z -

5 85

85 85
Comment: Graphics.mth is not contained in the DERIVE 6 utility files. You can find the func-
tion space_tube() at the end of this article, Josef.

J17-€05(s) -COS(t) 4.f17.C05(t) s ]
+ —
2

>
2.5
I
i
/
[ z
d__d__,.;-*"”
S Sy
(_,..—f’
,__ﬂ..—f’
,__ﬂ..—f’
{__,-—“
2.5 ]
.25

-248

S

Next example:

The curve #8 (t from 0 to 4m) is contained in the intersection of the cylinder #6 and the
sphere #7. For the cylinder #6: s from -2 to 2 with 40 panels; t from 0 to 2n with 40 panels.
For the sphere #7: s from 0 to 2n with 40 panels; t from 0 to m with 40 panels. For the space
tube #9: t from O to 4m with 100 panels; S from 0 to 2n with 20 panels. The results of this plot
are shown below #9. It is not necessary to simplify #9. (Except you want to see the bulky expression.)
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#6: [1 + QOS(t), SINCt), s]

#7: [2.005(5)+SINCt), 2.SIN(s).SIN(t), 2.C05(t)]

t
#8: [l + Q0S(t), SINCt), Z-SIN[———]]
2

t 1
#9: SPACE_TUBE[[l + Q0S(t), SINCt), 2-SIN[———]], t, —. 5]
2

7

AR
£
Y
i

S
P
iy
et
‘ﬂmﬂ‘fwﬁ%fgy

T

e

=
<

I
P
e
e
R TTT
(EEFRTIT,
T
TATETRR
g

oy
S
e

&7
SR

e

£
=1
!
"—“:'r’

o7
ﬁﬂﬁér-

e
J‘,ﬁ.
Sy

il
Trirrr
A
AR

Py

T
.
=
!

7
vy

\

i

e
7

Comment:It might be of interest how to derive equation #8 of the space curve — it is the
“Window of Viviani”? It will presented an in appendix. Josef.

The vector expressions #10 through #16 represent 3-D curves, which are contained in one
or more surfaces. The interested reader might like to determine the surface or surfaces for each curve
and plot the surface(s) together with the space tube for the curve. For #12, let s range from -2 to 2.
For #13, let s range from 0 to 3. For #16, let s range from 0 to 4n. For all others, let s range

from 0 to 2m.
t
#10: [CDS(t} + 1, SIN(L), Z-SIN[———J]
2

#11: [2.005(s), 2.SIN(s), 2.005(s)]

2
#12: [Z-COS{S}, 2:5IN(s), 4.005(s) ]

#13: [s5.00S(s), s5.5IN(s), s]

[ ?]
#14: 5+00S(5), s5.5IN(s), s

#15: [2.C05(s).SIN(4.5), 2.5IN(s).SIN{4.5), 2.005(4.5)]
#16: [2.-C05(3:5)+5IN(s), 2+.5IN(3.5).SIN(s), 2.C05(s)]
5.5 5.5 5.5
#17: [[3 + COS[ ]]-COS{S}, [3 + COS[ ]]-SIN{S}, SIN[ ]]
2 2 2
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Here are some remarks concerning the function SPACE_TUBE(, , ,).

(1) This function has been available in earlier versions of DERIVE. However, "plotting" the
resulting surface could only be done with the 2-D isometric projections (also contained in
Graphics.mth). A colleague of mine, Richard Ruselink, has been using this method of displaying
space curves for years. This isometric plotting is very cumbersome.

(2) Suppose we make S the variable of the vector representation for our curve and t the
other parameter in SPACE_TUBE(, , ,) -- as we have done above. We must use a large number of
panels for S, to give the tube a nice appearance. As the curve gets longer, the number of panels for s
should increase. The parameter t must range over an interval of length 2m to get the complete space
tube. Since the circular cross-sections have a small radius, we only need a few panels (above we used
10)
for t. Itis interesting to experiment with an even smaller number of panels. If parameter t is plotted
using 4 panels, the cross-sections of the space tube are squares. Using only 3 panels for t, these
cross-sections are equillateral triangles.

(3) The definition of SPACE_TUBE(, ,,) is shown as expressions #18, #19, and #20
below. At first glance, it appears that the auxillary functions NORMAL_VECTOR(,) and
BINORMAL(,) are the usual unit normal and unit binormal vectors, which we explain to our stu-
dents in calculus class. As Professor Ruselink told me, this is only true if the parameter s is arc
length or a constant multiple of arc length. This may not always be the case. The curve #21 is a re-
parametrization of #1 obtained by replacing s by s’. This should give the same helix as #1. How-
ever, as we can see by the graph below #21, the space tube for #21 appears to be pinched near the
point where s = 0.

The lines #22 -- #25 give a definition of MY_SPACE_TUBE(, , ,), which uses the true
unit normal and unit binormal vectors for our curve. These two unit vectors are used as a coordinate
system to create a circle perpendicular to the curve. That is, for each value of parameter S, we get a
normal circle of radius r with center on the curve. In the figure below #25, we show the perfor-
mance of MY_SPACE_TUBE(, , ,) in displaying the helix #21. The resulting space tube is clearly
better.

Now, for the bad news. It turns out that MY_SPACE_TUBE(,,,) may take a lot more
computer time than SPACE_TUBE(, , ,) to simplify. Also, the expression we get from simplifying
MY_SPACE_TUBE(, , ,) may be much more complicated than the expression we get from simplify-
ing SPACE_TUBE(, , ,). However, if you are patient, the resulting space tube is a better represen-
tation for the curve when you use MY_SPACE_TUBE(, , ,).

(4) If the unit normal vector (or the second derivative) for a curve is always the zero vector
(for example, if our "curve" is a straight line), then the functions MY_SPACE_TUBE(,,,) and
SPACE_TUBE(, , ,) fail to define the desired surface. In this situation, you would need to manual-
ly find two perpendicular vectors to replace  NORMAL_VECTOR(,) and BINORMAL(,) in the
definition of SPACE_TUBE(, , ,).

In case the unit normal is the zero vector at an isolated value of the parameter S, there may be
a gap in the space tube corresponding to this value of S. By changing the number of panels for s, we
may get the 3-D plot to skip over this troublesome point in the space tube.
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(5) Since the true unit normal vector is used in the definition of MY_SPACE_TUBE(, , ,),
the resulting space tube will "twist" as the unit normal winds around the given curve. This can en-
hance our understanding of the curve. The reader may wish to use MY_SPACE TUBE(,,,) to
plot the curves #11 -- #17 and compare these results with those obtained using SPACE_TUBE(, , ,).

d

2
#18: NORMAL_VECTOR(w, t) := SIGN[[—;] v]
d

d d 2
#19: BINORMAL(wv, t) = SIGN[CROSS[— v, [—L] v]]
dt d

#20: SPACE_TUBE(v, t, r, @) = v + r+(SIN(&) -NORMAL_VECTOR(v, t) + COS(®p)-BINORMAL(v, t))

3
3 3 s 1
#21: SPACE_TUBE||2.C0S5(s ), 2+5IN(s ), — |, s, —, t
2 4

-1 £t <1, odd number of panels

d
#22: unit_tangent(v, t) := SIGN[—— ]
dt

d
#23: unit_normal(wv, t) = SIGN[—— unit_tangent(v, t)]
dt

#24: unit_binormal(v, t) = CROSS(unit_tangent(v, t), unit_normal(v, t))

#25: my_space_tube(v, t, r, ¢) = v + r-(SIN(®) unit_normal(Cv, t) + QOS(p).unit_binormal(v, t))

3
3 3 5 1
#26: my_space_tube||2.C05(s ), 2.5IN(s J, , s, —, t
2

Appendix 1:

Calculation of the intersection curve of the cylinder and the sphere to obtain the “Window of
Viviani”.

We take the implicit form of the sphere x* +y* +z* =2 and replace x, y and z by the compo-
nents of the parameter form of the cylinder. Then we solve the resulting equation for s.
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#27: [1 + COS(t), SIN(t), s]

2 2 2
#28: (1 + COSCt)) + SINCt) +s =4

2
#29: 2.Q05(t) +s +2 =4

2
#30: SOLUTIONS(2.C0S(t) +s5 + 2 = 4, s5)

#31: [Trigonometry := Collect, Trigpower := Sines]

=) =

t
#33: [1 + Q0S(t), SINCtD, 2-SIN[—]]
2

#32:

]

!_2'

Appendix 2: Space tubes with TI-NspireCAS (pretty nice!)

