Continuity and Differentiability explored on the TI-89/92

(Josef Böhm)

The DATA-Matrix editor is an excellent tool to support concepts of accumulation points, limits, continuity, average and instantaneous rates of change.

I'll demonstrate the possibilities using an "exotic" function.

$$f(x) = \frac{x^2 - 4}{2x - 4} + \frac{3 \operatorname{sign} (2x - 9)}{x + 3}$$

Which values for *x* are excluded from the domain?

To keep the exploration as general as possible I recommend to store the function as f(x) in the Home Screen.

 F1770
 Plot Setup Cell Header Calc Util Stat

 Data
 x0=
 ax
 x0+ax
 f(x+ax)

 c1
 G2
 c3
 c4

 1
 3
 .5000
 3.5000
 2.2885

 2
 .2500
 3.1250
 2.0727

 4
 .0625
 3.0625
 2.0364

 5
 .0313
 3.0156
 2.0091

 7
 .0078
 3.0078
 2.0046

 c2=seg(1/(2.)^n,n,1,10)
 .0015
 .0015
 .0015

Continuity Behaviour at $x_0 = 3$

1

In cell c1 we enter the value fo x_0 . In row c2 we define a 0-sequence to obtain in c3 a sequence of *x*-values with rightside limit 3. Subsequently in c4 we can see the sequence of function values which should tend to $f(x_0)$.

(Experiment changing the sequence in c2).

For c3 enter: c1[1]+c2 For c4 enter: f(c3)

In columns c5 and c6 we generate the left sided approach.

How should we change c2 to accelerate the convergence?

(F1 ~~~~ ▼ f	Plot ^{F2}	tup[Cell]H	F4 leader Cal	cUtilStat
DATA	×0+ ₄ ×	$f(x+\Delta x)$	х0-дх	f(x0x)
	c3	c4	c5	c6
1	3.5000	2.2885	2.5000	1.7045
2	3.2500	2.1450	2.7500	1.8533
3	3.1250	2.0727	2.8750	1.9269
4	3.0625	2.0364	2.9375	1.9635
5	3.0313	2.0182	2.9688	1.9818
6	3.0156	2.0091	2.9844	1.9909
7	3.0078	2.0046	2.9922	1.9954
c6=	f(c5)			
MAIN		DEG AUTO	FUNC	

Using the plot-facilities we can visualize the convergence process:

2 Continuity Behaviour at $x_0 = -3$

F1	Plot ^{F2}		eader Cal	cUtilSta	at
DATA	×0=	ΔX	×0+6×	$f(x+\Delta x)$	
	c1	c2	c3	c4	
1	-3	.1000	-2.9000	-30.4500	
2		.0100	-2.9900	-300.495	
3		.0010	-2.9990	-3000.50	
4		.0001	-2.9999	-30000.5	
5		1.000e-5	-3.0000	-300000.	
6		1.000g-6	-3.0000	-3.000e6	
7		1.000e-7	-3.0000	-3.000e7	
c2=seg((.1)^n.n.1.10)					
MAIN	D	EG AUTO	FUNC		

F1 77	Plot Set		eader Cal	cUtilSta	÷,
DATA	х0+ ₄ х	$f(x+\Delta x)$	х0-дх	f(x0x)	
	сЗ	c4	c5	c6	
4	-2.9999	-30000.5	-3.0001	29999.50	
5	-3.0000	-300000.	-3.0000	299999.5	
6	-3.0000	-3.000e6	-3.0000	29999999.	
7	-3.0000	-3.000e7	-3.0000	3.0000e7	
8	-3.0000	-3.000E8	-3.0000	3.0000E8	
9	-3.0000	-3.000e9	-3.0000	3.0000E9	
10	-3.0000	-3.00£10	-3.0000	3.000£10	
Gr10c6=29999999999 .5					
MAIN	D	EG AUTO	FUNC		

The results in columns c4 and c6 are very informative!!

3 Continuity Behaviour at $x_0 = 4.5$

F1	Plot ^{F2}	tup[Cell]⊦	leader Cal	cUtilSta
DATA	×0=	ΔX	х0+ _Δ х	$f(x+\Delta x)$
	c1	c2	c3	c4
1	4.5000	1	5.5000	4.1029
2		1/2	5.0000	3.8750
3		1/3	4.8333	3.7996
4		1/4	4.7500	3.7621
5		1/5	4.7000	3.7396
6		1/6	4.6667	3.7246
7		1/7	4.6429	3.7140
c2=	seg(1/	n,n,1,1	.0>	
MAIN		EG AUTO	FUNC	

F1	Plot ^{F2} Set		F4 eader Cal	cUtilSta	at
DATA	×0+ ₄ ×	$f(x+\Delta x)$	×0-д×	f(x0-4x)	
	c3	c4	c5	c6	
4	4.7500	3.7621	4.2500	2.7112	
5	4.7000	3.7396	4.3000	2.7390	
6	4.6667	3.7246	4.3333	2.7576	
7	4.6429	3.7140	4.3571	2.7708	
8	4.6250	3.7059	4.3750	2.7807	
9	4.6111	3.6997	4.3889	2.7884	
10	4.6000	3.6947	4.4000	2.7946	
Ør1	Oc6=2.'	7945945	945946		
MAGINI		EC AUTO	FUNC		

Discuss the outcomes in columns c4 and c6. Change the sequence in c2. Discuss possible consequences. Produce a graphic representation.