. dt . dt
unlt_t(v, t):=—d * Done umt_n(v, r):=—7 » Done
“0““(E (")) norm(£ (1)
' dt=

unit_b(v,r):=c1'ossP(unit_t(v,r),unit_n(v,f)) » Done
m_sp_t(v, K, rt)::mat Hist(v+r- (sin(u)- unit_n(v, f)+cos(u)- unit_b(v, t))) » Done

>

hel:=

2- cos(t) 2- sin(r) :f

2 cosld) 2-sinly) 5]

F P

hel_t: =m_sp_t(hel, 3/10,t1)

4

10 ) 170 10 | 170

1cos(d) sin() z-sin(_)

t\] 1 )
,—.Lu
2/15

vivt:=mspt(
|

>

. {cos(r'.)~ (2 3~si11(u)\= 3 JE sin(t)‘ cos(u))sin(r)' (7 3. sin(u)\ 3- E cos(r)‘cos(u)! t : 6" fﬁ

»
»

.

e ) el

I r2.5

= L

L — 0.4
{Z_ Fz

-2.5 ~
2?'5

W95 0. '

¥

2,525
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Propositional Multivalued Logics with the
TI-92 and TI-89 Symbolic Calculators

Eugenio Roanes-Lozano*

Dept. Algebra, Univ. Complutense de Madrid
eroanes@eucmos.sim. ucm.es

Abstract: This little package deals with Kleene’s style (min/max) p-valued logic with modal
connectives (for any given prime number p). It can build the truth table corresponding to two
given propositions, check if a given proposition is a tautology and check if the second of two
given propositions is a tautological consequence of the first one.

Introduction

A very interesting approach to multivalued modal logics using Grobner bases exists [7, 6, 3]. We
have developed models (implemented in Maple and CoCoA) to study inference in propositional
algebras and consistency of Knowledge Based Systems (KBSs) based on Boolean and multivalued
modal logics [8, 9, 10, 11], as well as applications [12, 13], that follow that line. But this approach,
although very powerful, involves the calculation of Grébner bases [4] of polynomial ideals over
fields of finite characteristic, what is not intuitive.

It takes a long time to produce truth tables by hand, but many intuitive ideas come from
working with them. Moreover, an elementary approach to multivalued logics, based on the use
of truth tables, can be easily implemented in a Computer Algebra System (CAS). Therefore to
have a mechanical truth table builder and tautologies and tautological checker could be very
convenient.

We presented at the 1st International Derive Conference (Plymouth, 1994) an approach to the
Boolean case in DERIVE 2 [5]. But, unfortunately for us, the new release, DERIVE 3, presented
at the same conference, included a built-in function for the same purpose. An obvious extension
is to construct truth tables in multivalued logics. We have done so in Maple [14], Macsyma (this
implementation is included in version 2.3) and DERIVE [15] (this implementation is included
in DERIVE 5). In this paper the implementation is ported to the language of the symbolic
calculators TI-92 and TI-89 [1, 2].

Using a CAS or a symbolic calculator has the advantage to use the built-in matrix operations
and exact arithmetic provided (for using rational numbers to represent truth values when the
number of truth values is greater than two).

1 Classic Propositional Bivalued Logic

1.0.1 Definition.- The classic propositional bivalued logic is (C,V, A, —), where C is the set of
propositions; V, A\ are the (basic) logical binary connectives “and” and “or” and — is the logical
unary connective “negation”.

*Partially supported by project DGES PB96-0098-C04-03 (Spain). This paper is based on a demonstration
of the capabilities of the TI1-92 & 89 performed at the “Fifth International Conference AISC'2000” (Artificial
Intelligence and Symbolic Computation), Madrid (Spain), July 17th-19th 2000.
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In a constructive way, if the propositional variables are X7, X, ..., X}, then C is the set of
well-constructed formulae using V, A, — and Xy, Xo, ..., Xi .
Logical binary connectives can be given as a truth table (i.e., as a mapping {0,1} x {0,1} —

{0,1})
P Q PVvQ PAQ P—Q P&Q

0 0 0 0 1 1
0 1 1 0 1 0
1 0 1 0 0 0
P 1 1 1 1

(where P, are any propositions, 0 represents False and 1 represents True).
The mapping can also be given directly in a functional way; e.g. P and @ can be valued in
{0,1} and
PV Q =mazx(P,Q)
PG =winlP,Q)
or in polynomial form
PVvQ=P+Q—-P-Q
PG =P} .
The unary connective =P can be given as a truth table
P =P
1 0
0 1

(for any proposition P) or in a functional or polynomial way; e.g. P can be valued in {0,1} and
“P=]1—-F,

1.0.2 Remark.- Observe that, although connectives are used to build C , they are usually
identified with functions C x C — C (if binary) or C — C (if unary).

1.0.3 Definition.- Once — has been introduced, — and < can also be defined as follows

P—)Q iff "‘lPVQ
PeQ iff (PoQ)A(Q— P)

1.0.4 Remark.- Observe that, in the introduction above, the sentence “are valued in {0,1}”
15 used, what is o bit vague. Moreover, the introduction above used an abuse in the notation as
connectives were applied both to propositions and truth values. Formal definitions that distinguish
between a function F (applied to numbers) and the logical connective F¥ (applied to propositions),
that uses valuations for propositional variebles that are extended to valuations of propositions,
can be given [11], but will be skipped here for the sake of brevity.

1.0.5 Definition.- Q is a tautological consequence of P, denoted P = Q, iff whenever P is
True, then @} is also True.

1.0.6 Example.- Prove that PA-Q E PV -Q
P Q =-Q PA-Q PV-Q

0 0 1 0 1
1 0 1 1 1
0 1 0 0 0
1 1 0 0 1
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1.0.7 Definition.- P is a tautology, denoted |= P, iff P is always True.

1.0.8 Example.- Prove that = ((PA—Q) —= (P V —Q))

P Q -Q PA-Q ~(PA-Q) PV-Q (PA-Q)— (PV—Q)
0 0 1 0 1 1 1
1 0 1 1 0 1 il
0 1 0 0 1 0 y{
1 1 0 0 1 1 1

1.0.9 Theorem.- It can be proven that, in classic bivalued logic, for any propositions P and
Q, _
F(P-Q iff PEQ.

2  Multivalued Logics

An introduction to multivalued logics can be found in [16].

2.1 Intuitive Presentation of Kleene’s Three-Valued Logics

In this logic the three truth values considered are: “True”, “False” and “Undecided”, that we
shall represent by 1,0 and % (respectively). With this numeric representation, the greater the
value the greater the certainty, what is very intuitive.
Apart from negation, two more unary connectives (modal connectives) are introduced: “nec-

essary” () and “possible” (0):

£ ~F OP P

0 1 0 0

i 1 0 1

1. B i 1
Binary connectives disjunction and conjunction correspond to “maximum” and “minimum”
functions (respectively). Polynomial forms can be given, but they depend on the number of
truth values of the logic. Conditional and biconditional are defined like in classic bivalued logic

P—Q iff -PVQ
PeoQ iff (PoQAQ—oP).

Therefore, the corresponding truth tables are

P Q@ PvQ PAQ P—=Q P&Q
0 O 0 0 1 1
SETE T T
1 0 1 0 0 0
0 1 1 0 1 1
1 i f 1 1 i
11 1 F I
0 1 1 0 1 0
b1 1 g
1 1 1 1 : 1
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2.2 Intuitive Presentation of Lukasiewicz’s Three-Valued Logic

In this logic three truth values considered are: “True”, “False” and “Indeterminate” (that will
be represented by 1, 0 and %, respectively). Kleene’s connectives differs from Lukasiewicz’s only
in the conditional and biconditional (compare the fifth and sixth columns above with the third
and fourth columns below)

P Q Pon@Q P
0 0 1 1
fo o 1
1 0 0 0
o 1 i 1
2 B 1
1 3 5 g
0 1 1 0
b1 g
11 1 T

A polynomial form of Lukasiewicz’s P —rz,, @ is
4P?2Q? — 4P2Q — APQ?> +5PQ — P +1.
From the truth table it is clear that

PHLuQ:(P_}LuQ)A(Q_)LuP)-

2.3 Multivalued Propositional Logics (Kleene’s-style)

Let p be a prime number.

2.3.1 Definition.- A p-valued propositional logic is (C, Fi, ..., Fy,), where C is the set of propo-
sitions and F1, ..., Fy, are the logical connectives (unary or binary).

If the propositional variables are X, X5, ..., Xy, , then C is the set of well-constructed formulas
using F1, ..., F, and X4, Xo,..., Xm .

We shall consider the truth values to be {0, J—'i—l, pTzl, - g—:%, 1} for 0 representing False, 1
representing True and intermediate values representing intermediate degrees of certainty.

2.3.2 Definition.- According to the numerical representation of the truth values, we shall

define

PV Q= maz(P,Q)
P AQ =min(P,Q)
aP=1—P.

2.3.3 Remark.- — tries to translate the idea of reversing the “probability” of something to
happen.

2.3.4 Definition.- Two modal connectives, necessary () and possible (O ) are defined. (1P is
valued 0, unless P is True, when it is valued as 1. Meanwhile OP is valued 1, unless P is False,
when it is valued as 0. Therefore, they can be expressed in a functional way as follows

OP = floor(P)
OP =1 - floor(1—P) .
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2.3.5 Definition.- “To be a tautological consequence” and “to be a tautology” are defined (in
a Kleene’s-style logic) ezactly as in Boolean logic (see definitions 1.0.5 and 1.0.7).

2.3.6 Theorem.- In the general case of p-valued logics (p > 2), it can only be proven that, for
any propositions P and @,
FP-Q = PEQ.

Adding certain conditions it can be proven that [11],
F([P-»Q) & PEQ.
Therefore, the behaviour is no longer intuitive.

2.3.7 Example.- Letp = 3 and let P be a general proposition. Trivially P = P but |= (P — P)
doesn’t hold (P V =P is not always true)

P P Pv-P

=l O
Ol =
L I

2.3.8 Remark.- Lukasiewicz’s logic is not intuitive either. For instance |= ((PV—P) ¢y t)
doesn’t hold.

3 Implementation in the TI-92 & TI-89 Symbolic Calculators

The symbolic TIs include a CAS (in the “Home” application), that is similar to Derive for DOS.

3.1 Constructing the Logic Operators
The global variable w is used to store the number of truth values, e.g.:
3 STO w

This is the first value the user has to fix.
Connectives can be defined as functions. They begin with an “M” (standing for “multival-
ued”), not to interfere with the built-in Boolean connectives.

Define MNEG(a_) 1-a_

Define MPOS(a_) = 1-FLOOR(1-a_)
Define MNEC(a_) = FLOOR(a_)
Define MOR(a_,b_) = MAX(a_,b_)
Define MAND(a_,b_) = MIN(a_,b_)

And conditional and biconditional (Kleene’s-style) can be defined using the previous con-
nectives

Define MIMP(a_,b_) = MOR( MNEG(a_) , b_ )
Define MIFF(a_,b_) = MAND( MIMP(a_,b_ ) , MIMP(b_,a_) )

Tautology and contradiction are denoted t and ¢ (respectively) and are assigned to constants
1 and 0 (respectively).

1 S5T0 ¢
0 870 ¢
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3.2 Constructing Truth Tables

The local variable m will be used within the procedures to specify the number of propositicnal
variables the proposition depends on. With this notation, a truth table will have w™ rows.
The first m columns in the truth table (corresponding to the propositional variables) can be
organized following a fixed pattern.

3.2.1 Example.- If w =3 and m = 2 the 8 rows can be ordered the following way:

0 0
10
1 0
0 i
1 7
1 4
0 1
i1
1 1

In general, a truth table corresponding to propositions including m propositional variables,
in a w-valued logic, will have w™ rows. The values given to the first propositional variables
(first column) can be loops of

0,1,2 ., wl)
those given to the second propositional variables (second column) can be loops of

w w
0,0,57,0,1, 1~ 1

Tt wr Tl

w w w
OOvolivilz‘%”z w_lw_liu"/wwlllvl
R FTERTIE) YW WI W T IwWrTY w3 o Pttt 3 qp ez e s

Therefore, if j_ is the number of the row, the corresponding value in the j-th row of the
different propositional variables can be calculated in the language of these TTs, as follows

(1/(w-1))*MOD(FLOOR(j_/w"0) ,w) STO
(1/(w-1))*MOD(FLOOR(j_/w"1) ,w) STO
(1/(w-1))*MOD(FLOOR(j_/w"2) ,w) STO
(1/(w-1))*MOD(FLOOR(j_/w"3) ,w) STO
(1/(w-1))*MOD(FLOOR(j_/w"4) ,w) STO
(1/(w-1))*MOD(FLOOR(j_/w"5) ,w) STO

4 B W Had

Let us denote by vp the list of propositional variables that can be used
{p.q,r,s,u,v} STO vp

(this list could obviously be enlarged if necessary).
The main procedure to construct truth tables is denoted TT(m_,a_,b_), where
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B LECE . mand(p, mor(y , R, morimand(p . 9, np
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&
1.2 @ 0] 0] ]
1 c] o 0] o
o 172 © 0] ]
1.2 1.2 @ 1-2 1.2

MAIN KAD AUTO FUHC 2/ 7

Figure 1: Truth table of Example 4

i) m_is the number of different propositional variables that appear in a_ and b_ (that must
be the first m_ in vp).

ii) a_ and b_ are the formulae which truth table has to be calculated.

It fills the rest of the truth table with the values the propositions have when the propositional
variables that appear in it are given the values in the first columns of the same row. It can be
implemented as follows

Define TT(m_,a_,b_) =
seq(augment (seq(vp[i_1,i_,1,m.),{a_,b_}),j_,0,w " m_-1)

The code is rather cryptic. As a hint note that
augment (seq(vp[i_],i_,1,m_),{a_,b_})

constructs the (row) vector of the m_ first propositional variables in vp followed by a_ and b_.
Then a matrix is constructed by the “seq” outside by stacking this row vectors upon each others
when giving to j- the values 0 to w™ — 1. As the elements in vp are functions in the variable
j-, and a_ and b_ are functions in the variables in list vp, this is a numerical matrix.

3.2.2 Example.- Check the distributivity of A w.r.i. V in Kleene’s S-valued logic using truth
tables. The user has to type

3 STO w
afterwards the package has to be loaded and the user has to type
TT(3, MAND(P,MOR(Q,R)), MOR(MAND(P,Q),MAND(P,R)) )

and the fourth and fifth columns obtained are equal (Figure 1). Observe that, from now onwards,
the number of truth values is 3. All the ezamples in this paper take just a few seconds in these
TIs.

3.3 Checking Tautologies

ISTAUT (m_,a.) is similar to TT(m_,a_,b_), but instead of constructing the truth table corre-
sponding to propositions a_ and b_, it calculates the product of all the truth values of the column
corresponding to proposition a_. Then it checks whether this product is 1 or not, answering 1
(YES) or 0 (NO), respectively.
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Figure 2: Examples 5 and 6 checked with the TI-92

Define istaut(m_,a_) = when(product(seq(a_,j_,0,w*m_-1))=1,1,0)

This function — and the next two ones as well were defined originally as If-constructions
of some lines. | replaced them in agreement with Eugenio by the shorter when-
construction, Josef

3.3.1 Example.- Check that, in Kleene’s 5-valued logic, “not possible” 1s equivalent to “nec-
essarily not”. If the user starts in a clean session, he has to type

b5 STO w

then the package has to be loaded and the user has to fype

and the answer is 1, i.e., “True” (Figure 2). Observe that if we are following the session of
Ezample 3.2.2, it isn’t enough to type

5 STO w

to switch to the 5-valued logic; immediately after assigning to w the new value (5), the definitions
of p»q,T,8,u,v and vp have to be run again (once) in order fo update their values.

3.4 Checking Tautological Consequences

ISCONSTA(m-,a_,b.) checks whether b_ is a tautological consequence of a_ or not. It is similar
to ISTAUT (m_,b_), but each new truth value of b_ is multiplied iff the truth value corresponding
to a_ is 1. It uses the auxiliary procedure AUXT (a_,b_).

Define auxt(a_,b_) = when(a_=1,b_,1)
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Define isconsta(m_,a
m_-1))=1,1,9)

b_)=when (product(seq(auxt(a_,b_),j_,d,

3.4.1 Example.- Check that, in Kleene’s 3-valued logic, PV Q is a tautological consequence
of PNQ. When ready to work with 3-valued logic (see Exzample 3.3.1), the user has to type

ISCONSTA(2, MAND(P,Q) , MOR(P,Q) )

and the answer is 1, i.e., “True” (Figure 2).

3.5 Examples

With this implementation it is possible to easily prove (using truth tables) laborious results like

o Classic bivalued logic, 3-valued and 5-valued logics are lattices, but only the first one is a
Boolean algebra.

e In classic bivalued logic (PAQ) = (PVQ) and E (PAQ) = (PVQ)) , but in Kleene’s
p-valued logic.(p > 2).only.the.first holds. . .. . . ..

4 Conclusions

This implementation probably makes the TT 92 and 89 the only calculators capable to deal with
multivalued logics. We consider this implementation a very useful and interesting enhancement
of their possibilities.
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As you can see we can transfer the code without any problems from the TI-92 to TI-Nspire.

nlneg(a_)::l—a_ = Done mpos(a_):=1—ﬂoor(1—a_) > Done
nlnec(a_)::ﬂoor(a_) » Done mor(a_,b_):=111ax(a_,b_)
mand(a b_):=111i11(a_,b_) » Done

111i111p(a_,b_):=mor(mneg(a_),b_) » Done miﬂ(a_,b_):=111a11d(mimp( _,b_),mimp(b_,a_)) » Done

t=1+1 =0+-0

' d(floor(j_),3 1 '
-mod(ﬂoor(]—_),w) . I ( 001(}_)' ) q: -mod(ﬂoor(]—_),w
0 w-1 1

s

P w 2 w 2
mod ﬂoor(’l;),j) mod ﬂ001‘(J—_),3)
J- 9 1 J- 27/
r= - mod|floor| —|w| * s: -mod|floor| —|w]| *
w— w2 2 w-1 wo 2
mod ﬂ001‘(J—_),3) mod ﬂ001‘(J—_),3)
J- 81/ 1 J- 243 )
w= - mod|floor| —|w]| * v - mod|floor| —|,w]| *
w-1 w 2 w-1 “,5 2

vp:={ p,q.r,s,u,v }
tt(m_,a_,b_): =seq(augme11t(seq(vp[ i ], i, l,m_),{ a_b_ }),j_, 0,wh—— 1) * Done