4 The last interesting position is $x_0 = 2$

	F1 ₩	Plot Set	tup Cell H	eader Cal	cUtilSta	at
	DATA	×0+ ₄ ×	$f(x+\Delta x)$	х0-дх	f(x0x)	
		c3	c4	c5	c6	
	4	2.0039	1.4024	1.9961	1.3976	
	5	2.0016	1.4010	1.9984	1.3990	
	6	2.0008	1.4005	1.9992	1.3995	
	7	2.0004	1.4003	1.9996	1.3997	
	8	2.0002	1.4002	1.9998	1.3998	
	9	2.0002	1.4001	1.9998	1.3999	
	10	2.0001	1.4001	1.9999	1.3999	
Josef	8r1	Oc6=1.3	3999379	9976		
	MAIN	D	EG AUTO	FUNC		

Now it is easy to extend this table for further use in calculus teaching. We only have to add some rows for the absolute changes and then for the rates of change leading to the average rate of change and to its limit.

Let's have another "artificial" function. Do you know the "Marilyn Monroe Curve"?

$$f(x) = \left(\frac{|x|}{2} - 2\right)^2$$

 $x_0 = 2$:

F1	Prio Na	us Catile	e sister (a).	ာ်း Stat		
DATA	rs.⊿f	rs.of/ox	ls.af	ls.af/ax		
	c7	c8	c9	c10		
4	0615	9844	0635	-1.0156		
5	0310	9922	0315	-1.0078		
6	0156	9961	0157	-1.0039		
7	0078	9980	0078	-1.0020		
8	0039	9990	0039	-1.0010		
9	0020	9995	0020	-1.0005		
10	0010	9998	0010	-1.0002		
c7=	c7=c4-f(c1[1])					
MAIN	D	EG AUTO	FUNC			

(F1 77) • •	Plot Set	tup Ce11 H	eader Cal	cUtilStat
DATA	rs.⊿f	rs.of/ox	ls.of	ls.of/ax
	c7	c8	c9	c10
4	1240	-1.9844	.1240	1.9844
5	0623	-1.9922	.0623	1.9922
6	0312	-1.9961	.0312	1.9961
7	0156	-1.9980	.0156	1.9980
8	0078	-1.9990	.0078	1.9990
9	0039	-1.9995	.0039	1.9995
10	0020	-1.9998	.0020	1.9998
8r1	0c10=1	.999755	859353	6
MAIN	D	EG AUTO	FUNC	

Do see the difference in the behaviour of the rate of changes progress? Use various sequences for approaching x = 0. Is the function continuous for x = 0?

Further explorings:

Try another function, eg $f(x) = 3x^2 - 4x + 5$. Perform the same investigation like above, but finally enter $x\theta$ for the location:

F1	Plot ^{F2}		eader Cal	cUtilSta	at
DATA	rs.of/ox	ls.of	ls.af/ax	expanded	
	c8	c9	c10	c11	
4	6.*(t^2	4.e-1*t	6.*(t^2	6.*t^2+	
5	6.*(t^2	2.e-1*t	6.*(t^2	6.*t^2+	
6	6.*(t^2	9.е-2*t	6.*(t^2	6.*t^2+	
7	6.*(t^2	5.e-2*t	6.*(t^2	6.*t^2+	
8	6.*(t^2	2.e-2*t	6.*(t^2	6.*t^2+	
9	6.*(t^2	1.E-2*t	6.*(t^2	6.*t^2+	
10	6.*(t^2	6.ε-3*t…	6.*(t^2	6.*t^2+	
8r1	Oc11=6	.*t^2+7	.99414	0625100)_
MAIN	D	EG AUTO	FUNC		

Josef Böhm..T' AUSTRIA

Attach one more column to expand the results from c10 or c8.

Copy and paste content of cell r10c11 into the Home Screen and try to make conclusions for a general rule to find a formula for the instantaneous rate of change.

F1770 ▼ ← A1 9	F2 * JebraCalcOthe	r PrgmIO Clean	Up
-[_24	.2		Done
$\left \frac{ X }{2} - 2 \right $	$\int \hat{f}(x)$		Done
■2·× ³ +	4·× ² - 3·× + 5÷	+ f(×)	Done
■6.·t ² +	7.9941406251	006 t - 3.003904	4342🕨
		6. ·t ² + 8. ·	t-3.
14062	51006*t-3.	.0039043426	304
MAIN	DEG AUTO	FUNC 22/30	

Overall I'd recommend to start the investigations presented above in connection with a problem from applied mathematics. It is my experience that students then like to follow very "inner mathematical" reasoning.

I want to give full credit to David Bowers who gave a marvellous workshop in San Francisco and in Liverpool as well showing so many possibilities how to use the TI's DATA-table in a very meaningful way.

I also want to give credit to attendants of the $1^{st} T^3$ Winter Academy in Austria (1 - 6 January 2001), who gave the idea of "absolute adressing" a cell in the DATA-table. (K.H.-Keunecke, D.Kirmse, M.Grote).

I'd like to dedicate this paper to Detlev Kirmse who was attacked by an apoplexy of the brain after coming home. All attendants wish Detlev the best for his recovering and hope to discuss and to go skiing with him again next winter.