E . logic_pac =
| did the first part on a Notes-page. The -
truth table from fig. 1 is presented on the
handheld screen. Calculation is performed || #{2,mandl(p,morlg,r)) morlmandlp,g) mand(p
in an instant. 0. 0. 0. 0. o0.]
| proceed on a calculator page for defining 01'5 g' g g' g'
the remaining functions and the closing ex- 0. 05 0. 0. o0
amples. 0.5 0.5 0. 0.5 0.5
1. 0.5 0. 05 05
1. 0 0. 0.
is!au!(m_,a_) : =When[product(seq a_j_, 0,wm— 1]_]= 1, 1,0] i
w:=5 5
is!au!(l,m@fj{mneg(mpos[D]],mnec(mneg[p)]]) 1
am‘t[a_,b_}:=when[a_=1,b_,1) Done
. _ ) . m ] _ Done
Lscons!a(m_,a_,b_):—when product seq(am!(a_,b_)g_,O,w ——1)/=1,1,0
w:=3 3
iscons!a(l,mand(p,q),mor[p,q]] 1

il |




p 30 W. Schiller: Programming with DERIVE — A Compiler D-N-L#40

Programming with Derive

Dipl.-Phys. Walter Schiller*
Lagesche Str. 32
33102 Paderborn

Germany

December 4, 2000

The new feature of the Derive version 5 is among other things the possibility to
write programs using the ”"usual” procedural programming style. I will demonstrate,
how you can simple write programs in Derive.

In illustration of these possibility we will write the procedure for computing
the fast Fourier and inverse Fourier transform of a complex sequence of length n.
Following to I give an example for use of the fast Fourier transform.

Because of is it troublesome to edit a bulky procedure in the entry line in Derive,
I have written a simple compiler, that translate the source program, edited with
a word processing program you are familiar with, into a corresponding loadabel
Math—file. My compiler has the name ”tom” and I have sent it to Josef Boehm. To
run the program, you must call it as following;:

tom filename

where filename is an arbitrary name. He can written with or without suffix. If
you have named your source file e.g. £ft.derive or only £ft, the result is in any
case a loadable Math—file for Derive. With our example the name is fft.mth.

1 Program Organisation

This chapter discusses how statements can be organized into blocks to form a Derive
program and how control flows within a program from one statement to another.

A Derive program is essentially a function, that means the procedure returns a
value. The main procedure must be a function definition. For example:

myprog(pl,p2,p3,...,pn) := prog
instruction_1
instruction_2
instruction_3

instruction_n
end

Each instruction is either a Derive expression, an assignment or a keyword instruc-
tion. The instructions are separated by semicolons.
How is to edit a Derive program?

*Phone 05251 480488 Germany
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1.1 Blanks and Whit Space

Blanks (spaces) may be freely used in a program to improve appearance and layout,
and most are ignored. Blanks, however, are usually significant

o within literal strings (see below)

e between two tokens that are not special characters (for example, between two
symbols or keywords)

e between the two characters forming a comment delimiter

Note: You cannot take a blank as a multiplication operator!

1.2 Comments

Commentary is included in a Derive program by means of comments. Any sequence
of characters on one or more lines that are delimited by ” /*” and ”*/” is a comment.
Comments may be anywhere, and may be of any length. Comments are ignored by
the program and do not affect execution of a programm.

An example of a comment is:

a := /* This sentence could be
inserted as a comment %/ 5

The two characters forming a comment delimiter (”/*” or ”*/”) must be adjacent
(that is, they may not be separated by blanks or lin—end).

1.3 Implied semicolons and continuations

A semicolon (instruction end) is implied at the end of each line, except if:

1. The line ends in the middle of a comment, in which case the instruction
continues at the end of the comment.

2. The last token was a backslash. In this case the backslash is functionally
replaced by a null string, and hence acts as a continuation character.

For example

y = B\
2 4T

act as
y =62+ 7

Notes:

Semicolons are added automatically by the compiler after certain instruction
keywords when in the correct context. The keywords that may have this effect
are then, else and otherwise. These special cases reduce program entry errors
significantly.

1.4 The case of names

Variable names can generally be written arbitrarily. Keyword names and names of
builtin functions are recognized correspondingly. All other names keep her notation.




p 32 W. Schiller: Programming with DERIVE — A Compiler D-N-L#40

2 Keyword Instructions

A Derive program is combined of assignment statements, expressions and keyword
ingtructions.

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions (do, if, loop
or select) can include nested instructions.

Certain other keywords, known as sub—keywords, may be known within the
clauses of individual instructions — for example, the symbols to and while in
the loop instruction.

Blanks adjacent to keywords have no effect other than that of separating the
keyword from the subsequent token. For example, this applies to the blanks next
to the sub—keyword while in

loop while x = y

Here at least one blank was required to separate the symbols forming keywords and
the variable name, x.

2.1 DO Instruction

DO;
instructionlist
END;

The do instruction is used to group instructions together for execution; these are
executed once. The most common use of do is simply for treating a number of
instructions as a group.

Example:

/* The three instructions between DO and END will
all be executed, if x has the value 10 */
if x = 10 then do

a :+ 2
b := int(a*xcos(x),x)
v := append(v, [b])

end

The instructions in the instructionlist may be any assignments, expressions or
keyword instruction, including any of more complex constructions such as loop, if
and select.

2.2 GLOBAL Instruction

GLOBAL identifier [,identifier] ...

The following rules are used to determine wether a variable is local or global: if
variables are undeclared, by default, each variable to which an assignment is made,
or which appears as the controlling varibale in a LOOP instruction, is local. All
others are global. That is, if you will assign a value to a global variable, you must
declare such a variable with the global instruction.
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2.3 IF Instruction

IF expression [;]
THEN [;] instruction
[ELSE [;] inmstruction]
[OTHER [;] instruction]

The if construct is used to conditionally execute an instruction or group of instrue-
tions.

The expression is a condition or a logical construct true or false. The expression
is evaluated and must result in either true or false. If the result was false and an
else was given then the instruction after else is executed.

Example:

if ¢ < d then

xj = yes
else
Xn = no

This if statement can also be written as foloows:
if c<d then xj := yes else xn := no

Another notation is:

if c<d
then
xj := yes
else
Xn = no

The else binds to the nearest then at the same level. This means that any if that
is used as the instruction following the then in an if construct that has an else
clause, must itself have an else clause.

Example:

if al = bl
then if a2 = b2
then if a3 = b3
then result3 :
else result3d := -3
else result2 := -2
else resultl := -1

1]
w

You can write this whole if—statement on one line, but this is not a good ideal

To include more than one instruction following then or else, use the grouping
instruction do.

Example:

if a < b then do

jl1 =1
j2 o= 2
end
else do
nl := -1
n2 := -2
n3 := -3

end
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You are not limited to two choices. You can use the select instruction to have a
Derive program select one of any number of branches.

2.4 SELECT Instruction

SELECT;

whenlist
OTHERWISE [;] instruction
END;

where whenlist is one or more whenconstructs as following:
WHEN condition THEN instruction
For eample:

select
when conditionl then instructionl
when comdition2 then instruction2
when condition3 then instructiond

otherwise do
instruction
instruction
instruction

end
end

select conditionally executes one of several alternative instructions.

Each expression after when is evaluated in turn and must result in true or false.
If the result is true, the construction following the then (which may be a single
instruction or a do group) is executed and control then passes to the end. If the
result is false, control passes to the next when clause.

If none of the when condition is true, control passes to the instruction after
otherwise.

otherwise is essentially the select equivalent of else. If there is any possibility
that all the when conditions could be false, there must be an otherwise clause.

2.5 LOOP Instruction

LODOP [repetitor] [conditionall;
instructionlist
END;

where repetitor is one of:
reference := expri [TO exprt] [BY exprb] [FOR exprf]
FOR exprr
FOREVER

and conditional is either of:
WHILE exprw
UNTIL expru

The loop instruction is used to group instructions together and execute them
repetitively.
Syntax notes:
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e The to, by, and for phrases in the first form of repetitor my be in any order,
if used.

o The ezprw (expression for while) or ezpru (expression for until) (if present)
can be an expression that evaluates to true or false.

e The exprb (expression for by) option defaults to 1, if relevant.

Computer excel at repetitive tasks. An essential part of any computer language
is a loop instruction, which is a way to make a program repeat a list of instructions:

e A specific number of times
e As long as some condition is true
e Until some condition is satisfied

e Forever (until the user wants to stop).

2.5.1 Simple Repetitive Loops

A simple repetitive loop is a repetitive loop in which the repetitive phrase is an
expression that evaluates to a count of the iterations. To repeat a loop a number
of times, use:

loop for exprr
instructioni
instruction?2
instruction3

end

To make a program easier for people to read, you should indent the instructions
between the loop and the end three spaces to right.
Example:

¥ &= [
loop for 5

v := append(v, ["Hello"])
end

The variable v has after that the value [Hello,Hello,Hello,Hello,Hello]

2.5.2 Controlled Repetitive Loops

The controlled form specifies a control variable, reference, which is assigned an
initial value (the result of expri) before the first execution of the instruction list.
The varaiable is than stepped (by adding the result of ezprd, at the bottom of
the loop) each time the group of instruction is executed. The group is executed
repeatedly while the end condition (determined by the result of ezprt) is not met.
If exprb is positive or 0, the loop is terminated when reference is greater than exprt.
If negative, the loop is terminated, when reference is less than exprt.

The expri, exprt, and exprd are evaluated once only, before the loop begins. The
default value for ezprd is 1.

Examples:
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v =[]

Joop i := 3 to -2 by -1
v := append(v,[i])

end

<v> = [3,2,1,0,-1,-2]

v =[]

x := 0.3

leop y := x to xt4 by 0.7
v := append(v, [y])

end

<v> = [0.3,1,1.7,2.4,3.1,3.8]

Note: one receives this result, if you run the program with the Approximate
button.
The execution of a controlled loop can be bounded further by a for phrase. In
this case, you must specify ezprf, and it must evaluate to a nonnegative number!
Example:

v = []

locp y := 0.3 to 4.3 by 0.7 for pi
v := append{v, [y])

end

The result is v = [, 1, 1] in exact mode.

2.5.3 Conditional Loops

A conditional expression is tested to determine how many times the loop is pro-
cessed. Conditional loops continue running as long as some condition is satisfied.
The three main ways to do this, depending on when the test takes place are:

¢ loop forever (with break)
¢ loop while (a condition is true)

e loop until (a condition is true)

FOREVER with the BREAK Instruktion The simplest way to create a
conditional loop is to use the loop instruction forever and break. The break
instruction causes processing to continue with the construction following the end
keyword.

Example:

i:=20
v := []
loop forever
S o
v := append(v, ["Hello"])
if 1 =3
then break
end
The result is v:=[Hello,Hello,Hello]
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LOOP WHILE Instruction To create a loop that repeates the list of in-
structions as long as a given condition is true, use the loop while instruction. For
example:

loop while exprw
instructionl
instruction2
instruction3d

end

where ezprw is an expression that, when evaluated, must give a result of true or
false.

The condition is tested at the top of the loop, before the instruction list is
processed. This means that if the given condition is false at the start, the list of
instructions are not be processed at all.

Example:

i=0; wva= [
loop while i < 6
i e
v := append(v,[i])
end
The result is v:=[1,2,3,4,5,6]

LOOP UNTIL Instruction To repeat one or more instructions until a given
condition is true, you can create a loop with the test at the bottom. For example:

loop until expru
instructionl
instruction2
instruction3

end

where expru is an expression, when evaluated, must give a result of true or false.
Putting the test at the bottom of the loop means that the enclosed instruction

list is always processed at least once, even if the condition is false at the start.
Example:

iz:=20
v = []
locp until 1 > 6
i+ 1
v := append (v, [i])
end
The result is v:=[1,2,3,4,5,6,7]

2.5.4 Put all together

A conditional phrase, which may cause termination of the loop, can follow any of
the form of repetitor. If you specify while or until, ezprw or ezpru, respectively,
is evaluated each time around the loop using the latest values of all variables (and
must evaluate to either true or false), and the loop is terminated, if ezprw evaluates
to false or ezpru evaluates to true.
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For a while loop, the condition is evaluated at the top of the group of instruc-
tions. For an until loop, the condition is evaluated at the bottom — before the
control variable has been stepped.

Example:

v =[]
loop i := 1 to 10 by 2 until i > 6 for 3
v := append(v,["Hello"])
if 1 = 2 then break
end
The result is v:=[Hello,Hello,Hello]

Here is a whole program as an example for the tests with loop instructions.

F(x) := prog
wi = [1; i:=0
loop while i<6
1 s
wl := append(wl, [i])
end

ul := [J; i :=0
loop until i > 6

i g 1

ul := append(ui,[i])
end

v =[]

loop i := 1 to 10 by 2 until i > 6 for 3
v := append(v,["Hello"])
if i = 3 then break

end

u := []

loop i := 3 to -2 by -1
u := append(u, [i])

end

w =[]

x := 0.3

loop y := x to xt4 by 0.7 for pi
w := append(w, [y])
end
return{[wl,ul,v,u,w])
end /* program end */

With the File > Math File command load this program in an algebra window,
double click on the highlighted instructions and press ENTER. If you just now run
this defined program,then the result is:

[[1,2,3,4,5,6],[1,2,3,4,5,6,7], [Hello, Helld], [3,2,1,0, -1, -2], [ &, 1, 1}]]

2.6 BREAK Instruction
BREAK;
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break causes an immediate exit from one repetitive LOOP instruction.
Processing of the group of instructions is terminated, and control is passed to
the instruction following the end clause, just as though the end clause has been
encountered and the termination condition has been met normally. However, on
exit, the control variable (if any) will contain the value it had when the break
instruction was processed.
Note:
break terminates only the innermost active repetitive loop.

3 Compiling Multiple Programs and Instructions
in a Single Step

The Derive compiler allows to compile more than one program in a single step. You
can also compile single Derive commands and/or programs mixed in one file. The
only things, that you can write in a file for a single call of the compiler are pro-
grams and single Derive commands. Compound statements such as IF- or LOOP-
instructions must be written as programs.

Example:
a := [x,y,z]
b := sin(x"2-z)+tan(2+x)

£f1(x,y) := prog

end

£2(p1,p2) :=prog

end

aufrufl := £1((b,bl-#pi/2)

4 The Fast Fourier Transform Program

And now we will write a really program for Derive, the program for computing the
fast Fourier and inverse Fourier transform of a comlex sequence of length n. The
calling sequence should be as following:

fft(a,b,m, inv)

where the first and the second arguments (a and b) should be vectors of length
n = 2™, The third argument (m) should be a non-negative integer. The vector a
contains the real part of the complex sequence on input. The vector b (the second
argument) contains the imaginary part of the complex sequence on input. The
fourth argument (inv) is a boolean value indicating the direction of the transform,
if inv is false then the result contains the Fourier transform, if inv is true then the
result contains the inverse Fourier transform. The result of a call from the fast
Fourier transform is a matrix with two rows. The first row contains the real part
of the fast Fourier transform on output and the second row contains the imaginary
part. (Look on the examples in the description of this FFT-program).
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You must use File>Load>Math File and define the loaded function with
gither double click and ENTER or withe the Declare>Function Definition com-
mand in an alebra window.

4.1 A Nonrecursive FFT-Program

Here is the program. (I have edited this file in a text editor for windows and have
named this source program file just fastf.derive. The source program contains in a
few comment lines examples of calling sequences and a description of the parameters.

J ARk ok ok ko kR RR KRR R ORAROR KRR R Rk R ko R kKo kR ok ko ok sk ok ok /
/% This routine computes the Fast Fourier Transform of the input data*/

/%
/*
VE:
/*
/*
/%
/*
/*
VE:
Ve
/%
VES
/*
/%
/*
/%
/*
/%
/*
/*
/*
/*
/%
/*
/%
/*
/¥
/*
/*
VES
FES
/*
/*
/%
/*
/*
/*
/*
/%
/%
/*
/*

and returns the results */
*/

Walter Schiller x/

33102 Paderborn */
Germany ®/
Lagesche Str. 32 */

*/

start date: October, 2000 */

*/

This routine performs the Fast Fourier Transform by the method */
of Cooley and Tukey. */
*/

The vector a contalns the real data and vector b contains the */
imaginary data to be transformed. m is LOG(N,2) and inv is */
a logical value. inv = false if forward transform and true */
for the inverse transform. */
The ocutput data is a matrix. The first row is the real part */
and the second row is the imaginary part. */
*/

Examples: */
1. x = [142,3,4] */

vy := [0,0,0,0] */
fft(x,y,2,false)= [10 -2 -2 -2] */

[0 2 0 -2] */

*/

fft([10,-2,-2,-2],[0,2,0,-2],2,true)= [1 2 3 4] */

[0 00 0] */

*/

2 f£t([7,5,6,9],y,2,false)= [27 1 -1 1] */

[0 4 0 -4] */

*/

£fe([27,1,-1,1],[0,4,0,-4],2,true) */

*/

result of this inverse transform (4. parameter in call */

is true): */

[7 5 6 9] */

[0 00 0] */

*/

B a := [0,0,1,0,0,0,0,0] */

b := [0,0,0,0,0,0,0,0] */

*/

fft{a,b,3,false)=[1 0 -1 ¢ 1 0 -1 0] */
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/¥ [0o-1 0 1 0-1 0 1] */
/% */
/* It’s clear that the inverse transform with this x/
/* output datas result in the original datas. */
/% )
/* 4, Another practicability is the following call: */
/% o
/% result := £fft(a,b,3,false) x/
/* x/
/* Inverse transform: */
/* fft(result sub 1, result sub2, 3, true) s/
/* */
/% result corresponds with a x/
/% i */
/* result corresponds with b ®/
/* 2 */
/% X/
/* My filename of this program is: </
/% */
/% fastf.derive x/
/* */
/* With my Compilerprogram ’tom’ you can translate this program x/
/* into a lodable .mth Derive program by the following call: */
/% */
/* tom fastf.derive */
/* */
/* The result is the Derive program */
/* */
/% fastf.mth */
/% %/

/ot sk stk ok o Rk ok sk ok o ok o R sk o s sk o ks o o sk ok sk ko ok ok ok ko f
FFT(a,b,m,inv) :=prog

n

= 2"m

/* must be a power of 2 */

if not dim(a)=n or not dim(b) = n then

return("

nd2 := n/2

de

loop i :=1 t

end
k := nd2
loop while
J =k
k if 2

The length of the data is not an exact power of 2")

o n-1
= a sub j
=b sub j
sub j := a sub i
sub j := b sub i
sub i := tr
sub i := ti
k<j
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end /* end while %/
j itk
end /% end i */

le := 1
loop 1 :=1 tom
lel := le
le := le + le
ur =1
ui =0
ang := pi/lel
wr := cos(ang)
wi := -sin(ang)
/* here for inverse FFT: %/
if inv then wi = -wi

loop j =1 to lel
loop i := j to n by le
ip =1 + lel
tr := a sub ip * ur - b sub ip * ui
ti := b sub ip * ur + a sub ip * ui
a sub ip (= a sub i - tr
b sub ip (= b sub i - ti
a sub i a sub i + tr
b sub i b sub i + ti
end /* end i %/
tr = ur * wr - ui * wi
ui = ui * wr + ur * wi
ur := tr
end /* end j */
end /* end 1 %/

if inv
then do
loop i :=1 ton
a sub i := a sub( i) / n
bsubi:=bsubi/n
end
end

return([a,b])
end

After that, if you have my compiler, you need only call the compiler with
tom fastf.derive

and you will have a really Derive Math program with the name fastf.mth.

You must use File > Load > Math File command or the Derive builtin
function LOAD(filename) and define it. After that you can use the FFT—program.
Foe example:

load ("f:\Deriveprogrammierung\fastf.mth")

and then Declare > Function Definition. Examples of use of the FFT—routine
are given in the description of this program, try it!
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4.2 A recursive FFT-Program

In a book with the title ”Mathematik lernen mit Maple” Vol. 2, Wilhelm Werner,
dpunkt.verlag ISBN no. ISBN 3-920993-94-2 i have found a recursive Maple pro-
cedure for the fast Fourier transform and for the inverse fast Fourier transform. I
have these procedures adapted for Derive. It is very simple with my compiler!

To save space | skip the source code of the forward Fast Fourier Transform and the inverse one t
gether with the respective mth.files as well. You can find alf files on the diskette. | recommend to ¢
pare the documented .derive files with the tom-created mth-files. Josef.

5 Examples

I have a directory with the name Deriveprogrammierung on my partition ¥. All
my Derive source files have the extension .derive. Among other things have I files
for the fast Fourier transform. These are:

e fastf.derive (A nonrecursive procedure for forward and inverse Fourier trans-
form). The name of the function is FFT and the definition is FFT (a,b,m,inv)

o rfft.derive (A recursive procedure for the fast Fourier transform). The name
of the function is rfft and the definition is rfft(y)

e rinvfft.derive The name of the function is rinvfft and the definition is rin-
vift(y).

The both recursive procedures are onyl applicable with few datas. Because
Derive has not the feature of the table (a array with arbitrary subscripts) therefore
I can not speed up the calls of recursive procedures. For that reason take the first
program FFT if you have many datas!

Data smoothing (filters) plays a central roll in techgnical applications, e.g the
signal transmitting and image processing. One has typically to do it with large
amounts of data there. As example we want to apply the discrete Fourier transform
to the data smoothing. To this, at first we create a series of 64 numerical values
from an arbitrarily predefined function. This function is

f(t) := 2%sin(3*%t) - 4%cos(8*t) + S*sin(15*t) + 3

We subject these numerical values to a Fourier transform. And than we smooth
the frequency spectrum won so by the fact that we eliminate simply very small
frequencies. From the remaind frequencies we create this one for function smoothed
so. The appendix is a Derive worksheet, that show all. For a better understanding
I have in addition given the two graphs on a extra sheet.

Graph ot originally datas and graph of smoothed datas

huglut

TR AR R AR
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DERIVE as Problem Generator

Josef Bohm, Wiirmla, Austria

Despite the fact that my students and I now have powerful tools like the TI-92 or DERIVE for manipu-
lating expressions, I wouldn’t like to skip practising some basic manipulating skills at all. Several
years ago Jan Vermeylen sent some DERIVE (for DOS) files to create randomly generated exercises
for factorizing, expanding etc. [ remembered his ideas and realized them as you can see with DfW5.
And I added an error analysis. (Now in 2018, | present the DERIVES6 version, Josef.)

expand_ut. mth must be loaded as utility file

Expanding Binomials and other Expressions

sq = presents a binomial to be squared;
cu = presents a binomial to be cubed;
tr = presents a trinomial to be squared;
pr = presents a product of two binomials;
di = presents a product of sum and difference.
qu = gives a randomly chosen task of the abave.
sqge(n)=,cue(n)=, tre(n)=, pre(n)=, die(n)= und que(n)= produce lists of n tasks of the respective problem group.
res = displays the result of the problem(s) set.

ch(my_answer) = gives an analyse of - only single - tasks.

Start with simplifying random(0) in order to initialize the random number generator!

#1: RANDOM(D)

Please follow a possible exercising session:

#1: RANDOM(D) = 2856264212

#2: LOAD(M: \DOKUSYDNLs\Dn 100 \mth40\expand_ut.mth)

2
#3: sg = (8.0 - 7-v)
2 2
#4: ch(64:0 - 56.0:v + 49.v ) = check double product!
2 2
#5: ch(64.0 - 11Z2.0.v + 49.v ) = correct!
3
#6: cu = — (f + G-u)
3 2 2 3
#7: ch(- f - 18.f «u - 36.T+u + 226.u ) = check cubes!
3 2 2 3
#8: res = — f - 18.f .u — 108.f.u - 216:u

#9: pr = (c + 5:r)+(6+c - r)

2 2
#10: ch(6.c - 29.c-t - 5.r ) = wrong variable or unidentified error

2 2
#11: ch(6.c - 29:.c.r - 5.r ) = check mixed product!

2 2

EIVEE ch(6.c + 29.c.r - 5.r ) = correct!
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I'll show only a part of the code. You will find the complete file on the diskette. It was nice and help-
ful to use Mr Schiller’s TOM.EXE to work in an fullscreen editor (MS Word or Wordpad or the DOS
editor) to write the DERIVE-functions with the many IFs and parentheses.

You can see completely how to create a binomial”2 together with its evaluation. The other problem
types are produced in a very similar way. Don't forget, this is not the final DERIVE code, but has to
be converted by TOM.EXE into a correct DERIVE code. TOM collects all variables in the parameter
list, etc. Compare this section with the respective functions in exprut.mth!

Please notify the '-operator, which prevents autosimplification. If you are interested in such train-
ings-tools then send an e-mail or call me. I have also a ready made Df¥5-file for practising factoris-
ing. If you prefer working with the 77-92/89, 1 can offer a bk-teachware booklet with these tools plus
some more trainers (for calculus, linear functions).

ll:=[a,c,e,g,1i,k,m0,q,5,u,w,¥]
L2e=Th,dsfihs Tilan et teVaxtaz]
task :=; type:=; group:=; kl:=; k2:=; k3:=; kd:=; vl:=; v2:=; v3:=

sq_(pl,p2):=prog
global task, type, kl,k2,vl,vZ

vl := 11 sub (random(13)+1)

v2 := 12 sub (random(1l3)-+1)

kl := random(10)+1

k2 := random(10)+1

pl := kl*vl

p2 := k2*v2

type := 1

task:= ['(pl+p2)°2, " (pl-p2)"2, " (-pl-p2)"2] sub (random(3)+1)

end

sq:=sg_(pl,p2)

tsg(ans) :=prog
if ans - task = 0
then "correct!"
else "wrong!"
other if k172 /= subst(ans, [vl,v2],[1,0]) or \
k2~2 /= subst(ans, [vl,v2],[0,1])
then "check squares!™
else if subst(ans-(kl*vl)”*2-(k2*v2)"2, \
(vl,v2],[1,1]) /= \
subst (task— (kl*vl)*2~(k2*v2) "2, \
(vl,v2],[1,1])
then "check double product!”
else "wrong!"
other "wrong variable or unidentified error"
other "wrong variable or unidentified error"
end

qu := [sq,cu,tr,pr,di] sub (random(5)+1)
sge (n) :=prog;global group,task ;task:=[vector(sq,k,1,n)] ;end
ch(ans) := [tsg(ans),tcu(ans),ttr(ans),tpr(ans),tdi(ans)] sub (type)

res:= expand (task)

[1] Mathe-Trainer I (for T1-89/92/92+), bk-teachware SR-15, ISBN 3-901769-24-2
(The booklet is in German, I am working on an Englisch version. The programs are available in English to-
gether with the booklet on request.)
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| added a TI-Nspire-version (expanding.tns, deutsche Version: terme.tns).

tr() presents atrinomial to be squared, trr() .

res() will offer the result(s) of the given tasks.

Working with binomials and other expressions

sq() presents a binomial to be sqared, sqq() is a bit harder
cu() presents a binomial to be cubed, cuu() is a bit harder

pr() presents a product of two binomials, prr() ...
di() presents a product of sum and difference, dii() ...

qu() and quu() give randomly chosen problems

sqge(n), cue(n), tre(n), pre(n), die(n) and que(n) create a sample of n respective tasks.

Single problems can be analysed with ch(my_answer).

Don't forget to initialize the random number generator by executing randseed any integer.

A sample session on two calculator pages. One program is displayed on the next page.

RandSeed 18112018 Done
sql)

(5 d-g)?

Done

ch|25-d*-5-d- g+g2]
check double product!
Done

chl25- d?-10- d- g-g2
check squares or missing variable!
Done

chl25- d3-10- @ g+g2]
correct!

Done

|
cuO
-(2:5-3-b)3
Done
chl-8- 53436+ 52 b-27-5- n2+27- b3
wrong variable or unidentified error!
Done

chl-8- s3+36- 2. b-27- - B2 +27- b3]

check mixed products!

Done
res|) -8 53+36: b 5254 b2+ s+27- b
amO
: 3
-4 62—5' n3]

Done
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S

_(. > 3]3 “Q"=q" .stored successfully
4-e”=5n Define qu=
Done | JFrsm
Local kI _k2_
res) 64 ¢64240 % n3-300- €2 nO+125 0% | |K1_=rdl10)k2_=rdl10)
_(-)dl2) kI_
kI:=[-1 C—
que(S] _ _ ( ) gc d(k 1 k2 J
(8' g_g.p]. (8' g+9'p) Koim k2_
(2- c—p)- (3- c—lO-p) " gedlkl_k2)
(5—3- z]- (s+3- z] 1.'I:=st(1,13):v1_:=v}
(3_ s—b—4- k]2 1.'2:=st(2,13):v2_:=v2
G © v1_ and v2_ are needed for squ
(w—_1'+2- g]" typ:=1
Done Biask:=(k1- vi_+k2- V2J2
1 RIDisp task
res) 64 32_81'102 EndPrgm
6 c2-23- ¢ p+10- p>
32—9- z2
9: 52+(-6 b-24- K)- s+b>+8- b k+16- k>
witw: (4- g2 _r)-i—_rg—él- g xt+4- g2

Lists of problems (like sqe(n), cue(n), ...) cannot be checked and analysed.

Trochoids on the TI-92

A short comment in Thomas Weth's contribution in DNL#39, page 32, inspired me to produce a
CABRI-tool for creating various trochoids on the TI-92. Thomas Himmelbauer gave very valueable
support and [ tried to make the tool as user friendly as possible. One can change the values of R (ra-
dius of the fixed circle), r (radius of the rolling circle) and d (distance of the moving point from the
rolling circle’s center). Thomas and Josef

INTEG al DEG HUTD FUNC SIMULATI

DEG ALTO FUNC

=,

o i
SIMULATL BEG AUTO FUNC SIMULATI « DEG AUTO FUHC SIMULATI DEG 4UT0 FUNC

Moving the point on the segment lying on the bottom of the screen and tracing the point lying on the
ray starting from the moving circle’s center gives the trochoid. Using the locus-tool leads immediately
to the epitrochoid or hypotrochoid.
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The Runtest - A simulation

A Run is a sequence of identical consecutive outcomes tossing a coin or producing a random binary
sequence like 00001001101000111. This sequence contains § runs.

Such randomly created sequences provoke a lot of interesting explorations. The TI-92-program
runs () gives a simulation of a sequence of coin tosses. The average number of Heads or the average
number of runs in one experiment or in a series of experiments are only two of several interesting
outcomes.(runtest () on the diskette is the German version. The program should work on the TI-
89, too. It could happen that some window setting must be adapted.)

It is funny to ask students to toss a coin 50 times and note Heads and Tails. Some of them should pro-
duce this sequence without using a coin, hust writing down a random sequence of H and T. If they
don’t know the point you can be sure to recognize in most cases who of them produced a real random
sequence using the coin and who did not, because the “hand made” random sequence mostly shows

.
too many runs. The expected value of runs after » tosses is

runs()

RUNTEST

Simale Experiment ...cccoen.. i & W

Sequence of Experiments ..... 2 How many throws?:
Enter=0K ESC=CHHCEL

S .

Make gour choice!

SIMULATI RAD AUTO FUNE 30730 e FIMULATE FAD_ALTD FUNE 30750

¢ ity :z-i*];": 3

HHTH
TTHTHTHHTTTHHTTHHH
THTHHTHTTTHHTTTHTH
Add and evaluate the outcomes of the whole class! THHTHHHTTHHTHTHHHH
102 Throws with 51 Heads =
54 Rundsd: MaxRun: S5

One experiment with 100 coin tosses:

Now we produce a sequence of 50 times 50 tosses Again/Menue-End lasmoe]
and evaluate the results in various manners graphically:

SIMILATE FAD_AUTO FURC 30730 T

] 0 ae RLUNS y H
43 Heads: 60.00% Runs: 24 HMaxRun:

5
; b 46 Heads: 56.00% Runs: 30 MaxRun: 4
How mahy seqs?: 47 Heads: 46.00% Runs: 22 MaxRun! o
How many throws?: [50) | 43 Heads: 52.08% Runs! 26 MaxRun: S
(ESC=CANCEL 43 Heads: 58.00% Runs: 29 HMaxRun: 5
58 Heads: 58.00% Runsi 29 MaxRun: 7

FIMULATIE RAD ALUTO FUNC 30430 -S-IﬁuELk;ﬁluatlc‘nﬂﬁD ﬁlﬂ'i 1 kegﬂlNE 307240 AL

average nurmber of Heads S0.84
average humber of Runs 25.60
average MaxRun 5.92 average MaxR

average nunb

EunLenDist
MaxEunDist
EHUE

araphical Evaluation [g1 araphical E [gl
Again-MenussEnde [a“mre] Again<Menues<Ende [arm el

SIMULATI KAD AUTO FUMC 30,30 | Eust| TYFE OF USE €314 + (ENTERI=0K AMD (ESCI=CAMCEL
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1:HEADS

Heavy oscillating between the experiments but showing
the convergence of the cumulated frequencies towards 0.5.

2:RUNS

The average number of Runs tends towards 25.5.

3:maxRuns

Shows the maximum Run of each try. We can see that
obviously the average MaxRun converges.

But what is the limit?

4:RunNumbDist

This is the frequency of the numbers of runs in one ex-
periment. (I'11 try to add labels!)

5:RunLenDist

shows the frequencies of the collected runlengths of all
experiments. (Runs with length 1, length 2, ...)

And finally

6:MaxRunDist

offers the frequency of the maximum runs.
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Taking 200 experiments with 200 tosses each we receive histograms which remind us on other distri-

butions. But that takes some time, of course.

RunNumeist and MaxRunDist
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[1] Wilfried Rohm,Statistik mit Zufallszahlen aus AMMU 4, May 1994
[2] Arthur Engel, Wahrscheinlichkeitsrechnung und Statistik 1, Klett Studienbiicher

This was my simulation on the TI-92. Nowadays in 2018 we would like to perform this nice —

maybe introductory — example for probability theory with TI-Nspire.

You are invited to do a project in your classroom using the program runtest.

__________________________________________________________________________|

nmtest{SOO)

Throws: TTTTTTHTTHHTHTTTTHTHTTHHHHHHTTHHTHTTHHTTTHH
THHTHTTHHTTTTTTTTHTHTHHHTHHTHTHHHHTTHTHTHHHHEHHTT
THHTHTHHTTHHHHTHTTTTTTTHTTTTHHTTHTTHTTHTTHHTTHT

THTHHHTTTHHHHHTHHHTHTHHTHHHHHTTHHTTHHHHTTTHTTT

TTHTHHHHTTTHHHTTTTHHTHTTTTTHTHHHHTTTHTHTHHTTHHT
HTTTTHTTHTHHHHHHHTHHTHTHHHHHHTHTHHHHTHTTTTTTTH

HHTTHTHHTHTHTTHTHTHHHHHHHHHHTTHTHTHTTHHTTHTHHH

TTTTHTHTTTTHHTHHHHTHHTTTHHHTTTTHTTHTTTTHTHTHTTH

HTHHHTHTTHHTTHHHHTTHHHTTTTTHHTHTHTTHHHHHTTTHHTH
TTHHHTTHTTHHTHTHTHHTHHTHTTHTHHHTHHHHHHHHTHTHTH

HHTTHTTHHTTHTHHTHHHTHHHTTTHHTTTHTHTHHT

Number of Heads: 258 = 51.6%
Number of Runs: 253
Maximum Runlength: 10
Distribution of Runs:
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Lets assume that 35 students simulate 100 tosses each (take care that they use different
randseeds). Each of them has executed runtest(100).
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| recommend to collect the data from their screens and then perform the graphical evaluation
using the statistic tools. So you can practise presentation of data. In this way we can turn a
deficiency of the Nspire into a benefit. This

What's the deficiency? TI-Nspire does not allow programming the plots from within the pro-
gram — which can be done with TI-92 and Voyage 200 as presented above.

The data are collected in lists for further use in the Lists & Spreadsheet- and Data & Statis-
tics- Application of the TI-Nspire.

These might be the collected data of 35 students:

perchf:={50.,59.,50.,50.,49.,48. ,49.,55.,49.,57.,50.,52.,56.,47.,35.,50.,55.,46.,51.,56.,49.,45.,47.,53.,42.,5
{50.00,59.00,50. 00,50.00,49.00,48.00,49.00,55.00,49.00,57.00,50.00,52.00,56.00,47.00,35.00,50.00,55.00*
nnm!:={48,61,50,47,51,51,44,52,51,57,54,45,46,47,53,51,51,57,51,49,49,59,43,46,51,60,55,51,54,49,49,60,4?
{48,61,50,47,51,51,44,52,51,57,54,45,46,47,53,51,51,57,51,49,49,59,43,46,51,60,55,51,54,49,49,60,42,53,42}
mnm!:={ 8,6,8,'7,6,8,'7,7,5,8,5,9,7,5,7,5,5,7,6,7,5,5,6,6,6,5,5,11,6,10,6,6,8,9,8}
{8,6,8,7,6,8,7,7,5,8,5,9,'7,5,'7,5,5,7,6,7,5,5,6,6,6,5,5,11,6,10,6,6,8,9,8}
mnfd:={ 881,469,214, 120,51,23,9,8,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
{881,469,214,120,51,23,9,8,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
iosses:=seq(100- k,k,1,35)
{ 100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,22¢

First of all we can demonstrate that the number of HEADS tend to 50% of the tosses:

- Y |
@ perchl
1M cumperc
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M cumperc @perchl
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For saving space are the next screen shots
from the handheld.

This is Option 2 from above, the number of
RUNS together with its convergence to-
wards 50.50.

Option 3 from above shows the Maximum
Runs and their mean (??7?).

Any idea?

Option 4 presents the distribution of the
number of the RUNSs.

This will become clearer choosing more
tosses and experiments (see next page).

Option 5 presents the distribution of the
lengths of all RUNSs for all series of tosses.

Any idea for a describing function?

Finally, option 6 is showing the frequencies
of the maximum Runs.

Again, the same question: which function
lies behind the frequencies?

f2(x):=50.50
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My program runtests(number of series, tosses per serie) allows experiments with greater num-

bers:

runtests(35,50) simulates the 35 student class in one step:

Heads: 2
Heads: 2
Heads:
Heads:
Heads:
Heads:
Heads:

| S T % T 0% ]
w o W

Runs:
Runs:
Runs:
Runs: 2
Runs: 2
Runs:

Runs:

(S T SO S R S

Average number of Heads: 25.94 = 51.89%

Average number of Runs: 24.97

Std, Dev. of MaxRuns:3.58
Average MaxRun: 5.94

List of Heads in: hl

List of number of Runs in: nrunl

List of MaxRuns in: mrunl

Distribution of Runs in: runld

Done

According [2] (Arthur Engel) the standard deviation of the number of Runs is given by

G=%VH—L

For n = 50 this is 3.50. As you can see here and in the next simulation as well, my outcome

confirms the formula.

Finally, | execute 500 experiments with 400 coin tosses each. It works very fast on the PC:

Average number of Heads: 200.73 = 50.18% ’
Average number of Runs: 200.43 - 2&1._:
Std, Dev. of MaxRuns:10.32 £ 18]
Average MaxRun: 8.95 % 12_:
List of Heads in: hl L 1
List of number of Runs in: nrunl 6 N
List of MaxRuns in: mrunl 0
Distribution of Runs in: runld 175

500- normPdf(x,200.48,10.33)

185

185 205 215 225 235

nrunl

We can recognize the bell-shaped normal distribution.

On the next page | try to approximate the distribution of the run lengths by an exponential

function.
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* *runtest —

o

DERIVE and TI-92 User Forum

Here is a comment on Fritz Tinhof’s problem with a logistic regression on the T/-92 (DNL#39, page 5).
There were also some answers from Tl (David Stoutemyer and Michelle Miller) which will follow Al-
fred’s answer. Josef

Hallo Fritz !
This is not a solution of your problem, I couldn’t find one, but perhaps an interesting item.
F3 F4 F5. Fh F?
CENp1ot Setup|ool 1 HeaderCalc Ut 1 [skat]| If you change the value p1o el T1ls
bHTA 100 to 30 in the first col- | u=arci+h e~ xdo+d -
cl o2 c3 cd b o cl |5 =50064. 728819  —|
z 4060 umn and choose logistic |2 [2_ |k =65, 891707 L
T 18 13560 Y I T ==, 317792 e
4 5 32000 at the Calc menue it |2 [i5]4 =213.271552
5 36100 . 5 [
: e Soa0n works and you will get [z e —
7 : 7 1
£ the solution as shown |J g
rici= above. rrcl=
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The grafik looks good too. On the right window you can see the function
- o Fa¥ H i v > v o
 £z6on|Trace Rebraphimath oraul ¢ = | 1f you change to 50 there |[Tg@BEETE e[ AT lsfiialms .. .| ]
will be still the same error [~ "
U= +3-x+c
message. wd=lsintx)2
55 50064. 728315755
] = v 25. 891706 - -Slrroisazzezl
I can’t give you really an | ye-mpmemy oo o €
answer why, but perhaps :gfolf“ €5 4 3 23 and x20
this short example may |gbCxr=regeql:d
MIST EAD AUTO FURC HIET RAD AUTO FUNC

help you.
Regards Alfred Eisler, Tulln, Austria

David Stoutemyer, Texas Instruments

Unfortunately, I wasn't the one who wrote either the TI-92+ logistic regression or the linear system solver.

I do know that:

1. There is an optional tolerance that can cause a singular-matrix error when Gaussian elimination is forced to use
a relatively small pivot.

2. Even linear regression equations can be quite nearly singular.

3. Non-linear regression equations such as the logistic one often start from a guess, and a poor guess could cause
an ill-conditioned matrix even though the matrix associated with the final guess is well conditioned.

I am sorry that I can't be of more help on this example. Perhaps someone else at TI will know more.
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Michelle Miller, Texas Instruments

Hello Josef,

I have received some more answers from our algorithm team. Since I do not know German, I am not quite sure
exactly what your colleague wants to know, but here are a couple facts in addition to David's response. Please let
me know if your colleague wanted some other information or explanation.

1. The algorithms used by the TI-83 Plus and the TI-89/92 Plus basecodes are different. Therefore, they can
produce different answers, like the example provided by your colleague. The 89/92 basecode uses a 3-parameter
model, the TI-83 Plus (and the Stats app for the 89/92) have a 4-parameter model.

2. As I mentioned in another email, there is an application for the TI-89/92 Plus called Statistics with List Editor
(which is free on our website) that does include the TI-83 Plus's algorithm, Logist83, as a choice. This may help
teachers if they are trying to get the same answer for a Logistic model on two different T1 calculators.

3. There are some noted cases where the Logist83 model on the 89/92 Stats app and the TI-83 Plus model can
still produce different results (for example, a Singular Matrix error on the 89/92), but apparently in these cases
the data sets are usually not very "logistic-like".

Best Regards,

Michelle

Yolker Loose, Germany
Hello all,

using DfW5 1 wrote a function schrv (£,g,a,b,d) := VECTOR([i,£(i};1i,g(i)],i,a,b,d).
Approximating schrv (£ (x) ,g(x) ,-1,1,0.2) with £ (x) :=x"2-1and g (x) :=-x"2+1.
I got

. H -1 F{-13 ] [—B.B £f{-B0.8) ] {—B.E F(-8B.63 ] [—3-4 £{-8.4)

-4 g(-1) |7 | 8.8 g(-8.8) 8.6 g{-8.6) 8.4 g¢-8.4) |
Approximating this I got
-1 T —@.8 -B.36 -A.6 -B.64 ... the result T wanted. Why
#6: = ~ don't1get this result already in
-1 @ | -B.8 B.36 -8.6 B.64 the first step?
Volker Loose
Dave Stenenga. Honolulu, Hawaii
I suggest you modify your definition to:
schrv(u,v,x,a,b,d) := VECTOR([i,SUBST(u,x,i);i,SUBST(v,x,1)]1,1i,a,b,d}

and then approximate: schrv (x*2-1,x*2+1,x,-1,1, .2)

Al Rich, Honolulu. Hawaii
In Derive, only expressions, NOT functions, can be passed as arguments to user-defined functions. Therefore, the

variable needs to be included along with the expressions in a function's formal argument list. For example, if your
function is defined as

X u
17: schre{u, v, x, a. b, d} == UECTOR[[ ], X, &, h, d]
x U
rco = * ]
fig: FixY == x — 1, gf{x) == —x + 1
#e: sehro{f{x), gixd, x. -1, 1. B.2}

approximating either of the expressions schrv(f(x), g(x), %, -1, 1, 0.2) or schrv(f(y), g(y), ¥, -1, 1, 0.2)
gives the approximated matrix that you desire.




